Деятельность сердца в эмбриональный период собак. Эмбриогенез сердца и магистральных сосудов у плода

Первые признаки развития сердца появляются на третьей неделе эмбриогенеза человека в виде парного клеточного зачатка - кардиогенной мезодермы (рис. 195, а) между спланхноплеврою и эндодермы главной кишки обеих сторон.

Далее кардиогенная мезодерма делится на эпи-, мио-и е-докард иально зачатки (см. рис. 195, б). После отделения тела зародыша зачатки правой и левой сторон сливаются, образуя прямую двухслойную сердечную трубку - первоначальное сердце, расположенное в срединной плоскости, вентрально от Голон кишки. Каудальный расширенный конец трубки, к которому впадают вены, называется венозной пазухой (sinus venosus), а краниальный - артериальным стволом (см. рис. 195, в). Последний вскоре дает начало двум вентральным аортой, из которых последовательно развивается шесть парных аортальных дуг (глоточных артерий) и две дорзальной аорты. Со временем, в результате неравномерного роста, сердечная трубка очень искривляется, причем концы ее смещаются - каудальных в дорзальной, а краниальный в вентральном направлениях, и сердце постепенно приобретает окончательный внешний вид.

Разделение первичной сердечной трубки на камеры, чему предшествует уменьшение венозной пазухи, начинается поперечным перехватом на пятой неделе эмбриогенеза. Как результат возникают примитивные предсердие и желудочек - сигмовидной сердце (двухкамерный). Затем от дорзокраниальнои стенки предсердия в направлении желудочка растет перегородка делит его на две части - правую и левую. Параллельно происходят такие преобразования: место впадения венозной пазухи отклоняется вправо и остается в правом предсердии; в левое предсердие открываются четыре вены правой и левой легких; артериальный ствол вследствие роста парных складок в лобовой плоскости делится на передний отдел, или легочный ствол, несущий кровь к легких, и задний отдел, или начальную часть дефинитивной аорты - аортальный мешок, на межпредсердной перегородке образуется овальное отверстие (к этому времени левая половина сердца оставалась «сухой») образуется межжелудочковая перегородка, которая растет за счет мышечного слоя от верхушки сердца к основы, однако долгое время не доходит до предсердно-желудочковой перегородки. Межжелудочковое отверстие зарастает посредством волокнистой соединительной ткани в конце эмбриогенеза и сердце становится четырехкамерным.

Эмбриональные закладка сердца происходят в области шейных сегментов четко по срединной плоскости. Позже сердце смещается каудально. Встретившись с диафрагмой, которую выгибает кране-ально печень, быстро увеличивается, сердце меняет свое симметричное положение, делая два поворота: вокруг стреловой оси - верхушка упирается в диафрагму, сердце наклоняется направо и продвигается слева, вокруг продольной оси - сердце будто скатывается вентрально с купола диафрагмы, при этом основа его, содержащейся крупными сосудами, направляется дорзально вверх и справа, а свободная верхушка после поворота приближается к передней стенке груди.

Таким образом, онтогенетические преобразования сердца целом повторяют филогенез его в ряду позвоночных: двухкамерное сердце рыб, трехкамерное - амфибий и рептилий и четырехкамерное - млекопитающих.

Врожденные пороки сердца: отсутствие сердца (акардия) двойное сердце (диплокардия), отсутствие половины сердца (гемикардия) внешнее сердце (ектокардия) правостороннее сердце (декстрокардия) смещение сердца (эктопия сердца) двухкамерное сердце, трехкамерное сердце (двопередсердне, двошлуночкове) недостатки межпредсердной перегородки: незаращенный овальное отверстие (отсутствие первой или второй перегородки); недостатки межжелудочковой перегородки; незаращенный межжелудочковое отверстие (дефект перепончатой или мышечной части) тетрада Фалло (декстропозиция аорты, сужение легочного ствола, гипертрофия правого желудочка, недостаток межжелудочковой перегородки).

Врожденные пороки сосудов: коарктация (локальное сужение) аорты; сужена легочная артерия, незаращенный артериальный проток; удвоенная верхняя полая вена; легочный начало венечной артерии; артериовенозная аневризма; гемангиома.

Некоторые аномалии сердца (декстропозиция аорты, декстрокардия т.д.) часто не вызывают никаких явных функциональных нарушений.

В размерах и положении сердца наблюдаются значительные конституциональные и возрастные различия. Сердце гиперстеников конечно увеличено, его продольная ось проходит более поперечно. В астеников сердце сравнительно небольшое и расположено почти вертикально (форма висящей капли). Сердце подростков в период подросткового скачка и в юношеском возрасте часто несколько отстает от роста тела. Это обстоятельство наряду с изменениями эндокринной регуляции, свойственными этому возрасту, может иногда вызывать функциональные нарушения со стороны сердца.

ЛИТЕРАТУРА:

1. Александровская О.В., Радостина Т.Н., Козлов Н.А. Цитология, гистология и эмбриология.-М.:Агропромиздат, 1987.

2. Антипчук Ю.П. Гистология с основами эмбриологии.-М.: Просвещение, 1983.

3. Белоусов Л.В. Введение в общую эмбриологию.-М., 1980.

4. Бодемер Ч. Современная эмбриология.-М., 1971.

5. Вракин В.Ф., Сидорова М.В. Морфология сельскохозяйственных животных.-М.:Агропроиздат, 1991.

6. Газарян К.Г., Белоусов Л.В. Биология индивидуального развития животных.-М.: Высшая школа, 1983.

7. Гистология. Ю.И. Афанасьев, Н.А. Юрина, Е.Ф. Котовский и др.,-5 изд, перераб. и доп. М.: Медицина, 1999.

8. Гистология (введение в патологию), под ред. Э.Г. Улумбекова, Ю.А. Челышева, - М.: ГЭОТАР Медицина, 1998.

9. Рябов К.П. Гистология с основами эмбриологии.- Минск: Вышэйшая школа, 1990.

10. Токин Б.П. Общая эмбриология.-М.: Высшая школа, 1987.

11. Шмидт Г.А. Как развивается зародыш.-М.: Советская наука, 1952.

12. Валюшкин К.Д., Медведев Г.Ф. Акушерство, гинекология и био-

техника размножения животных. – Минск: «Ураджай», 2001.

13. Голиков А.Н. Физиология сельскохозяйственных животных.- М.:

Агропроиздат, 1991.

Возникновение кровеносных сосудов тесно связано с возникновением крови. Источник развития у них общий - мезенхима.

Первые кровеносные сосуды возникают на 2-й неделе , вне тела эмбриона, в мезенхиме стенки желточного мешка в виде так называемых кровяных островков. Клетки, расположенные по периферии этих островков, - ангиобласты - митотически активно размножаются. Эти клетки уплощаются, вступают в связи друг с другом, образуя стенку сосуда. Клетки центральной части островка округляются и превращаются в клетки крови.

В теле зародыша из мезенхимы образуются первичные кровеносные сосуды, имеющие вид трубочек и щелевых пространств, но без клеток крови внутри. В конце 3-й недели внутриутробного развития сосуды тела зародыша сообщаться с сосудами внезародышевых органов.

Дальнейшее развитие сосудов происходит после начала циркуляции крови под влиянием тех гемодинамических условий (кровяное давление, скорость кровотока), которые создаются в различных частях тела, что обусловливает появление специфических особенностей строения стенки внутриорганных и внеорганных сосудов. Из мезенхимных клеток, окружающих сосуд, позднее дифференцируются гладкие мышечные клетки, перициты и а адвентициальные клетки, а также фибробласты.

В эмбриогенезе человека сердце закладывается очень рано, когда зародыш еще не обособлен от желточного мешка и кишечная энтодерма одновременно представляет собой внутреннюю выстилку последнего. В это время в кардиогенной зоне в шейной области между энтодермой и висцеральными листками спланхнотомов слева и справа скапливаются клетки мезенхимы, образующие и справа, и слева клеточные тяжи. Эти тяжи вскоре превращаются в эндотелиальные трубки. В дальнейшем мезенхимные трубки сливаются и из их стенок образуется эндокард. Сразу же нужно отметить, что закладки эндокарда и сосудов в принципе тождественны. Та область висцеральных листков спланхнотомов, которая прилежит к этим трубкам, получила название миоэпикардиальных пластинок. Из этих пластинок дифференцируются две части: одна - внутренняя, прилежащая к мезенхимной трубке, превращается в зачаток миокарда, а из наружной образуется эпикард (рис. 2). Первоначально сердце представляет собой прямую трубку, в которой различают:

1. Верхний конец – луковица, переходящая в артериальный конус.

2. Средний отдел – собственно сердце.

3. Нижний отдел – венозный синус.

Уже в эти сроки сердце начинает пульсировать и обуславливает циркуляцию кровяных телец.

Одном из основных факторов, характеризующих ранние этапы развития сердца, является быстрый рост в длину первичной сердечной трубки, которая увеличивается в длину быстрее, чем полость, в которой она расположена (полость перикарда). Это обстоятельство является одной из причин того, что сердечная трубка, увеличиваясь в длину, образует петлю. Ее передняя нисходящая часть – общий желудочек, венозный конец загибается назад и вверх. При этом венозный отдел растет в краниальном направлении и охватывает сзади и с боков артериальный конус, а артериальный отдел сильно разрастается и смещается каудально. В результате в развивающемся сердце эмбриона можно видеть контуры его основных дефинитивных отделов - предсердий и желудочков.

Дальнейшие изменения приводят к образованию четырехкамерного сердца (рис. 4). В начале венозный и артериальный отделы разделены поперечной перетяжкой. Сообщаются эти отделы через узкий ушковый канал. Двухкамерное сердце существует в эмбриогенезе человека недолго и преобразуется с возникновением продольных перегородок в четырехкамерное. Изменения, приводящие к возникновению четырехкамерного сердца и образованию основных структур, соответствующих картине дефинитивного сердца, заканчиваются в основном к концу третьего месяца эмбриональной жизни.

Развитие закладки эндокарда, как указывалось, принципиально соответствует процессам, происходящим при дифференцировке сосудистой стенки. К эндотелиальной трубке, образовавшейся на самых ранних этапах, присоединяются впоследствии дифференцирующиеся из окружающей мезенхимы субэндотелий, эластический аппарат, коллагеновые волокна и гладкие мышцы.

В миоэпикардиальной пластинке также заметны процессы дифференцировки. Прежде всего, на наружной ее поверхности, обращенной к целомической полости, возникает эпителиоподобный слой клеток с расположенной под ним соединительной тканью. Иными словами, возникает закладка эпикарда. Только после этого активизируются гистогенетические процессы, приводящие к формированию миокарда. Клетки миокарда - кардиомиобласты - лежат первоначально рыхло, на довольно значительном расстоянии друг от друга (рис. 5). В дальнейшем миобласты устанавливают контакт друг с другом. В местах контакта их мембраны представляются утолщенными в определенных зонах за счет накопления электронноплотных гранул. Такие гранулы, находящиеся вне связи с фибриллярным материалом, образуют типичные десмосомы. В периферических частях цитоплазмы клеток миокарда появляются первые тонкие миофиламенты, сгруппированные в рыхлые пучки Гранулы, связанные с пучками миофиламентов, рассматриваются как примитивные вставочные пластинки. Ранние вставочные пластинки могут проходить косо по отношению к оси волокна. Однако постепенно каждый диск ориентируется под прямым углом к оси волокна (миофибриллам). Такая структура вставочных дисков характерна для новорожденного.

Увеличение массы миокарда в эмбриональном периоде происходит как за счет митозов, так и за счет увеличения размеров клеток. Увеличение диаметра волокон миокарда связано с увеличением массы цитоплазмы, главным образом, за счет новообразования миофибрилл внутри каждой клетки. Постепенно в дифференцирующихся мышечных клетках увеличивается количество митохондрий. Митохондрии постепенно удлиняются и располагаются упорядоченно между миофибриллами параллельно их длине.

Вообще же постоянно меняющиеся гемодинамические условия в растущем организме приводят к соответствующим изменениям гистоструктур сердца, в том числе и миокарда. В связи с этим становление дефинитивных структур сердца занимает длительный период онтогенеза, включающий многие годы постнатального периода.

Миокард является многотканевой структурой. В его построении участвуют не только мышечная, но и соединительная ткань. Миокард эмбриона содержит небольшое количество соединительной ткани. Коллагеновые волокна отмеча ются лишь вблизи сосудов. Эластических волокон очень мало. Сосудистая система сердца эмбриона относится к так называемому рассыпному типу.

Имеется множество описаний нервных элементов (клеток, волокон) в стенке сердца эмбрионов различных возрастов. На человеческом материале показано наличие нейробластов в стенке 7-недельного эмбриона. Развитие нейронов протекает неравномерно и характеризуется волнообразностью. К моменту рождения дифференцировка интрамуральных нейронов не завершена: они находятся на разных стадиях развития, причем зрелые нейроны - единичны.

Стенка сердца новорожденного тонкая, легко растяжимая. Эндокард представлен слоем эндотелия, субэндотелием. Гладкомышечные клетки, как правило, единичные: мышечный слой эндокарда формируется позже. Волокна миокарда тонкие, составлены мелкими клетками. Соединительнотканная строма, жировая ткань развиты очень слабо. Внешняя форма сердца округлая с большим поперечным диаметром. Верхушка его почти всегда образована правым желудочком. Относительный вес сердца велик: у новорожденных он составляет примерно 0,8% веса тела.

После рождения проходит длительный период времени, пока структура сердца не достигнет дефинитивного состояния. В это время имеет место увеличение массы органа и значительные изменения его внутренней структуры. Такая динамика структур сердца связана со значительными изменениями гемодинамики, связанными в свою очередь с множеством факторов: выключением плацентарного кровообращения, началом функционирования малого круга кровообращения, ростом и дифференцировкой органов и тканей и т. д.

Страница 2 из 2

Краткие анатомо-физиологические данные сердца.

Сердце представляет собой полый мышечный орган, разделенный на четыре камеры - два предсердия и два желудочка.

Левая и правая части сердца разделены сплошной перегородкой. Кровь из предсердия в желудочки поступает через отверстия в перегородке между предсердиями и желудочками. Отверстия снабжены клапанами, которые открываются только в сторону желудочков. Клапаны образованы смыкающимися створками и потому называются створчатыми клапанами. В левой части сердца клапан двустворчатый, в правой-трехстворчатый. У места выхода аорты из левого желудочка располагаются полулунные клапаны. Они пропускают кровь из желудочков в аорту и легочную артерию и препятствуют обратному движению крови из сосудов в желудочки. Клапаны сердца обеспечивают движение крови только в одном направлении.

Кровообращение обеспечивается деятельностью сердца и кровеносных сосудов. Сосудистая система состоит из двух кругов кровообращения: большого и малого.


Большой круг начинается от левого желудочка сердца, откуда кровь поступает в аорту. Из аорты путь артериальной крови продолжается по артериям, которые по мере удаления от сердца ветвятся и самые мелкие из них распадаются на капилляры, которые густой сетью пронизывают весь организм. Через тонкие стенки капилляров кровь отдает питательные вещества и кислород в тканевую жидкость. Продукты жизнедеятельности клеток при этом из тканевой жидкости поступают в кровь. Из капилляров кровь поступает в мелкие вены, которые, сливаясь, образуют более крупные вены и впадают в верхнюю и нижнюю полые вены. Верхняя и нижняя полые вены приносят венозную кровь в правое предсердие, где заканчивается большой круг кровообращения. Малый круг кровообращения начинается от правого желудочка сердца легочной артерией. Венозная кровь по легочной артерии приносится к капиллярам легких. В легких происходит обмен газов между венозной кровью капилляров и воздухом в альвеолах легких. От легких по четырем легочным венам уже артериальная кровь возвращается в левое предсердие. В левом предсердии заканчивается малый круг кровообращения. Из левого предсердия кровь попадает в левый желудочек, откуда начинается большой круг кровообращения.

1. Эмбриогенез сердца и магистральных сосудов.

Сердце закладывается на второй неделе формирования эмбриона в виде двух сердечных зачатков - первичные эндокардиальные трубки. В дальнейшем они сливаются в одну двухслойную первичную сердечную трубку. Первичная сердечная трубка располагается в полости перикарда вертикально впереди кишечной трубки. Из внутреннего ее слоя развивается эндокард, а из наружного – миокард и эпикард. Первичная сердечная трубка состоит из луковицы или бульбуса, желудочковой и предсердной частей, венозного синуса. На третьей неделе развития эмбриона происходит бурный рост трубки. Первичная сердечная трубка состоит из 5 отделов: венозный синус, первичное предсердие, первичный желудочек, артериальная луковица и артериальный ствол. В течение 5-ой недели эмбрионального развития начинаются изменения, определяющие внутренний и наружный вид сердца. Эти изменения происходят путем удлинения канала, его поворота и разделения.

Разделение сердца на правую и левую половины начинается с конца 3-ей недели благодаря одновременному росту 2-ух перегородок- одной из предсердия, другой – из верхушки желудочка. Растут они с противоположных сторон в направлении первичного атриовентрикулярного отверстия. Увеличение в длину первичного сердечного канала происходит на ограниченном пространстве и ведет к тому, что он приобретает форму лежащей буквы. Нижняя венозная петля (предсердие и венозный синус) устанавливается в левой части и кзади, а верхняя артериальная петля (желудочек и луковица) – кверху и кпереди. Предсердие располагается между луковицей (спереди) и венозным синусом (сзади). В будущее правое предсердие впадают желточные вены, в левое - общий ствол легочных вен. Луковично-желудочная петля увеличивается, ее ветви соединяются, стенки срастаются. Вросшая часть луковицы становится артериальным конусом.

В течение этого времени сердце, первичное образование которого появляется в шейной области, опускается и располагается в грудной полости, одновременно поворачиваясь, в результате чего желудочки, расположенные спереди, перемещаются книзу и влево, а предсердия, бывшие сзади, устанавливаются вверху и направлены вправо. При нарушении этого процесса, могут быть аномалии расположения сердца: шейное положение, когда верхушка сердца направлена к голове и достигает иногда до ветвей нижней челюсти. При шейно-грудном положении сердце размещено на уровне верхнего отверстия грудной клетки; при брюшном положении – сердце находится в надчревной области или в поясничной, куда оно проникает при перфорации диафрагмы. Дефекты при поворотах ведут к обратному расположению сердца, когда желудочки расположены справа, предсердия слева. Эта аномалия сопровождается и обратным расположением (situs inversus) частичным или полным грудных и брюшных органов. Межжелудочковая перегородка (МЖП) начинает развиваться в конце 4-ой недели из мышечной части первичного желудочка, от верхушки в направлении общего атриовентрикулярного отверстия, снизу вверх, разделяя его на 2 части. Первоначально эта перегородка не до конца разделяет оба желудочка (остается небольшая щель вблизи атриовентрикулярной границы). В дальнейшем эта щель закрывается фиброзным тяжем, таким образом, МЖП состоит из мышечной (нижней) и фиброзной (верхней) частей.

Межпредсердная перегородка начинает образовываться с 4 недели. Она делит первичное общее атриовентрикулярное отверстие на два: правое и левое венозные отверстия. На 6-ой неделе в этой перегородке образуется первичное овальное отверстие. Возникает трехкамерное сердце с сообщением между предсердиями. Позже (на 7- ой неделе) рядом с первичной перегородкой начинает вырастать вторичная, со своим овальным отверстием в нижней части. Расположение первичной и вторичной перегородок устанавливается таким образом, что первичная перегородка дополняет отсутствующую часть вторичной перегородки и является как бы клапаном овального отверстия. Ток крови становится возможным только в одном направлении: из правого предсердия в левое вследствие более высокого давления в правом предсердии. Кровь не может возвращаться из-за клапана овального отверстия, который в случае обратного кровотока прилежит ко вторичной ригидной перегородке и закрывает отверстие. В таком виде овальное отверстие сохраняется до рождения ребенка. С началом дыхания и легочного кровообращения повышается давление в предсердиях (особенно левом), перегородка прижимается к краю отверстия и сброс крови из правого предсердия в левое прекращается. Таким образом, к концу 7-ой – 8-ой недели сердце из двухкамерного превращается в четырехкамерное.

В конце 4-ой недели в артериальном стволе образуются два валика утолщенного эндокарда. Они растут навстречу друг другу и сливаются в аортолегочную перегородку, формируя одновременно стволы аорты и легочной артерии. Рост этой перегородки внутрь желудочков приводит к ее слиянию с МЖП и полному разделению правого и левого сердца у плода. Клапанный аппарат возникает уже после образования перегородок и формируется за счет развития эндокардиальных выступов (подушечек).

Первичная сердечная трубка состоит внутри из эндокарда, а снаружи из миоэпикарда. Последний и дает начало миокарду. К 4 - 5 неделе внутриутробного развития формируется достаточно плотный наружный слой миокарда, а внутренний – трабекулярный – образуется несколько раньше (3-4 недели). На протяжении всего периода развития миокард представлен миоцитами. Фибробласты, возможно, происходящие из эндокарда или эпикарда, расположены вокруг миокарда. Сами миоциты бедны фибриллами и богаты цитоплазмой. В дальнейшем по мере развития миокарда наблюдается обратное соотношение.

На 2-ом месяце на границе атриовентрикулярной борозды в мышцу врастает соединительная ткань, из которой формируется фиброзное кольцо a-v отверстия. Мышца предсердий в ходе развития остается тоньше, чем мышца желудочков.

В первые недели (до S- образного изгиба сердечной трубки) в мышце сердца закладываются основные элементы проводящей системы: синусовый узел (Кис-Фляка), A-V узел (Ашоффа – Тавара), пучок Гиса и волокна Пуркинье. Проводящая система обильно снабжена кровеносными сосудами и между ее волокнами имеется большое количество нервных элементов.

Первый триместр беременности (эмбриональная фаза развития зародыша) является критическим, так как в это время закладываются важнейшие органы человека (период « большого органогенеза»). Так, структурное оформление сердца и крупных сосудов заканчивается на 7-ой, 8-ой неделе развития эмбриона. При воздействии на зародыш неблагоприятных факторов (тератогенных): генетических, физических, химических и биологических, может нарушаться сложный механизм эмбриогенеза сердечно – сосудистой системы, в результате чего возникают различные врожденные пороки сердца и магистральных сосудов.

К порокам развития и положения всего сердца относится редко встречающаяся EKTOPIA CORDIS, при которой сердце располагается частично или полностью вне грудной полости. Иногда оно остается в местах своего возникновения, т.е. над верхним отверстием грудной полости (шейная эктопия). В других случаях сердце спускается через отверстие в диафрагме и располагается в брюшной полости или же выпячивается в надчревной области. Чаще всего оно располагается перед грудной клеткой, открытой в результате полного или частичного расщепления грудной кости. Были также отмечены случаи торакоабдоминальной эктопии сердца. Если примитивная сердечная трубка изгибается в обратном направлении, чем обычно, а верхушка сердца расположена с правой, а не с левой стороны, то возникает декстрокардия с инверсией полостей сердца.

Если отсутствует полностью или почти полностью МЖП, в то время как МПП развита, то сердце состоит из трех полостей: из двух предсердий и одного желудочка – трехкамерное двупредсердное сердце. Этот порок развития часто сопровождается другими аномалиями, чаще всего изолированной декстрокардией, транспозицией больших сосудов. В более редких случаях отсутствует только МПП и сердце состоит из 2-ух желудочков и 1 предсердия – трехкамерное сердце.

Если не происходит развитие перегородки трункуса, то общий артериальный ствол остается неразделенным. Такое состояние называется общий артериальный ствол. В результате изменения направления или степени поворота больших сосудов возникают аномалии, называемые транспозицией магистральных сосудов.

2. КРОВООБРАЩЕНИЕ ПЛОДА

В плацентарный период развития зародыша основные изменения сводятся к увеличению размеров сердца и обьема мышечного слоя, дифференциации сосудов. В этот период из отдельных частей сердца и сосудов образуется сложная функциональная система - сердечно- сосудистая.

Ранее всего формируются пути первичного или желточного кровообращения, представленного у плода пупочно-брызжеечными артериями и венами. Это кровообращение для человека является рудиментарным и значения в газообмене между материнским организмом и плодом не имеет. Основным кровообращением плода является хориальное (плацентарное), представленное сосудами пуповины. Оно обеспечивает газообмен плода с конца 3- ей недели внутриутробного развития.


Артериальную кровь, содержащую кислород и другие питательные вещества, плод получает из плаценты, которая соединяется с организмом плода через пуповину. Пупочная вена несет артериальную кровь от плаценты. Пройдя пупочное кольцо, вена доходит до нижнего края печени плода, дает ветви к печени и воротной вене и в виде широкого и короткого Аранциева протока впадает в нижнюю полую вену (Аранциев проток после рождения облитерируется и превращается в круглую связку печени).

Нижняя полая вена после впадения в нее Аранциева протока содержит смешанную кровь (чисто артериальную из пупочной вены и венозную из нижней половины тела и из печени). По ней кровь поступает в правое предсердие. Сюда же поступает и чисто венозная кровь из верхней полой вены, собирающей венозную кровь из верхней половины тела. Оба потока практически не смешиваются. Однако, более поздние исследования радиоизотопным методом обнаружили, что 1/4 часть крови из полых вен все-таки смешивается в правом предсердии. Таким образом, ни одна из тканей плода, за исключением печени, не снабжается кровью, насыщенной более 60%-65%. Кровь из верхней полой вены направляется в правый желудочек и легочную артерию, где раздваивается на два потока. Один (меньший) идет через легкие (антенатально поток через легочную артерию составляет всего лишь 12% кровотока), другой (больший) через артериальный (Боталлов) проток попадает в аорту, т.е. в большой круг кровообращения. По мере развития легких- это период от 24 до 38 недель беременности- обьем крови через Боталлов проток уменьшается. Кровь из нижней полой вены попадает в зияющее овальное окно и затем в левое предсердие. Здесь она смешивается с небольшим количеством венозной крови, прошедшей через легкие, и поступает в аорту до места впадения артериального протока. Таким образом, верхняя половина тела получает кровь, более насыщенную кислородом, чем нижняя. Кровь нисходящей аорты (венозная) по пупочным артериям (их две) возвращается в плаценту. Таким образом, все органы плода получают только смешанную кровь. Однако наилучшие условия оксигенации имеются в голове и верхней части туловища.

Маленькое сердце плода позволяет обеспечить ткани и органы количеством крови, превышающим в 2-3 раза кровоток взрослого человека.

Высокий метаболизм плода предполагает начало пульсации сердца к концу третьей недели, на 22 день зачатия после образования трубчатого сердца. Вначале эти сокращения слабые и неритмичные. Начиная с шестой недели, можно при помощи ультразвука зарегистрировать сокращения сердца, они становятся более ритмичными и составляют в 6 недель 110 ударов в минуту, в 7-8 недель- 180-190 ударов в минуту, на 12-13 неделе- 150-160 сокращений в минуту.

Во время эмбрионального развития сердца желудочки созревают быстрее предсердий, но их сокращения вначале протекают медленно и нерегулярно. Как только разовьются предсердия, импульсы, генерируемые в правом предсердии, делают частоту сердечных сокращений плода более регулярной, вызывая сокращения всего сердца.. Водителями ритма становятся предсердия.

ЧСС эмбриона сравнительно низкая – 15 – 35 сокращений в минуту. При плацентарном кровообращении она увеличивается до 125 –130 ударов в минуту. При нормальном течении беременности этот ритм исключительно устойчив, но при патологии может резко замедляться или ускоряться.

Частоту сердечных сокращений плода можно вычислить по формуле :

ЧСС= 0,593Х 2 + 8,6 Х - 139 , где: Х- срок беременности в неделях

В ответ на гипоксию плод и новорожденный реагируют понижением обмена веществ. Даже, если кровообращение поддерживается на необходимом уровне, когда насыщение кислородом крови пупочной артерии падает ниже 50%, интенсивность обмена уменьшается, и начинается накопление молочной кислоты, что свидетельствует о частичном удовлетворении обменных потребностей плода за счет анаэробного гликолиза. В начале внутриутробной жизни асфиксия влияет на синоатриальный узел, замедляя сердечные сокращения и в связи с этим уменьшается минутный обьем сердца и развивается артериальная гипоксия. В более позднем периоде внутриутробного развития асфиксия способствует кратковременной брадикардии вследствие прямого раздражающего влияния ее на вагусный центр. К концу внутриутробной жизни асфиксия вызывает брадикардию, сменяющуюся тахикардией (в развитии ее участвуют симпатические нервы сердца). Постоянная брадикардия наблюдается при насыщении артериальной крови кислородом менее чем на 15-20%.

Нарушение ритма сердечных сокращений плода в 50% наблюдений сопутствует врожденным порокам сердца. Такие ВПС как ДМЖП (50%), атриовентрикулярный септальный дефект (80%) антенатально протекают с наличием полного сердечного блока, т.е. пороки анатомически затрагивают проводящие пути сердца.

Особенности антенатального кровообращения отражаются и на показателях внутрисердечной гемодинамики. Незначительный обьем легочного кровотока и высокие величины легочно-сосудистого сопротивления способствуют высоким цифрам давления в правом желудочке и легочной артерии, а также повышению давления в правом предсердии. Величина давления в правом желудочке и легочной артерии превышает аналогичный показатель в левом желудочке и аорте на 10-20 мм рт.ст. и находится в пределах от 75 до 80 мм.рт.ст. давление же в левом желудочке и аорте приблизительно равно 60-70 мм.рт.ст.

Особенности кровообращения плода отражаются и на размерах сердца. Многочисленные эхокардиографические исследования выявили со второй половины беременности достоверное преобладание размеров правого желудочка над левым. В третьем триместре, особенно к концу беременности, различие в размерах правого и левого желудочков сердца уменьшается.

После рождения ребенка его кровообращение претерпевает большие гемодинамические изменения, которые связаны с началом легочного дыхания и прекращением плацентарного кровотока. Наступает период транзиторного кровообращения, который длится от нескольких минут до нескольких дней и характеризуется становлением лабильного равновесия между легочным и системным кровотоком и высокой вероятностью возврата к фетальному кровообращению. Только после функционального закрытия обеих фетальных коммуникаций (артериального протока и овального окна) кровообращение начинает осуществляться по взрослому типу.

Наиболее существенными моментами перестройки кровообращения плода являются следующие :

  1. Прекращение плацентарного кровообращения;
  2. Закрытие основных фетальных сосудистых коммуникаций;
  3. Включение в полном обьеме сосудистого русла малого круга кровообращения с его высоким сопротивлением и склонностью к вазоконстрикции;
  4. Увеличение потребности в кислороде, рост сердечного выброса и системного сосудистого давления

Раньше всего (в первые месяцы постнатальной жизни) закрывается Аранциев проток, его полная облитерация наступает с 8-й недели и заканчивается к 10- 11 неделям жизни. Пупочная вена с Аранциевым протоком превращается в круглую связку печени.

С началом легочного дыхания кровоток через легкие возрастает почти в 5 раз. Вследствие уменьшения сопротивления в легочном русле, увеличения притока крови в левое предсердие, уменьшения давления в нижней полой вене происходит перераспределение давления в предсердиях и шунт через овальное окно перестает функционировать в ближайшие 3-5 часов после рождения ребенка. Однако при легочной гипертензии этот шунт может сохраняться или возобновляться.

При малейшей нагрузке, способствующей повышению давления в правом предсердии (крик, плач, кормление), овальное окно начинает функционировать. Открытое овальное окно является формой межпредсердного сообщения, однако его нельзя считать дефектом, поскольку в отличие от истинного дефекта сообщение между предсердиями осуществляется через клапан овального окна.

Этот период изменчивой гемодинимики в зависимости от состояния новорожденного относят к периоду неустойчивого транзиторного или персистирующего кровообращения.

Анатомическое закрытие овльного отверстия наступает в возрасте 5 – 7 месяцев, однако разные авторы указывают различные сроки его закрытия. Известный кардиолог A. S. Nadas считает, что овальное окно анатомически сохраняется у 50 % детей до годовалого возраста, а у 30% людей – в течение всей жизни. Однако это отверстие не имеет какого-либо значения для гемодинамики.

Открытие уникальности анатомических структур фетального кровообращения принадлежит Галену (130-200 г.г.), который в 2-ух частях огромного опуса представил описание сосудов, один из которых мог быть лишь артериальным протоком.. Спустя много столетий было дано описание сосуда, соединяющего аорту и легочную артерию Леонардо Боталлио и по Базельской спецификации 1895 года этому сосуду было присвоено имя Леонардо Боталлио. Первая же визуализация артериального протока в живом организме стала возможной с использованием рентгеновских лучей в 1939 году.

Артериальный проток представляет собой, в отличие от крупных сосудов эластического типа, мышечный сосуд с мощной вагусной иннервацией. В этом одно из отличий между артериальным протоком и другими артериями, имеющее и клиническое значение после рождения. Мышечная ткань распространяется на стенку аорты на одну треть окружности. Это предусматривает эффективность сокращения артериального протока в неонатальном периоде.

Изучение потока в артериальном протоке во время беременности возможно с применением цветного допплеровского картирования, начиная с 11 недель гестации, когда одновременно визуализируются легочная артерия и Боталлов проток. Скорость потока в Боталловом протоке зависит от градиента между аортой и легочной артерией и от диаметра протока. Даже в 12 недель гестации имеется разница пиковой скорости в правом желудочке и артериальном протоке.

Сроки закрытия артериального протока также различными авторами определяются по-разному. Раньше считали, что он перестает функционировать с первым вдохом ребенка, когда в какой-то момент разница между давлением в аорте и легочной артерии равна 0 , мышечные волокна сокращаются и происходит функциональный спазм артериального протока. Однако, в дальнейшем, когда были широко внедрены рентгенконтрастные методы исследования, стало известно, что при рождении артериальный проток еще функционирует и через него устанавливается двусторонний сброс крови (от 40 минут до 8 часов). По мере снижения давления в легочной артерии сброс крови возможен лишь в направлении, обратном эмбриональному (т. е. из аорты в легочную артерию). Однако, этот сброс крайне незначительный. Анатомическая облитерация артериального протока, по данным H.Tаussig, заканчивается ко 2-3 месяцу внеутробной жизни. Окончательная стабилизация кровообращения и относительно совершенная его регуляция устанавливаются к 3 возрасту. Открытый артериальный проток к двум месяцам жизни - это уже порок сердца.

У здоровых доношенных новорожденных артериальный проток, как правило, закрывается к концу первых-вторых суток жизни, но в ряде случаев может функционировать в течение нескольких дней. У недоношенных новорожденных функциональное закрытие артериального протока может происходить в более поздние сроки, причем частота задержки его закрытия обратно пропорциональна гестационному сроку и массе тела при рождении. Обьясняется это рядом факторов: незрелостью самого протока, имеющего слабую чувствительность к высокому РО2 крови, высоким содержанием в крови эндогенного простагландина Е2, а также высокой частотой дыхательных нарушений у этой категории детей, приводящих к снижению напряжения кислорода в крови. При отсутствии же респираторных проблем, сама недоношенность не является причиной пролонгированного функционирования Боталлова протока.

Миокард и мезотелий эпикарда развиваются из висцерального листка спланхнотома, эндокард, соединительная ткань миокарда и эпикарда - из мезенхимы. Закладка сердца происходит на 3 нед внутриутробного развития, когда в шейном отделе над желточным мешком возникают из мезенхимы два эндокардиальных мешка (рис. 9 ).

Рис.9. Ранние этапы развития сердца куриного эмбриона (а - 25 ч., б - 26 ч., в - 28 ч., г - 29 ч.). 1 - закладка эпикарда, 2 - закладка эндокарда, 3 - закладка миокарда.

Из висцерального листка мезодермы формируются миоэпикардиальные пластинки, которые окружают эндокардиальные мешки. В последующем оба сердечные пузырька смыкаются, их внутренние стенки исчезают, в результате образуется одна двухслойная сердечная трубка (однокамерное сердце), кото-рая соединяется с разви-вающимися кровеносными сосудами. Далее сердечная трубка образует S-образный изгиб и сердце начинает cокращаться. Двух-камерное сердце формируется в результате глубокой пере-тяжки между венозным и артериальным отделами, когда существует один большой круг кровообращения.


Трехкамерное сердце появляется на 4 нед внутриутробного развития при образовании складки, делящей общее предсердие (венозное русло) на два - правое и левое. При этом в перегородке остается отверстие (овальное окно), через которое кровь из правого предсердия переходит в левое. Четырехкамерное сердце формируется на 5 нед внутриутробного развития. В общем желудочке образуется растущая вверх перегородка, разделяющая его на правый и левый. Общий артериальный ствол также делится на два отдела: аорта и легочный ствол, сообщающиеся соответственно с левым и правым желудочками.
Из миоэпикардиальной пластинки дифференцируются веретенообразные клетки - кардиомиобласты, которые быстро устанавливают контакт друг с другом и образуют клеточные тяжи - трабекулы. Таким образом, на ранних этапах онтогенеза формируется "трабекулярный миокард", питание которого обеспечивается кровью из сердечных полостей (пока не развиты питающие кровеносные сосуды). Увеличение массы сердца во внутриутробном развитии идет за счет энергичного размножения кардиомиоцитов митозами и увеличения их размеров, дифференци-ровки сократительного аппарата, увеличения количества митохондрий и других органелл (рис.10 ). Во второй половине внутриутробного развития стенки сердца представлены "компактным миокардом", имеющим значительное количество капилляров.

Проводящая система сердца формируется у плодов на 5 мес ВР, в это время их ЭКГ в основных чертах напоминает таковую у взрослого. Нервных элементов в сердце эмбриона много, причем скорость их дифференцировки выше, чем у мышц.
После рождения проходит длительный период, пока структуры сердца не достигнут дефинитивного состояния. В это время увеличивается масса органа и значительно изменяется его строение. Происходит закрытие овального отверстия и боталлова протока. У новорожденных стенка сердца тонкая, легко растяжимая, эластический аппарат развит слабо. Волокна миокарда тонкие, состоят из мелких клеток (Рис.11 ).

Рис.11. Миокард новорожденного (а) и взрослого (б).

В период после рождения до 2 лет отмечается быстрое увеличение толщины волокон, объема ядер и количества миофибрилл, отчетливой становится их поперечнополосатая исчерченность; волокна миокарда расположены рыхло, соединительной ткани и жировых клеток мало; от 2 до 10 лет происходит дальнейшая дифференцировка и рост сердечной мышцы, увеличивается ее толщина, кардиомиоциты полиплоидизируются; в пубертатном периоде темп изменений вновь нарастает (особенно у девочек): резко увеличивается диаметр волокон, завершается дифференцировка внутриорганных кровеносных сосудов, нервного аппарата и клапанов.

Сердечно-сосудистая система человека представлена во всех отделах - от сердца до капилляров - слоистыми трубками. Такая структура, основы которой возникают уже на ранних этапах эмбрионального развития, сохраняется на всех и последующих этапах.

Первые кровеносные сосуды появляются вне тела эмбриона, в мезодерме стенки желточного пузыря (рис. 1). Закладка их обнаруживается в виде скоплений клеточного материала внезародышевой мезодермы - так называемых кровяных островков . Клетки, находящиеся на периферии этих островков - ангио-бласты, активно митотически размножаются. Они уплощаются, устанавливают более тесные контакты друг с другом, образуя стенку сосуда. Так возникают первичные сосуды, представляющие собой тонкостенные трубочки, содержащие первичную кровь. На первых порах стенка новообразующихся сосудов не сплошная: на больших участках кровяные островки длительное время не имеют сосудистой стенки. Несколько позже сходным образом возникают сосуды и в мезенхиме тела эмбриона. Отличия заключаются в том, что в кровяных островках вне тела эмбриона ангио- и гематогенные процессы идут параллельно, в теле же эмбриона мезенхима, как правило, образует свободные от крови эндотелиальные трубочки. Вскоре между возникшими таким образом эмбриональными и внеэмбриональными сосудами устанавливается сообщение. Только в этот момент внеэмбрионально образованная кровь поступает в тело эмбриона. Одновременно регистрируются и первые сокращения сердечной трубки. Тем самым начинается становление первого, желточного, круга кровообращения развивающегося зародыша.


Первые закладки сосудов в теле эмбриона отмечены в период формирования первой пары сомитов. Они представлены тяжами, состоящими из скоплений мезенхимных клеток, расположенных между мезодермой и энтодермой на уровне передней кишки. Эти тяжи образуют с каждой стороны два ряда: медиальный („аортальная линия") и латеральный („сердечная линия"). Краниально эти закладки сливаются, образуя сетевидное „эндотелиальное сердце". Одновременно из мезенхимы по бокам тела зародыша между энтодермой и мезодермой образуются закладки пупочных вен. Далее отмечается преимущественное развитие сердца, обеих аорт и пупочных вен. Только после того, как эти главные магистрали желточного и хорионального (аллантоидного) кровообращения в основном сформируются (стадия 10 пар сомитов) начинается, собственно, развитие других сосудов тела эмбриона (Clara, 1966).

У человеческого зародыша кровообращение в желточном и аллантоидном кругах начинается практически одновременно у 17-сегментного эмбриона (начало сердцебиений). Желточное кровообращение существует у человека недолго, аллантоидное преобразуется в плацентарное и осуществляется вплоть до конца внутриутробного периода.

Описанный способ образования сосудов имеет место в основном в раннем эмбриогенезе. Сосуды, образующиеся позже, развиваются несколько иным путем. Со временем все большее распространение получает способ новообразования сосудов (сначала типа капилляров) путем почкования. Этот последний способ в постэмбриональном периоде становится единственным.


В эмбриогенезе человека сердце закладывается очень рано (рис. 2), когда зародыш еще не обособлен от желточного пузыря и кишечная энтодерма одновременно представляет собой крышу последнего. В это время в кардиогенной зоне в шейной области, между энтодермой и висцеральными листками спланхнотомов слева и справа, скапливаются выселяющиеся из мезодермы клетки мезенхимы, образующие справа и слева клеточные тяжи. Эти тяжи вскоре превращаются в эндотелиальные трубки. Последние вместе с прилегающей к ним мезенхимой составляют закладку эндокарда. Сразу же нужно отметить, что закладки эндокарда и сосудов в принципе тождественны. Отсюда вытекает и принципиальное сходство процессов гистогенеза и их результата- дефинитивных структур. Одновременно с образованием эндотелиальных трубок происходят процессы, приводящие к образованию остальных оболочек сердца - миокарда и эпикарда. Такие процессы разыгрываются в примыкающих к зачаткам эндокарда листках спланхноплевры. Эти участки утолщаются и разрастаются, окружая зачаток эндокарда мешком, вдающимся в полость тела. Здесь содержатся как элементы, образующие в дальнейшем миокард, так и элементы, строящие эпикард. Все образование в связи с этим называют миоэпикардиальной мантией, или, чаще, миоэпикардиальной пластинкой.

Тем временем в области глотки происходит замыкание кишечной трубки. В связи с этим левый и правый зачатки эндокарда все более сближаются, пока не сливаются в единую трубку (рис.3) Немного позже объединяются также левая и правая миоэпикардиальные пластинки.

На первых порах миоэпикардиальная пластинка отделяется от эндокардиальной трубки широкой щелью, заполненной желеобразной субстанцией. Впоследствии происходит их сближение. Миоэпикардиальная пластинка накладывается непосредственно на закладку эндокарда сначала в области венозного синуса, затем предсердий и, наконец, желудочков. Только в тех местах, в которых впоследствии происходит образование клапанов, желеобразная субстанция сохраняется относительно долго.

Образовавшаяся непарная закладка сердца соединяется с дорсальной и вентральной стенками полости тела зародыша, соответственно дорсальной и вентральной брыжейками, которые в дальнейшем редуцируются (сначала редуцируется вентральная, а затем дорсальная), и сердце оказывается свободно лежащим, как бы подвешенным, на сосудах, во вторичной полости тела, в полости перикарда.

Следует отметить, что наряду с широко распространенным представлением о единстве образования целомических полостей в отношении человека существует мнение о том, что образование полости перикарда происходит ранее формирования брюшной полости и независимо от нее путем слияния отдельных лакун, возникающих в мезодерме головного конца зародыша (Clara, 1955, 1962).


Первоначально сердце представляет собой прямую трубку, затем каудальное расширение сердечной трубки, принимающее венозные сосуды, образует венозный синус. Головной конец сердечной трубки сужен. В это время обнаруживается четкое метамерное строение сердечной трубки. Хорошо различаются метамеры, содержащие материал основных дефинитивных отделов сердца. Расположение их - обратное топографии соответствующих отделов окончательно сформированного сердца.

Показано (De Haan, 1959), что в раннем трубчатом сердце эндокард представлен одним слоем рыхло расположенных эндотелиальных клеток, в цитоплазме которых обнаруживается значительное количество электронноплотных гранул. Миокард состоит из рыхло расположенных полигональных или веретеновидных миобластов, образующих слой толщиной в 2-3 клетки. Цитоплазма их богата водой, содержит большое количество гранулярного материала (предположительно РНК, гликоген), относительно небольшое количество равномерно распределенных митохондрий.


Одним из факторов, характеризующих ранние этапы развития сердца, является быстрый рост первичной сердечной трубки, увеличивающейся в длину быстрее, чем полость, в которой она расположена. Это обстоятельство является одной из причин того, что сердечная трубка, увеличиваясь в длину, образует ряд характерных изгибов, расширений (рис. 4). При этом венозный отдел смещается краниально и охватывает с боков артериальный конус, а артериальный отдел сильно разрастается и смещается каудально. В результате в развивающемся сердце эмбриона можно видеть контуры его основных дефинитивных отделов - предсердий и желудочков (рис. 5).

Волкова О. В., Пекарский М. И. Эмбриогенез и возрастная гистология внутренних органов человека. М.: «Медицина», 1976. - 412с., ил.
Глава I Вопросы анте- и постнатального гистогенеза сердечно-сосудистой системы (с.5-39):
- стр.5-10 ;
- стр.10-20 ;
- стр.20-27 ;
- стр.28-39 .

error: Content is protected !!