Восходящие проводящие пути спинного мозга. Проводящие нервные пути спинного мозга

Связь спинного мозга с вышележащими отделами центральной нервной системы (мозговым стволом, мозжечком и большими полушарием осуществляется посредством восходящих и нисходящих проводящих путей . По восходящим путям передается информация, получаемая рецепторами.

Импульсы от мышц, сухожилий и связок проходят в вышележащие отделы центральной нервной системы частью по волокнам пучковГолля и Бурдаха, находящимся в задних столбах спинного мозга , частью по волокнам спино-мозжечковых путей Говерса и Флексига, расположенных в боковых столбах. Пучки Голля и Бурдаха образованы отростками рецепторных нейронов, тела которых находятся в спинномозговых ганглиях (рис. 227 ).

Эти отростки, войдя в спинной мозг , идут в восходящем направлении, отдавая короткие ветви к серому веществу нескольких выше и ниже расположенных сегментов спипного мозга. Эти ветви образуют синапсы на промежуточных и эффекторных нейронах, входящих в состав спинномозговых рефлекторных дуг. Пучки Голля и Бурдаха оканчиваются в ядрах продолговатого мозга, откуда начинается второй нейрон афферентного пути, направляющийся после перекреста к таламусу; здесь расположен третий нейрон, отростки которого проводят афферентные импульсы к коре больших полушарий (рис. 228 ).

За исключением тех волокон, которые входят в состав пучков Голля и Бурдаха и идут, не прерываясь, в продолговатый мозг, все остальные афферентные нервные волокна задних корешков вступают в серое вещество спинного мозга и здесь прерываются, т. е. образуют синапсы на различных нервных клетках. От так называемых столбовых, или кларковых, клеток заднего рога и отчасти от спайковых, или комиссуральных, клеток спинного мозга берут начало нервные волокна пучков Говерса и Флексига.

Нарушение проведения афферентных импульсов по спино-мозжечковым путям влечет за собой расстройство сложных движений, при которых наблюдаются нарушения мышечного тонуса и явления атаксии, как и при поражениях мозжечка.

Рис. 228. Схема проводящих путей задних столбов спинного мозга. 1 - тактильные рецепторы кожи; 2 - нежный пучок Голля (fasciculus gracilis); 3 - клиновидный пучок Бурдаха (fasciculus cuneatus); 4 - медиальная петля (lemniscus medians); 5 - перекрест медиальной петли; 6 - ядро Бурдаха в продолговатом мозгу; 7 - ядро Голля в продолговатом мозгу; СМ - спинной мозг (сегменты С8 и S1); ПМ - продолговатый мозг; ВМ - варолиев мост; ЗБ - зрительные бугры (видны ядра, особенно заднее вентральное, где заканчиваются волокна медиальной петли).

Импульсы от проприорецепторов распространяются по обладающим высокой скоростью проведения (до 140 м/сек) толстым миелиновым волокнам группы Аα, образующим спино-мозжечковые пути, и по более медленно проводящим (до 70 м/сек) волокнам пучков Голля и Бурдаха. Большая скорость проведения импульсов от рецепторов мышц суставов и сухожилий, очевидно, связана с важностью для организма быстрого получения информации о характере выполняемого двигательного акта, что обеспечивает непрерывный его контроль.

Импульсы от болевых и температурных рецепторов поступают к клеткам задних рогов спинного мозга; отсюда начинается второй нейрон афферентного пути. Отростки этого нейрона на уровне этого же сегмента, где расположено тело нервной клетки, переходят на противоположную сторону, вступают в белое вещество боковых столбов и в составе латерального спино-таламического пути (см. рис. 227 ) идут к зрительному бугру, где начинается третий нейрон, проводящий импульсы к коре больших полушарий. Импульсы от болевых и температурных рецепторов частично проводятся и по волокнам, направляйся кверху по задним рогам серого вещества спинного мозга. Проводники болевой и температурной чувствительности представляют собой тонкие миелиновые волокна группы АΔ и безмиелиновые волокна, отличающиеся малой скоростью проведения.

При некоторых поражениях спинного мозга могут наблюдаться расстройства только болевой или только температурной чувствительности. Более того, может быть нарушена чувствительность только к теплу или только к холоду. Это доказывает, что импульсация от соответствующих рецепторов проводится в спинном мозгу по нервным волокнам.

Импульсы от тактильных рецепторов кожи поступают к клеткам задних рогов, отростки которых восходят по серому веществу на несколько сегментов, переходят на противоположную сторону спинного мозга, вступают в белое вещество и в вентрального спино-таламического пути несут импульсь к ядрам зрительных бугров, где находится третий нейрон, передающий получаемую им информацию коре больших полушарий. Импульсы от кожных рецепторов прикосновения и давления частично проходят также по пучкам Голля и Бурдаха.

Имеются существенные различия в характере информации, доставляемой волоканми пучков Голля и Бурдаха и волокнами спино-таламических путей, а также в скорости распространения импульсов по тем и другим. По восходящим путям задних столбов передаются импульсы от рецепторов прикосновения, обеспечивающие возможность точной локализации места раздражения. Волокна этих путей проводят также импульсы большой частоты, возникающие при действии вибрации на рецепторы. Здесь же проводятся импульсы от рецепторов давления, дающие возможность точного определения интенсивности раздражения. По спино-таламическим путям проводятся импульсы от рецепторов прикосновения, давления, а также от температурных и болевых рецепторов, не обеспечивающие точной дифференцировки локализации и интенсивности раздражения.

Волокна, проходящие в пучках Голля и Бурдаха, передающие более дифференцированную информацию о действующих раздражениях, проводят импульсы с большей скоростью, причем частота этих импульсов может меняться в значительных пределах. Волокна спино-таламических путей обладают малой скоростью проведения; при разной силе раздражения частота импульсов, проходящих в них, мало меняется.

Импульсы, которые проводятся по афферентным путям, генерируют, как правило, возбуждающий постсинаптический потенциал, достаточно сильный для того, чтобы вызвать возникновение распространяющегося импульса в следующем нейроне восходящего афферентного пути. Однако импульсы, переходящие с одного нейрона на другой, могут затормаживаться, если в данный момент центральная нервная система получает по другим афферентным проводникам какую-либо более важную для организма информацию.

По нисходящим путям спинного мозга поступают к нему импульсы от вышележащих эффекторных центров. Получая импульсы по нисходящим путям от центров головного мозга и передавая эти импульсы к рабочим органам, спинной мозг выполняет проводниково-исполнительскую роль.

По кортикоспинальным, или пирамидным, путям, проходящим в передних боковых столбах спинного мозга, к нему приходят импульсы непосредствено от крупных пирамидных клеток коры больших полушарий. Волокна пирамидных путей образуют синапсы на промежуточных и моторных нейронах (прямая связь пирамидных нейронов с мотонейронами имеется только у человека и обезьян). В составе кортикоспинальных путей имеется около миллиона нервных волокон, среди которых около 3%составляют толстые волокна диаметром 16 мк, относящиеся к типу Аα и обладают большой скоростью проведения (до 120-140 м/сек). Эти волокна представляют собой отростки крупных пирамидных клеток коры. Остальные волокна имеют диаметр около 4 мк и обладают гораздо меньшей скоростью проведения. Значительное количество этих волокон проводит импульсы к спинальным нейронам вегетативной нервной системы.

Кортикоспинальные пути боковых столбов перекрещиваются на уровне нижней трети продолговатого мозга. Кортикоспинальные пути передних столбов (так называемые прямые пирамидные пути) не перекрещиваются в продолговатом мозгу; они переходят на противоположную сторону вблизи того сегмента, где заканчиваются. В связи с этим перекрестом кортикоспинальных путей нарушения моторных центров одного полушария вызывают паралич мускулатуры противоположной стороны тела.

Через некоторое время после повреждения пирамидных нейронов или идущих от них нервных волокон кортикоспинального тракта возникают некоторые патологические рефлексы. Типичным симптомом поражения пирамидных путей является извращенный кожно-подошвенный рефлекс Бабинского. Он проявляется в том, что штриховое раздражение подошвенной поверхности стопы вызывает разгибание большого пальца и веерообразное расхождение остальных пальцев ноги; такой рефлекс получается также и у новорожденных, у которых пирамидные пути еще не закончили своего развития У здоровых взрослых людей штриховое раздражение кожи подошвы вызывает рефлекторное сгибание пальцев.

В синапсах, образованных волокнами кортикоспинального тракта, могут возникать как возбуждающие, так и тормозящие постсинаптические потенциалы. В результате может возникать возбуждение или торможение мотонейронов.

Аксоны пирамидных клеток, образующие кортикоспинальные пути, отдают коллатерали, которые заканчиваются в ядрах полосатого тела, гипоталамуса, и красном ядре, в мозжечке, в ретикулярной формации мозгового ствола. От всех перечисленных ядер импульсы по нисходящим путям, называемым экстракортикоспинальными, или экстрапирамидными, поступают к вставочным нейронам спинного мозга. Главными из этих нисходящих путей являются ретикуло-спинальный, рубро-спинальный, текто-спинальный и вестибуло-спинальный тракты. По рубро-спинальному тракту (пучку Монакова) к спинному мозгу поступают импульсы от мозжечка, четверохолмия и подкорковых центров. Импульсы, проходящие по этому пути, имеют значение в координации движении и регуляции тонуса мышц.

Вестибуло-спинальный тракт идет от вестибулярных ядер в продолговатом мозгу к клеткам переднего рога. Импульсы, приходящие по этому пути, обеспечивают осуществление тонических рефлексов положения тела. Ретикуло-спинальные пути передают активирующее и тормозящее влияния ретикулярной формации на нейроны спинного мозга. Они оказывают влияние- как на моторные, так и на промежуточные нейроны. Кроме всех этих длинных нисходящих путей (в белом веществе спинного мозга), имеются еще и короткие пути, связывающие вышележащие сегменты с нижележащими.

Как уже отмечалось, в спинном мозге имеется целый ряд нейронов, дающих начало длинным восходящим путям к различным структурам головного мозга. В спинной мозг поступает и большое количество нисходящих трактов, образованных аксонами нервных клеток, локализующихся в коре больших полушарий, в среднем и продолговатом мозге. Все эти проекции наряду с путями, связывающими клетки различных спинальных сег­ментов, образуют систему проводящих путей, сформированных в виде белого вещества, где каждый тракт занимает вполне определенное положение.

Основные восходящие пути спинного мозга показаны на рис. 81 и в табл. 4. Часть из них представляет собой идущие без перерыва волокна первичных афферентных (чувствительных) нейронов. Эти волокна - тонкий (пучок Голля) и клиновидный (пучок Бурдаха) пучки идут в составе дорсальных канатиков белого вещества и заканчива­ются в продолговатом мозге возле нейронных релейных ядер, называемых ядрами дорсально­го канатика, или ядрами Голля и Бурдаха. Волокна дорсального канатика являются проводника­ми кожно-механической чувст- рис. 81. Локализация основных восходящих путей в белом вительности. веществе спинного мозга (схема). Объяснение в тексте.


Остальные восходящие пути начинаются от нейронов, расположенных в сером ве­ществе спинного мозга. Поскольку эти нейроны получают синаптические входы от первичных афферентных нейронов, их принято обозначать нейронами второго порядка, или вторичными афферентными нейронами. Основная масса волокон от вторичных афферентных нейронов проходит в составе латерального канатика белого вещества. Здесь расположен спиноталамический путь. Аксоны спиноталамических нейронов совер­шают перекрест и доходят не прерываясь через продолговатый и средний мозг до таламических ядер, где они образуют синапсы с нейронами таламуса. По спиноталамическим путям поступает импульсация от кожных рецепторов.

В латеральных канатиках проходят волокна спинно-мозжечковых трактов, дорсаль­ного и вентрального, проводящие в кору мозжечка импульсацию от кожных и мышеч­ных рецепторов.

В составе латерального канатика идут и волокна спиноцервикального тракта, окончания кото­рых образуют синапсы с релейными нейронами шейного отдела спинного мозга - нейронами


цервикального ядра. После переклю­чения в цервикальном ядре этот путь направляется в мозжечок и ядра ствола.

Путь болевой чувствитель­ности локализуется в вентраль­ных столбах белого вещества. Кроме того, в задних, боковых и передних столбах проходят собственные проводящие пути спинного мозга, обеспечиваю­щие интеграцию функций и реф­лекторную деятельность его цен­тров.

Нисходящие пути спинного мозга также разделяются на несколько самостоятельных тра­ктов, занимающих определенное положение в латеральных и вентральных канатиках белого вещества (рис. 82).

Эволюционно более древние нисходящие пути берут начало от нейронов, ядра кото­рых расположены в пределах продолговатого мозга и моста. Это ретикулоспинальный и вестибулоспинальный тракты. Ретикулоспинальный тракт образован аксонами нейро­нов ретикулярной формации заднего мозга.

Ретикулоспинальные волокна идут в составе латеральных и вентральных канатиков спинного мозга и заканчиваются на многих нейронах серого вещества, в том числе на а- и y-мотонейронах. Сходную локализацию имеют волокна вестибулоспинального тракта, являющиеся главным образом аксонами нейронов латерального вестибулярного ядра, или ядра Дейтерса. Оба эти тракта не перекрещиваются.

Эволюционно более молодым нисходящим путем является руброспинальный тракт, достигающий наибольшего развития только у млекопитающих. Руброспинальные волокна являются аксонами нейронов красного ядра, расположенного в среднем мозге. Руброспинальный тракт совершает перекрест и идет в составе латеральных канатиков белого вещества.

Окончания руброспинальных волокон занимают в сером веществе спинного мозга более дорсальное положение, чем окончание волокон ретикуло- и вестибулоспинального трактов. Тем не менее часть из этих волокон образует-синапсы непосредственно на мотонейронах.

Наиболее важный нисходящий путь - кортико-спинальный, или пирамидный, тракт, нейроны которого расположены в двигательной зоне больших полушарий. Пира­мидный тракт является Эволюционно самым молодым. Он появляется только у млекопи­тающих и наиболее развит у приматов и человека. Волокна пирамидного тракта соверша­ют перекрест и идут в составе дорсолатеральных канатиков над руброспинальным трактом. Окончания кортико-спинальных волокон обнаруживаются главным образом на вставочных нейронах спинного мозга. Пирамидные аксоны, устанавливающие прямые связи с мотонейронами, относятся к миелинизированным волокнам большого диаметра и проводят импульсы с высокой скоростью.

Восходящие проводящие пути спинного мозга

Медиальные лемнискови пути образованы двумя восходящими трактами: 1) тонкий пучок Голля; 2) клиновидный пучок Бурдаха (рис. 4.14).

Афферентные волокна этих путей передают информацию от тактильных рецепторов кожи и проприорецепторов, в частности суставных рецепторов. Они входят в серое вещество задних рогов спинного мозга, не должны прерываться и проходят в задних канатиках к тонкому и клиновидного ядер (Голля и Бурдаха), где осуществляется передача информации на второй нейрон. Аксоны этих нейронов перекрещиваются, переходят на противоположную сторону и в составе медиальной петли поднимаются к специфическим переключающих ядер таламуса, где происходит переключение на третьи нейроны, аксоны которых передают информацию в задней центральной извилины, что обеспечивает формирование тактильного ощущения, ощущения положения тела, пассивных движений, вибрации.

Спиноцеребелярни пути имеют также 2 тракты: 1) задний Флексига и 2) передней Говерса. их афферентные волокна передают информацию от проприорецепторов мышц, сухожилий, связок и тактильных рецепторов нажатия на кожу. Для них характерно переключение на второй нейрон в сером веществе спинного мозга и переход на противоположную сторону. Далее они проходят в боковых канатиках спинного мозга и несут информацию к коре мозжечка.

Спиноталамического пути (латеральный, передний), их афферентные волокна передают информацию от рецепторов кожи - холодовых, тепловых, болевых, тактильных - о грубую деформацию и нажатия на кожу. Они переключаются на второй нейрон в сером веществе задних рогов спинного мозга переходят на противоположную сторону и поднимаются в боковых и передних канатиках к ядрам таламуса, где идет переключение на третьи нейроны, которые передают информацию в задней центральной извилины.

РИС. 4.14.

Нисходящие проводящие пути спинного мозга

Получая информацию от восходящей проводящей системы о состоянии деятельности эффекторных органов, головной мозг по нисходящих проводниках направляет импульсы ("указания") в рабочие органы, среди которых находится спинной мозг, выполняет Ведущий-исполнительной роль. Это происходит с помощью следующих систем (рис. 4.15).

Кортиноспинальни или пирамидные пути (вентральный, латеральный) проходят через продолговатый мозг, где большинство перекрещиваются на уровне пирамид, так и называются пирамидными. Они несут информацию от двигательных центров моторной зоны коры головного мозга к двигательным центров спинного мозга, благодаря чему осуществляются произвольные движения. Вентральный кортикоспинального путь проходит в передних канатиках спинного мозга, а латеральный - в боковых.

Руброспинальный путь - его волокна является аксонами нейронов красного ядра среднего мозга, делают перекрест и идут в составе боковых канатиков спинного мозга и передают информацию от красных ядер в латеральных интернейронов спинного мозга.

Стимуляция красных ядер приводит к активации мотонейронов флексоров и торможения мотонейронов экстензорах.

Медиальный ретинулоспинальний путь (понторетииулоспинальний) начинается от ядер варолиевого моста, идет в передних канатиках спинного мозга и передает информацию в вентромедиальных отделов спинного мозга. Стимуляция ядер моста приводит к активации мотонейронов как флексоров, так и экстензорах с преимущественным влиянием на активацию мотонейронов экстензорах.

Латеральный ретинулоспинальний путь (медулоре тинулоспинальний) начинается от ретикулярной формации продолговатого мозга, идет в передних канатиках спинного мозга и передает информацию в интернейронов спинного мозга. Стимуляция его вызывает общий тормозящее влияние, преимущественно на мотонейроны экстензорах.

Вестибулоспинальный путь начинается от ядер Дейтерса, идет в передних канатиках спинного мозга, передает информацию на интернейронов и мотонейроны с той же стороны. Стимуляция ядер Дейтерса приводит к активации мотонейронов экстензорах и торможения мотонейронов флексоров.

РИС. 4.15.

РИС. 4.16.

Тектоспинальный путь начинается от верхних двогорбикив четверохолмия и передает информацию в мотонейронов шейного отдела спинного мозга, обеспечивает регуляцию функций шейных мышц. Топография проводящих путей спинного мозга представлена на рис. 4.16.

Рефлекторная функция спинного мозга состоит в том, что в нем заложены центры рефлексов. Альфа-мотонейроны передних рогов составляют двигательные центры скелетных мышц туловища, конечностей, а также диафрагмы, а в-мотонейроны - тонические, поддерживают напряжение и определенную длину этих мышц. Мотонейроны грудных и шейных (CIII-CIV) сегментов, которые иннервируют дыхательные мышцы, составляют "спинальный дыхательный центр". В боковых рогах тораколюмбального отдела спинного мозга заложены тела симпатических нейронов, а в сакральном отделе - парасимпатических. Эти нейроны составляют центры вегетативных функций: сосудодвигательные, регуляции сердечной деятельности (TI-TV), рефлекса расширение зрачка (TI-TII), выделение пота, теплообразования, регуляции сокращения гладких мышц органов малого таза (в пояснично-крестцовом отделе).

Экспериментально рефлекторная функция спинного мозга исследуется после его изоляции от расположенных выше отделов головного мозга. Для сохранения дыхания за счет диафрагмы перерезания проводят между V и VI шейными сегментами. Сразу же после перерезки подавляются все функции. Возникает состояние арефлексии, который называется спинального шока.

Проводящие пути головного и спинного мозга объединены общей системой нервных волокон, обеспечивающих функциональность мозга, как отдельно, так и между собой. Благодаря работе проводящих путей обеспечивается интегративная работа ЦНС, взаимосвязь с внешними компонентами и нормализация организма в целом.

Действие проводящих путей

Спинной мозг обладает 2 видами проводящих путей (восходящие и нисходящие). Они способствуют передаче нервного сигнала к центрам расположения серого вещества для нормализации нервной деятельности.

К функции восходящих проводящих путей относится обеспечение выполнения движений тела, восприятие температурного режима, боли, тактильной восприимчивости.

Нисходящие проводящие пути спинного мозга обеспечивают скоординированность движений с сохранением равновесия. Кроме того, они ответственны за рефлексы, тем самым обеспечивая импульсную передачу к мышцам и мозговым оболочкам, что позволяет быстро передавать импульсы и осуществлять согласованное движение тела.

Классификация спинномозговых путей

Основная часть проводящих путей образована нейронами, что позволяет классифицировать их по функциональным особенностям нервных волокон:

  • комиссуральная связь;
  • ассоциативные проводящие пути;
  • проекционные волокна.

Нервные ткани располагаются в белом и сером веществе мозга и соединяют кору полушария и спинномозговые рога. Морфофункциональность проводящих нисходящих путей резко ограничивает передачу импульсом в одном направлении.


Основные восходящие спинномозговые пути

Проводниковая функция сопровождается следующими возможностями:

  • Ассоциативные пути – являются своего рода «мостом», который соединяет участки между ядром и корой мозгового вещества. Ассоциативные пути состоят из длинных (передача сигнала происходит в 2-3 сегментах мозгового вещества) и коротких (находящихся в 1 части полушария).
  • Комиссуральные пути – состоят из мозолистого тела, которое соединяет новые отделы в спинном и головном мозге, и расходятся в стороны в виде лучей.
  • Проекционные волокна – по функциональности могут быть афферентными и нисходящими. Место расположения этих волокон позволяет импульсу максимально быстро достигнуть коры полушария.


Проводниковая функция спинного мозга определяется нисходящими и восходящими путями

Помимо такой классификации, в зависимости от основных функций выделяются следующие формы проводящих путей:

  • Главной системой нервных волокон является корково-спинномозговой путь передачи импульса, который отвечает за двигательную активность. В зависимости от направления он разделяется на латеральную, корково-ядерную и корково-спинномозговую латеральную систему.
  • При проекционно-нисходящей нервной системе, которая начинается в корке среднего полушария и проходит через его канатик и ствол, заканчиваясь в передних рогах позвоночного столба, отмечается присутствие покрышечно-спинномозгового пути передачи импульса.
  • Диагностирование преддверно-спинномозгового пути нормализует работу в вестибулярном аппарате. При этом нервные ткани проходят в передней части спинномозгового канатика, начинаясь с латерального ядра в области преддверно-улиткового нерва.
  • Проведение нервного импульса от мозгового полушария к серому веществу и улучшение мышечного тонуса принадлежит ретикулярно-спинномозговому пути развития.

Важно помнить, что проводящие пути объединяются совокупностью всех нервных окончаний, которые обеспечивают поступление сигнала в различные отделы мозга.

Последствия спинномозгового повреждения

Патологические изменения в функции проводимости способны привести к нарушению функциональности организма, появлению болей, недержанию мочи и т.д. В результате получения различных видов травм, спинномозговых заболеваний и пороков развития возможно снижение или полное прекращение проводимости нервных рецепторов.


При нарушении импульсной проводимости возникает парез нижних конечностей

Полное нарушение проводимости импульса может сопровождаться парализацией и потерей чувствительности конечностей. Кроме того, наблюдаются нарушения работы внутренних органов, за функциональность которых отвечают поврежденные нейроны. Например, при поражениях нижней спинномозговой части возможна самопроизвольная дефекация.

В зависимости от тяжести повреждения спинномозговых нервов после получения травмы или в результате заболевания, возможны следующие проявления:

  • развитие застойной пневмонии;
  • образование пролежней и трофических язв;
  • инфекции мочевыводящих путей;
  • синдром Спастика (патологическое сокращение парализованных мышц), сопровождающийся болью, тугоподвижностью конечности и образованием контрактур;
  • септическое заражение крови;
  • нарушение поведенческих реакций (дезориентация, пугливость, заторможенная реакция);
  • психологическое изменение, проявляющееся резкими колебаниями в настроении, депрессивным состоянием, беспричинным плачем (смехом), бессонницей и т.д.

Нарушение проводимости и рефлекторной деятельности наблюдается сразу после выявления дегенеративного патологического изменения. При этом происходит некроз нервных клеток, что приводит к ускоренному прогрессированию болезни, требующего незамедлительного лечения. Последствия такого состояния определяются тяжестью негативной симптоматики и тем, какие именно клетки были повреждены.

Методы восстановления проходимости спинного мозга

Все лечебные мероприятия в первую очередь направлены на прекращение клеточного некроза и устранение факторов, которые явились катализаторами такого состояния.

Медикаментозная терапия предусматривает применение лекарственных препаратов, которые препятствуют отмиранию мозговых клеток и обеспечивают достаточное кровоснабжение поврежденных участков в спинном мозге. При этом обязательно следует учитывать возрастную категорию пациента и серьезность поражения. Кроме того, для того, чтобы обеспечивать дополнительную стимуляцию нервных клеток, рекомендуется использование электрических импульсов, которые поддерживают тонус мышц.

При необходимости проводится хирургическое вмешательство для восстановления проводимости, которое затрагивает 2 направления: удаление катализатора и стимулирование спинного мозга для обеспечения восстановления утраченной функции.


Операция по восстановлению проводимости выполняется опытными нейрохирургами с использованием самых современных способов наблюдения за процессом

До начала операции выполняется глубокое диагностическое обследование пациента, позволяющее выявить локализацию дегенеративного процесса, после чего нейрохирурги сужают операционное поле. При тяжелом течении симптоматики действие врача в первую очередь направлено на устранение компрессии, которая спровоцировала спинальный синдром позвоночника.

Помимо оперативного и терапевтического лечения, нередко используется апитерапия, траволечение и гирудотерапия, которые оказывают положительное воздействие на структурные проводящие пути позвоночного столба и головного мозга. Однако следует учитывать, что во всех случаях требуется обязательная врачебная консультация.

Необходимо учитывать, что восстановление нейронной связи после различного рода негативных воздействий требует длительного лечения. В этом случае большое значение имеет раннее обращение за высококвалифицированной помощью. В противном случае значительно снижаются шансы на восстановление функциональности спинного мозга. Это указывает на то, что проводящие пути в головном и спинном мозге тесно взаимодействуют друг с другом, объединяя весь организм, что обеспечивает единство действий.

В нервной системе нервные клетки не лежат изолированно. Они вступают в контакт друг с другом, образуя цепи нейронов - проводников импульсов. Длинный отросток одного нейрона - нейрит (аксон) вступает в контакт с короткими отростками (дендритами) или телом другого, следующего в цепи нейрона.

По цепям нейронов нервные импульсы движутся в строго определенном направлении, что обусловлено особенностями строения нервных клеток и синапсов («динамическая поляризация»). Одни цепи нейронов несут импульс в центростремительном направлении - от места возникновения на периферии (в коже, слизистых оболочках, органах, стенках сосудов) к ЦНС (спинному и головному мозгу). Первым в этой цепи является чувствительный (афферентный) нейрон, воспринимающий раздражение и трансформирующий его в нервный импульс. Другие цепи нейронов проводят импульс в центробежном направлении - от головного или спинного мозга на периферию, к рабочему органу. Нейрон, передающий импульс рабочему органу, является эфферентным.

Цепи нейронов в живом организме образуют рефлекторные дуги.

Рефлекторная дуга - это цепь нервных клеток, обязательно включающая первый - чувствительный и последний - двигательный (или секреторный) нейроны, по которым импульс движется от места возникновения к месту приложения (мышцы, железы и другие органы, ткани). Наиболее простыми рефлекторными дугами являются двух- и трехнейронные, замыкающиеся на уровне одного сегмента спинного мозга. В трехнейронной рефлекторной дуге первый нейрон представлен чувствительной клеткой, по которой импульс от места возникновения в чувствительном нервном окончании (рецепторе), лежащем в коже или в других органах, движется вначале по периферическому отростку (в составе нерва). Затем импульс движется по центральному отростку в составе заднего корешка спинномозгового нерва, направляясь к одному из ядер заднего рога спинного мозга, или по чувствительным волокнам черепных нервов к соответствующим чувствительным ядрам. Здесь импульс передается следующему нейрону, отросток которого направляется из заднего рога в передний, к клеткам ядер (двигательных) переднего рога. Этот второй нейрон выполняет проводниковую (кондукторную) функцию. Он передает импульс от чувствительного (афферентного) нейрона к третьему - двигательному (эфферентному). Кондукторный нейрон является вставочным нейроном, так как находится между чувствительным нейроном, с одной стороны, и двигательным (или секреторным) - с другой. Тело третьего нейрона (эфферентного, эффекторного, двигательного) лежит в переднем роге спинного мозга, а его аксон - в составе переднего корешка, а затем спинномозгового нерва простирается до рабочего органа (мышцы).

С развитием спинного и головного мозга усложнились и связи в нервной системе. Образовались многонейронные сложные рефлекторные дуги, в построении и функциях которых участвуют нервные клетки, расположенные в вышележащих сегментах спинного мозга, в ядрах мозгового ствола, полушарий и даже в коре большого мозга. Отростки нервных клеток, проводящих нервные импульсы из спинного мозга к ядрам и коре головного мозга и в обратном направлении, образуют пучки (fasciculi).

Пучки нервных волокон, соединяющие функционально однородные или различные участки серого вещества в ЦНС, занимающие в белом веществе головного и спинного мозга определенное место и проводящие одинаковый импульс, получили название проводящих путей.

В спинном и головном мозге по строению и функции выделяют три группы проводящих путей: ассоциативные, комиссуральные и проекционные.

Ассоциативные нервные волокна (neurofibrae associations) соединяют участки серого вещества, различные функциональные центры (кора мозга, ядра) в пределах одной половины мозга. Выделяют короткие и длинные ассоциативные волокна (пути). Короткие волокна соединяют близлежащие участки серого вещества и располагаются в пределах одной доли мозга (внутридолевые пучки волокон). Некоторые ассоциативные волокна, соединяющие серое вещество соседних извилин, не выходят за пределы коры (интракортикальные). Они дугообразно изгибаются в виде буквы 0 и называются дугообразными волокнами большого мозга (fibrae arcuatae cerebri). Ассоциативные нервные волокна, выходящие в белое вещество полушария (за пределы коры), называют экстракортикальными.

Длинные ассоциативные волокна связывают участки серого вещества, далеко отстоящие друг от друга, принадлежащие различным долям (междолевые пучки волокон). Это хорошо выраженные пучки волокон, которые можно видеть на макропрепарате головного мозга. К длинным ассоциативным путям относятся следующие: верхний продольный пучок (fasciculus longitudinalis superior), который находится в верхней части белого вещества полушария большого мозга и соединяет кору лобной доли с теменной и затылочной; нижний продольный пучок (fasciculus longitudinalis inferior), лежащий в нижних отделах полушария и соединяющий кору височной доли с затылочной; крючков,идный пучок (fasciculus uncinatus), который, дугообразно изгибаясь впереди островка, соединяет кору в области лобного полюса с передней частью височной доли. В спинном мозге ассоциативные волокна соединяют клетки серого вещества, принадлежащего различным сегментам, и образуют передние, латеральные и задние собственные пучки (межсегментные пучки) (fasciculi proprii ventrales, s. anteriores lateralis, dorsrales, s. posteriores). Они располагаются непосредственно возле серого вещества. Короткие пучки связывают соседние сегменты, перекидываясь через 2-3 сегмента, длинные пучки соединяют далеко отстояшие друг от друга сегменты спинного мозга.

Комиссуральные (спаечные) нервные волокна (neurofibrae commissurales) соединяют серое вещество правого и левого полушарий, аналогичные центры правой и левой половин мозга с целью координации их функций. Комиссуральные волокна проходят из одного полушария в другое, образуя спайки (мозолистое тело, спайка свода, передняя спайка). В мозолистом теле, имеющемся только у млекопитающих, располагаются волокна, соединяющие новые, более молодые, отделы мозга, корковые центры правого и левого полушарий. В белом веществе полушарий волокна мозолистого тела расходятся веерообразно, образуя лучистость мозолистого тела (radiatio corporis callosi).

Комиссуральные волокна, идущие в колене и клюве мозолистого тела, соединяют друг с другом участки лобных долей правого и левого полушарий большого мозга. Загибаясь кпереди, пучки этих волокон как бы охватывают с двух сторон переднюю часть продольной щели большого мозга и образуют лобные щипцы (forceps frontalis). В стволе мозолистого тела проходят нервные волокна, соединяющие кору центральных извилин, теменных и височных долей двух полушарий большого мозга. Валик мозолистого тела состоит из комиссуральных волокон, которые соединяют кору затылочных и задние отделы теменных долей правого и левого полушарий большого мозга. Изгибаясь кзади, пучки этих волокон охватывают задние отделы продольной щели большого мозга и образуют затылочные щипцы (forceps occipitalis).

Комиссуральные волокна проходят в составе передней спайки мозга (commissura rostralis, s. anterior) и спайки свода (commissura fornicis). Большая часть комиссуральных волокон, входящих в состав передней спайки, - это пучки, соединяющие друг с другом переднемедиальные участки коры височных долей обоих полушарий в дополнение к волокнам мозолистого тела. В составе передней спайки находятся также слабовыраженные у человека пучки комиссуральных волокон, направляющиеся из области обонятельного треугольника одной стороны мозга в такую же область другой стороны. В спайке свода проходят комиссуральные волокна, которые соединяют участки коры правой и левой височных долей полушарий большого мозга, правого и левого гиппокампов.

Проекционные нервные волокна (neurofibrae proectiones) соединяют нижележащие отделы мозга (спинной мозг) с головным мозгом, а также ядра мозгового ствола с базальными ядрами (полосатым телом) и корой и, наоборот, кору головного мозга, базальные ядра с ядрами мозгового ствола и со спинным мозгом. При помощи проекционных волокон, достигающих коры большого мозга, картины внешнего мира как бы проецируются на кору как на экран, где происходят высший анализ поступивших сюда импульсов, сознательная их оценка. В группе проекционных путей выделяют восходящие и нисходящие системы волокон.

Восходящие проекционные пути (афферентные, чувствительные) несут в головной мозг, к его подкорковым и высшим центрам (к коре), импульсы, возникшие в результате воздействия на организм факторов внешней среды, в том числе и от органов чувств, а также импульсы от органов движения, внутренних органов, сосудов. По характеру проводимых импульсов восходящие проекционные пути подразделяются на три группы.

  1. Экстероцептивные пути (от лат. exter. externus - наружный, внешний) несут импульсы (болевые, температурные, осязания и давления), возникшие в результате воздействия внешней среды на кожные покровы, а также импульсы от высших органов чувств (органов зрения, слуха, вкуса, обоняния).
  2. Проприоцептивные пути (от лат. proprius - собственный) проводят импульсы от органов движения (от мышц, сухожилий, суставных капсул, связок), несут информацию о положении частей тела, о размахе движений.
  3. Интероцептивные пути (от лат. interior - внутренний) проводят импульсы от внутренних органов, сосудов, где хемо-, баро- и механорецепторы воспринимают состояние внутренней среды организма, интенсивность обмена веществ, химизм крови, тканевой жидкости, лимфы, давление в сосудах

Экстероцептивные проводящие пути. Проводящий путь болевой и температурной чувствительности - латеральный спинно-таламический путь (tractus spinothalamicus lateralis) состоит из трех нейронов. Чувствительным проводящим путям принято давать названия с учетом топографии - места начала и конца второго нейрона. Например, у спинно-таламического пути второй нейрон простирается от спинного мозга, где в заднем роге лежит тело клетки, до таламуса, где аксон этого нейрона образует синапс с клеткой третьего нейрона. Рецепторы первого (чувствительного) нейрона, воспринимающие чувство боли, температуру, располагаются в коже, слизистых оболочках, а нейрит третьего нейрона заканчивается в коре постцентральной извилины, где находится корковый конец анализатора общей чувствительности. Тело первой чувствительной клетки лежит в спинномозговом узле, а ее центральный отросток в составе заднего корешка направляется в задний рог спинного мозга и заканчивается синапсами на клетках второго нейрона. Аксон второго нейрона, тело которого лежит в заднем роге, направляется на противоположную сторону спинного мозга через его переднюю серую спайку и входит в боковой канатик, где включается в состав латерального спинно-таламического пути. Из спинного мозга пучок поднимается в продолговатый мозг и располагается позади ядра оливы, а в покрышке моста и среднего мозга лежит у наружного края медиальной петли. Заканчивается второй нейрон латерального спинно-таламического пути синапсами на клетках дорсального латерального ядра таламуса. Здесь расположены тела третьего нейрона, отростки клеток которого проходят через заднюю ножку внутренней капсулы и в составе веерообразно расходящихся пучков волокон, образующих лучистый венец (corona radiata). Эти волокна достигают коры полушария большого мозга, его постцентральной извилины. Здесь они заканчиваются синапсами с клетками четвертого слоя (внутренняя зернистая пластинка). Волокна третьего нейрона чувствительного (восходящего) проводящего пути, соединяющего таламус с корой, образуют таламокорковые пучки (fasciculi thalamocorticalis) - таламотеменные волокна (fibrae thalamoparietales). Латеральный спинно-таламический путь является полностью перекрещенным проводящим путем (все волокна второго нейрона переходят на противоположную сторону), поэтому при повреждении одной половины спинного мозга полностью исчезают болевая и температурная чувствительность на противоположной стороне от повреждения.

Проводящий путь осязания и давления, передний спинно-таламический путь (tractus spinothalamicus ventralis, s. anterior) несет импульсы от кожи, где лежат рецепторы, воспринимающие чувство давления и осязания. Импульсы идут к коре большого мозга, в постцентральную извилину - место расположения коркового конца анализатора общей чувствительности. Тела клеток первого нейрона лежат в спинномозговом узле, а их центральные отростки в составе заднего корешка спинномозговых нервов направляются в задний рог спинного мозга, где заканчиваются синапсами на клетках второго нейрона. Аксоны второго нейрона переходят на противоположную сторону спинного мозга (через переднюю серую спайку), входят в передний канатик и в его составе направляются вверх, к головному мозгу. На своем пути в продолговатом мозге аксоны этого пути присоединяются с латеральной стороны к волокнам медиальной петли и заканчиваются в таламусе, в его дорсальном латеральном ядре, синапсами на клетках третьего нейрона. Волокна третьего нейрона проходят через внутреннюю капсулу (заднюю ножку) и в составе лучистого венца достигают IV слоя коры постцентральной извилины.

Необходимо отметить, что не все волокна, несущие импульсы осязания и давления, переходят на противоположную сторону в спинном мозге. Часть волокон проводящего пути осязания и давления идет в составе заднего канатика спинного мозга (своей стороны) вместе с аксонами проводящего пути проприоцептивной чувствительности коркового направления. В связи с этим при поражении одной половины спинного мозга кожное чувство осязания и давления на противоположной стороне не исчезает полностью, как болевая чувствительность, а только снижается. Этот переход на противоположную сторону частично осуществляется в продолговатом мозге.

Проприоцептивные проводящие пути. Проводящий путь проприоцептивной чувствительности коркового направления (tractus bulbothalamicus - BNA) называется так, поскольку проводит импульсы мышечно-суставного чувства к коре большого мозга, в постцентральную извилину. Чувствительные окончания (рецепторы) первого нейрона располагаются в мышцах, сухожилиях, суставных капсулах, связках. Сигналы о тонусе мышц, натяжении сухожилий, о состоянии опорно-двигательного аппарата в целом (импульсы проприоцептивной чувствительности) позволяют человеку оценить положение частей тела (головы, туловища, конечностей) в пространстве, а также во время движения и проводить целенаправленные осознанные движения и их коррекцию. Тела первых нейронов лежат в спинномозговом узле. Центральные отростки этих клеток в составе заднего корешка направляются в задний канатик, минуя задний рог, а затем уходят вверх в продолговатый мозг к тонкому и клиновидному ядрам. Аксоны, несущие проприоцептивные импульсы, входят в задний канатик начиная с нижних сегментов спинного мозга. Каждый следующий пучок аксонов прилежит с латеральной стороны к уже имеющимся пучкам. Таким образом, наружные отделы заднего канатика (клиновидный пучок, пучок Бурдаха) заняты аксонами клеток, осуществляющих проприоцептивную иннервацию в верхнегрудных, шейных отделах тела и верхних конечностей. Аксоны, занимающие внутреннюю часть заднего канатика (тонкий пучок, пучок Голля), проводят проприоцептивные импульсы от нижних конечностей и нижней половины туловища. Центральные отростки первого нейрона заканчиваются синапсами на своей стороне, на клетках второго нейрона, тела которых лежат в тонком и клиновидных ядрах продолговатого мозга. Аксоны клеток второго нейрона выходят из этих ядер, дугообразно изгибаются вперед и медиально на уровне нижнего угла ромбовидной ямки и в межоливном слое переходят на противоположную сторону, образуя перекрест медиальных петель (decussatio lemniscorum medialis). Пучок волокон, обращенных в медиальном направлении и переходящих на другую сторону, получил название внутренних дугообразных волокон (fibrae arcuatae internae), которые являются начальным отделом медиальной петли (lemniscus medialis). Волокна меди альной петли в мосту располагаются в задней его части (в покрышке), почти на границе с передней частью (между пучками волокон трапециевидного тела). В покрышке среднего мозга пучок волокон медиальной петли занимает место дорсолатеральнее красного ядра, а заканчивается в дорсальном латеральном ядре таламуса синапсами на клетках третьего нейрона. Аксоны клеток третьего нейрона через заднюю ножку внутренней капсулы и в составе лучистого венца достигают постцентральной извилины.

Часть волокон второго нейрона по выходе из тонкого и клиновидного ядер изгибается кнаружи и разделяется на два пучка. Один пучок - задние наружные дугообразные волокна (fibrae arcuatae externae dorsales, s. posteriores), направляются в нижнюю мозжечковую ножку своей стороны и заканчиваются в коре червя мозжечка. Волокна второго пучка - передние наружные дугообразные волокна (fibrae arcuatae externae ventrales, s. anteriores) уходят вперед, переходят на противоположную сторону, огибают с латеральной стороны оливное ядро и также через нижнюю мозжечковую ножку направляются к коре червя мозжечка. Передние и задние наружные дугообразные волокна несут проприоцептивные импульсы к мозжечку.

Проприоцептивный путь коркового направления также перекрещенный. Аксоны второго нейрона переходят на противоположную сторону не в спинном мозге, а в продолговатом. При повреждении спинного мозга на стороне возникновения проприоцептивных импульсов (при травме мозгового ствола - на противоположной стороне) теряется представление о состоянии опорно-двигательного аппарата, положении частей тела в пространстве, нарушается координация движений.

Наряду с проприоцептивным проводящим путем, несущим импульсы к коре большого мозга, следует назвать проприоцептивные передний и задний спинно-мозжечковые пути. По этим проводящим путям мозжечок получает информацию от расположенных ниже чувствительных центров (спинного мозга) о состоянии опорно-двигательного аппарата, участвует в рефлекторной координации движений, обеспечивающих равновесие тела без участия высших отделов головного мозга (коры полушарий большого мозга).

Задний спинно-мозжечковый путь (tractus spinocerebellaris dorsalis, s. posterior; пучок Флексига) передает проприоцептивные импульсы от мышц, сухожилий, суставов в мозжечок. Тела клеток первого (чувствительного) нейрона находятся в спинномозговом узле, а центральные отростки их в составе заднего корешка направляются в задний рог спинного мозга и заканчиваются синапсами на клетках грудного ядра (ядра Кларка), лежащего в медиальной части основания заднего рога. Клетки грудного ядра являются вторым нейроном заднего спинно-мозжечкового пути. Аксоны этих клеток выходят в боковой канатик своей стороны, в его заднюю часть, поднимаются вверх и через нижнюю мозжечковую ножку входят в мозжечок, к клеткам коры червя. Здесь спинно-мозжечковый путь заканчивается.

Можно проследить системы волокон, по которым импульс из коры червя достигает красного ядра, полушария мозжечка и даже вышележащих отделов мозга - коры полушарий большого мозга. Из коры червя через пробковидное и шаровидное ядра импульс через верхнюю мозжечковую ножку направляется к красному ядру противоположной стороны (мозжечково-покрышечный путь). Кора червя связана ассоциативными волокнами с корой полушария мозжечка, откуда импульсы поступают в зубчатое ядро мозжечка.

С развитием высших центров чувствительности и произвольных движений в коре полушарий большого мозга возникли также связи мозжечка с корой, осуществляющиеся через таламус. Таким образом, из зубчатого ядра аксоны его клеток через верхнюю мозжечковую ножку выходят в покрышку моста, переходят на противоположную сторону и направляются к та-ламусу. Переключившись в таламусе на следующий нейрон, импульс следует в кору большого мозга, в постцентральную извилину.

Передний спинно-мозжечковый путь (tractus spinocerebellaris ventralis, s. anterior; пучок Говерса) имеет более сложное строение, чем задний, поскольку проходит в боковом канатике противоположной стороны, возвращаясь в мозжечок на свою сторону. Тело клетки первого нейрона располагается в спинномозговом узле. Его периферический отросток имеет окончания (рецепторы) в мышцах, сухожилиях, суставных капсулах. Центральный отросток клетки первого нейрона в составе заднего корешка входит в спинной мозг и заканчивается синапсами на клетках, примыкающих с латеральной стороны к грудному ядру. Аксоны клеток этого второго нейрона проходят через переднюю серую спайку в боковой канатик противоположной стороны, в его переднюю часть, и поднимаются вверх до уровня перешейка ромбовидного мозга. В этом месте волокна переднего спинно-мозжечкового пути возвращаются на свою сторону и через верхнюю мозжечковую ножку вступают в кору червя своей стороны, в его передневерхние отделы. Таким образом, передний спинно-мозжечковый путь, проделав сложный, дважды перекрещенный путь, возвращается на ту же сторону, на которой возникли проприоцептивные импульсы. Проприоцептивные импульсы, поступившие в кору червя по переднему спинно-мозжечковому проприоцептивному пути, также передаются в красное ядро и через зубчатое ядро в кору большого мозга (в постцентральную извилину).

Схемы строения проводящих путей зрительного, слухового анализаторов, вкуса и обоняния рассматриваются в соответствующих разделах анатомии (см. «Органы чувств»).

Нисходящие проекционные пути (эффекторные, эфферентные) проводят импульсы от коры, подкорковых центров к нижележащим отделам, к ядрам мозгового ствола и двигательным ядрам передних рогов спинного мозга. Эти пути можно подразделить на две группы:

  1. главный двигательный, или пирамидный путь (корково-ядерный и корково-спинномозговые пути), несет импульсы произвольных движений из коры головного мозга к скелетным мышцам головы, шеи, туловища, конечностей через соответствующие двигательные ядра головного и спинного мозга;
  2. экстрапирамидные двигательные пути (tractus rubrospinalis, tractus vestibulospinalis и др.) передают импульсы от подкорковых центров к двигательным ядрам черепных и спинномозговых нервов, а затем к мышцам.

К пирамидному пути (tractus pyramidalis) относится система волокон, по которым двигательные импульсы из коры большого мозга, из предцентральной извилины, от гигантопирамидальных нейронов (клетки Беца) направляются к двигательным ядрам черепных нервов и передним рогам спинного мозга, а от них - к скелетным мышцам. Учитывая направление хода волокон, а также расположение пучков в стволе головного мозга и канатиках спинного мозга, пирамидный путь подразделяют на три части:

  1. корково-ядерный - к ядрам черепных нервов;
  2. латеральный корково-спинномозговой - к ядрам передних рогов спинного мозга;
  3. передний корково-спинномозговой - также к передним рогам спинного мозга.

Корково-ядерный путь (tractus corticonuclearis) представляет собой пучок отростков гигантопирамидальных нейронов, которые из коры нижней трети предцентральной извилины спускаются к внутренней капсуле и проходят через ее колено. Далее волокна корково-ядерного пути идут в основании ножки мозга, образуя медиальную часть пирамидных путей. Корково-ядерный, а также корково-спинномозговые пути занимают средние 3/5 основания ножки мозга. Начиная со среднего мозга и далее, в мосту и продолговатом мозге волокна корково-ядерного пути переходят на противоположную сторону к двигательным ядрам черепных нервов: III и IV - в среднем мозге; V, VI, VII - в мосту; IX, X, XI, XII - в продолговатом мозге. В этих ядрах корково-ядерный путь заканчивается. Составляющие его волокна образуют синапсы с двигательными клетками этих ядер. Отростки упомянутых двигательных клеток выходят из мозга в составе соответствующих черепных нервов и направляются к скелетным мышцам головы и шеи и их иннервируют.

Латеральный и передний корково-спинномозговые пути (tractus corticospinales lateralis et ventralis, s.anterior) также начинаются от гигантопирамидальных нейронов предцентральной извилины, ее верхних 2/3. Аксоны этих клеток направляются к внутренней капсуле, проходят через переднюю часть ее задней ножки (сразу позади волокон корково-ядерного пути), спускаются в основание ножки мозга, где занимают место латеральнее корково-ядерного пути. Далее корково-спинномозговые волокна спускаются в переднюю часть (основание) моста, пронизывают идущие в поперечном направлении пучки волокон моста и выходят в продолговатый мозг, где на передней (нижней) его поверхности образуют выступающие вперед валики - пирамиды. В нижней части продолговатого мозга часть волокон переходит на противоположную сторону и продолжается в боковой канатик спинного мозга, постепенно заканчиваясь в передних рогах спинного мозга синапсами на двигательных клетках его ядер. Эта часть пирамидных путей, участвующая в образовании перекреста пирамид (моторный перекрест), получила название латерального корково-спинномозгового пути. Те волокна корково-спинномозгового пути, которые не участвуют в образовании перекреста пирамид и не переходят на противоположную сторону, продолжают свой путь вниз в составе переднего канатика спинного мозга. Эти волокна составляют передний корково-спинномозговой путь. Затем эти волокна также переходят на противоположную сторону, но через белую спайку спинного мозга и заканчиваются на двигательных клетках переднего рога противоположной стороны спинного мозга. Располагающийся в переднем канатике передний корково-спинномозговой путь более молодой в эволюционном плане, чем латеральный. Его волокна спускаются преимущественно до уровня шейных и грудных сегментов спинного мозга.

Следует отметить, что все пирамидные пути являются перекрещенными, т.е. их волокна на пути к следующему нейрону рано или поздно переходят на противоположную сторону. Поэтому повреждение волокон пирамидных путей при одностороннем поражении спинного (или головного) мозга ведет к параличу мышц на противоположной стороне, получающих иннервацию из сегментов, лежащих ниже места повреждения.

Вторыми нейронами нисходящего произвольного двигательного пути (корково-спинномозгового) являются клетки передних рогов спинного мозга, длинные отростки которых выходят из спинного мозга в составе передних корешков и направляются в составе спинномозговых нервов для иннервации скелетных мышц.

Экстрапирамидные проводящие пути, объединенные в одну группу, в отличие от более новых пирамидных путей являются эволюционно более старыми, имеющими обширные связи в мозговом стволе и с корой большого мозга, взявшей на себя функции контроля и управления экстрапирамидной системой. Кора большого мозга, получающая импульсы как по прямым (коркового направления) восходящим чувствительным путям, так и из подкорковых центров, управляет двигательными функциями организма через экстрапирамидные и пирамидные пути. Кора большого мозга оказывает влияние на двигательные функции спинного мозга через систему мозжечок - красные ядра, через ретикулярную формацию, имеющую связи с таламусом и полосатым телом, через вестибулярные ядра. Таким образом, в число центров экстрапирамидной системы входят красные ядра, одной из функций которых является поддержание мышечного тонуса, необходимого для удерживания тела в состоянии равновесия без усилия воли. Красные ядра, которые относятся также к ретикулярной формации, получают импульсы из коры большого мозга, мозжечка (от мозжечковых проприоцептивных путей) и сами имеют связи с двигательными ядрами передних рогов спинного мозга.

Красноядерно-спинномозговой путь (trdctus rubrospinalis) входит в состав рефлекторной дуги, приносящим звеном которой являются спинно-мозжечковые проприоцептивные проводящие пути. Этот путь берет начало от красного ядра (пучок Монакова), переходит на противоположную сторону (перекрест Фореля) и спускается в боковом канатике спинного мозга, заканчиваясь на двигательных клетках спинного мозга. Волокна этого пути проходят в задней части (покрышка) моста и боковых отделах продолговатого мозга.

Важным звеном в координации двигательных функций тела человека является преддверно-спинномозговой путь (tractus vestibulospinalis). Он связывает ядра вестибулярного аппарата с передними рогами спинного мозга и обеспечивает установочные реакции тела при нарушении равновесия. В образовании преддверно-спинномозгового пути принимают участие аксоны клеток латерального вестибулярного ядра (ядро Дейтерса), а также нижнего вестибулярного ядра (нисходящего корешка) преддверно-улиткового нерва. Эти волокна спускаются в латеральной части переднего канатика спинного мозга (на границе с боковым) и заканчиваются на двигательных клетках передних рогов спинного мозга. Ядра, образующие преддверно-спинномозговой путь, находятся в непосредственной связи с мозжечком, а также с задним продольным пучком (fasciculus longitudinalis dorsalis, s. posterior), который в свою очередь связан с ядрами глазодвигательных нервов. Наличие связей с ядрами глазодвигательных нервов обеспечивает сохранение положения глазных яблок (направление зрительной оси) при поворотах головы и шеи. В образовании заднего продольного пучка и тех волокон, которые достигают передних рогов спинного мозга (ретикулярно-спинномозговой путь, tractus reticulospinalis), принимают участие клеточные скопления ретикулярной формации стволовой части мозга, главным образом промежуточное ядро (nucleus intersticialis, ядро Кахаля), ядро эпиталамической (задней) спайки, ядро Даркшевича, к которым приходят волокна из базальных ядер полушарий большого мозга.

Управление функциями мозжечка, участвующего в координации движений головы, туловища и конечностей и связанного в свою очередь с красными ядрами и вестибулярным аппаратом, осуществляется из коры большого мозга через мост по корково-мостомозжечковому пути (tractus corticopontocerebellaris). Этот проводящий путь состоит из двух нейронов. Тела клеток первого нейрона лежат в коре лобной, височной, теменной и затылочной долей. Их отростки - корковом остовые волокна (fibrae corticopontinae) направляются к внутренней капсуле и проходят через нее. Волокна из лобной доли, которые можно назвать лобно-мостовыми волокнами (fibrae frontopontinae), проходят через переднюю ножку внутренней капсулы. Нервные волокна из височной, теменной и затылочной долей идут через заднюю ножку внутренней капсулы. Далее волокна корково-мостового пути идут через основание ножки мозга. От лобной доли волокна проходят через самую медиальную часть основания ножки мозга, кнутри от корково-ядерных волокон. От теменной и других долей полушарий большого мозга идут через самую латеральную часть, кнаружи от корково-спинномозговых путей. В передней части (в основании) моста волокна корково-мостового пути заканчиваются синапсами на клетках ядра моста этой же стороны мозга. Клетки ядер моста с их отростками составляют второй нейрон корково-мозжечкового пути. Аксоны клеток ядер моста складываются в пучки - поперечные волокна моста (fibrae pontis transversae), которые переходят на противоположную сторону, пересекают при этом в поперечном направлении нисходящие пучки волокон пирамидных путей и через среднюю мозжечковую ножку направляются в полушарие мозжечка противоположной стороны.

Таким образом, проводящие пути головного и спинного мозга устанавливают связи между афферентными и эфферентными (эффекторными) центрами, участвуют в образовании сложных рефлекторных дуг в теле человека. Одни проводящие пути (системы волокон) начинаются или заканчиваются в эволюционно более старых, лежащих в мозговом стволе ядрах, обеспечивающих функции, обладающие определенным автоматизмом. Эти функции (например, тонус мышц, автоматические рефлекторные движения) осуществляются без участия сознания, хотя и под контролем коры большого мозга. Другие проводящие пути передают импульсы в кору большого мозга, в высшие отделы ЦНС, или из коры к подкорковым центрам (к базальным ядрам, ядрам мозгового ствола и спинного мозга). Проводящие пути функционально объединяют организм в одно целое, обеспечивают согласованность его действий.

error: Content is protected !!