Капиллярные сети в организме человека. Здоровые капилляры

Пронизывающие все ткани и органы человеческого организма. По капиллярам кровь поступает к каждой клетке тела и доставляет ей кислород и питательные вещества, необходимые для жизни. Из клеток в кровь переходят продукты жизнедеятельности, которые в дальнейшем переносятся к другим органам или удаляются из организма. Обмен веществ между кровью и клетками тела может происходить только через стенку капилляров, поэтому их можно назвать главными элементами кровеносной системы. При расстройстве кровотока по капиллярам, изменении их стенки клетки тела будут испытывать голод, что постепенно приведет к нарушению их деятельности и даже гибели.

Артериолы и венулы

Капилляры - самые многочисленные и самые тонкие сосуды, их диаметр составляет в среднем 7-8 мкм. Капилляры широко соединяются (анастомозируют) между собой, образуя внутри органов сети (между доставляющими органам кровь артериями и выносящими кровь венами). Тонкие артерии, по которым кровь поступает в капиллярные сети, - это артериолы, а выносящие кровь мелкие вены - венулы. Артериолы, особенно те, от которых непосредственно ответвляются капилляры (прекапиллярные артериолы), регулируют поступление крови в капиллярные сети. Суживаясь или расширяясь, они перекрывают или, наоборот, возобновляют течение крови по капиллярам. Именно поэтому прекапиллярные артериолы называют кранами сердечно-сосудистой системы. Венулы вместе с более крупными венами выполняют емкостную функцию - удерживают имеющуюся в органе кровь.

Шунты

Есть сосуды, напрямую связывающие артериолы и венулы, - артериоловенулярные анастомозы (шунты). По ним кровь сбрасывается из артериального русла в венозное, минуя капиллярные сети. Значение артериоловенулярных анастомозов возрастает в неработающем, отдыхающем органе, когда нет необходимости в усиленном обмене веществ и большая часть поступившей крови без захода в капиллярные сети направляется дальше.

Микроциркуляция

Капилляры, артериолы и венулы относятся к микрососудам, т. е. сосудам с диаметром менее 200 мкм. Движение крови по ним получило название микроциркуляции, а сами микрососуды - микроциркуляторного русла. Микроциркуляции придается большое значение в создании оптимальных режимов работающих органов, а в случае ее нарушения - в развитии патологического процесса. Ежесуточно по кровеносным сосудам протекает 8000-9000 л крови. Благодаря постоянной циркуляции крови поддерживается необходимая концентрация веществ в тканях, что нужно для нормального течения обменных процессов и поддержания постоянства внутренней среды организма (гомеостаз).

Строение капилляра

Стенка капилляра состоит из одного слоя эндотелиальных клеток, снаружи от которых лежит базальная мембрана. Стенка капилляра представляет собой естественный биологический фильтр, через который осуществляются переход питательных веществ, воды и кислорода из крови в ткани и обратное - из тканей в кровь - поступление продуктов обмена. Современные методы исследования, в частности электронная микроскопия, свидетельствуют, что стенка капилляра - не пассивная перегородка и существуют специальные пути активного транспорта веществ через нее. В переносе веществ участвуют стыки между эндотелиальными клетками, специальные поры, пронизывающие наиболее тонкие участки стенки капилляров кишечника, почек, эндокринных желез, и пузырьки для переноса жидкостей, имеющиеся внутри эндотелиальных клеток в стенке капилляров большинства органов.

История изучения капиллярной сети

Хотя кровеносные капилляры были открыты М. Мальпиги еще в 1661 году, серьезное их исследование началось только в ХХ веке и привело к возникновению учения о микроциркуляции крови. Идея об исключительном значении капилляров в удовлетворении потребностей тканей в притоке крови была высказана А. Крогом, который за свои исследования в 1920 году был удостоен Нобелевской премии.

Собственно термин «микроциркуляция» стал употребляться только с 1954 года, когда в США состоялась первая научная конференция ученых, занимающихся капиллярным кровотоком. В России огромный вклад в изучение микроциркуляции внесли академики А. М. Чернух, В. В. Куприянов и созданные ими научные школы. Благодаря современным техническим достижениям, связанным с внедрением компьютерных и лазерных технологий, стало возможным исследовать микроциркуляцию в прижизненных условиях и широко использовать результаты в клинической практике для диагностики нарушений и мониторинга успешности лечения.

Особенности строения микроциркуляторного русла

Трудности изучения микрососудов на протяжении десятилетий были связаны с чрезвычайно малыми их размерами и сильной разветвленностью капиллярных сетей. Наиболее узкие капилляры находятся в скелетных мышцах и нервах - диаметр их составляет 4,5-6,5 мкм. В этих органах обмен веществ очень интенсивен. Более широкие капилляры имеют кожа и слизистые оболочки - 7-11 мкм. Самые широкие капилляры (синусоиды) расположены в костях, печени и железах, где их диаметр достигает 20-30 мкм.

Длина капилляров варьирует в различных органах от 100 до 400 мкм. Однако если все капилляры, имеющиеся в теле человека, вытянуть в одну линию, то их длина составит около 10 000 км. Такая колоссальная протяженность капилляров создает чрезвычайно большую обменную поверхность их стенки - около 2500-3000 кв. м, что примерно в 1500 раз превышает поверхность тела. Количество капилляров в разных органах неодинаково. Густота их расположения связана с интенсивностью работы органа. Например, в сердечной мышце на 1 кв. мм поперечного сечения приходится до 5500 капилляров, в скелетных мышцах - около 1400, а в коже всего 40 капилляров.

В настоящее время точно установлено, что разные органы имеют характерные особенности строения микроциркуляторного русла (количество, диаметр, плотность и взаимное расположение микрососудов, характер их ветвления и т. п.), обусловленные спецификой работы органа. При этом в большинстве случаев микроциркуляторное русло состоит из повторяющихся модулей, каждый из которых обслуживает свой участок органа. Это позволяет быстро приспосабливать кровоснабжение органа к изменениям его функционирования. Усложнение строения микроциркуляторного русла органов происходит постепенно, вместе с ростом и развитием человеческого организма. Нарастание количества микрососудов приурочено ко времени интенсивного увеличения массы органа, а структурное созревание (оформление модулей) микроциркуляторного русла завершается к моменту окончательного полового созревания (к 15-17 годам).

Функциональные характеристики капиллярной сети

Общая емкость капиллярного русла составляет 25-30 л, тогда как объем крови в теле человека равен 5 л. Поэтому большая часть капилляров периодически выключается из кровотока. У человека в условиях покоя одновременно открыто только 20-35% капилляров. В мышце при спокойном состоянии заполнено кровью не более 40% капилляров. При в кровоток включаются почти все капилляры работающей мышцы. Капилляры сами не способны изменять свой просвет. Как уже было сказано, кровоток в них регулируется посредством сужения или расширения приносящих кровь артериол и использования артериоловенулярных анастомозов. Наблюдения свидетельствуют, что в органах постоянно происходит замена одних функционирующих капилляров другими. Высокая изменчивость кровотока в капиллярах - необходимое условие приспособления микроциркуляторной системы к потребностям органов и тканей в доставке питательных веществ.

Особенности кровотока в капиллярах

Поскольку емкость капиллярного русла очень большая, это ведет к значительному замедлению тока крови в капиллярах. Скорость движения крови по капиллярам колеблется от 0,3 до 1 мм/с, тогда как в крупных артериях она достигает 80-130 мм/с. Медленный кровоток обеспечивает наиболее полный обмен веществ между кровью и тканями. При движении крови ее клетки (эритроциты) выстраиваются в капилляре в один ряд, поскольку их радиус приблизительно равен радиусу капилляра. Значение такого приспособления становится понятно, если вспомнить, что кислород переносится эритроцитами и его передача клеткам органов будет происходить наиболее эффективно, если эритроциты наилучшим образом соприкасаются со стенкой капилляра. При движении по капиллярам эритроциты легко деформируются, поэтому даже наиболее узкие капилляры не являются для них препятствием. В отличие от эритроцитов другие клетки крови (лимфоциты) с трудом преодолевают узкие участки капиллярного русла и могут на какое-то время закупоривать просвет капилляра.

При значительном снижении скорости капиллярного кровотока эритроциты могут склеиваться между собой и образовывать агрегаты по типу монетных столбиков из 25-50 эритроцитов. Крупные агрегаты могут полностью закупорить капилляр и вызвать в нем остановку крови. Усиление агрегации эритроцитов происходит при различных заболеваниях.

Регулирование микроциркуляции крови

Как же происходит регуляция микроциркуляции? Во-первых, микрососуды реагируют на растяжение: при повышении давления крови артериолы суживаются и ограничивают приток крови в капилляры, при снижении давления расширяются. Во-вторых, к наиболее крупным из микрососудов (но не к капиллярам) подходят симпатические нервы, при раздражении которых происходит сужение крупных артериол и венул. В-третьих, микрососуды очень чувствительны к растворенным в крови вазоактивным веществам и реагируют даже на такую их концентрацию, которая в 10-100 раз меньше необходимой для сужения или расширения крупных сосудов. Так, кожные сосуды проявляют высокую чувствительность к адреналину (полное закрытие просвета артериол происходит при его ничтожной концентрации в крови - кожные покровы бледнеют), в то время как микрососуды внутренних органов гораздо менее чувствительны, а микрососуды скелетных мышц и сердца при действии адреналина могут расширяться. Ионы калия, кальция, натрия, а также вещества, накапливающиеся в тканях при их интенсивной деятельности, приводят к расширению микрососудов. Наибольшей чувствительностью к действию вазоактивных веществ обладают прекапиллярные артериолы, наименьшей - крупные артериолы и венулы.

Диагностика расстройств микроциркуляции крови

Актуальные для современной клинической практики оценка состояния микроциркуляции и диагностика ее расстройств при самых различных заболеваниях можно сделать с помощью таких методов, как капилляроскопия кожи и слизистых оболочек, биомикроскопия сосудов конъюнктивы, лазерная допплеровская флоуметрия. Состояние микроциркуляции в любом участке тела с большой степенью точности дает возможность судить о ее состоянии в организме в целом.

Ранними признаками нарушений капиллярного кровотока являются сужение артериол, застойные явления в венулах, приводящие к их расширению и значительной извитости, а также снижение интенсивности кровотока в капиллярах. На более поздних стадиях выявляется распространенная внутрисосудистая агрегация эритроцитов, что неизбежно влечет за собой остановку кровотока в капиллярах. Финал микроциркуляторных расстройств - стаз, т. е. полная блокада кровотока и резкое нарушение барьерной функции микрососудов, что нередко сопровождается кровоизлияниями - выходом эритроцитов через стенку капилляров, которые являются наиболее ранимыми. Артериоловенулярные анастомозы более устойчивы к расстройствам микроциркуляции и проявляют тенденцию к сохранению кровотока даже в условиях распространения стаза на значительную часть микроциркуляторного русла.

Расстройства микроциркуляции лежат в основе большого числа заболеваний, поэтому при их лечении необходимо восстановление функций микрососудов с помощью различных лекарственных средств.

Любой живой организм не может существовать и развиваться без кислорода и питательных веществ. Кислород, попадая в лёгкие из внешней среды, разносится по всему телу имеющей довольно сложное строение. Циркуляция крови обеспечивается полыми трубками - артериями, артериолами, прекапиллярами, капиллярами, посткапиллярами, венами, венулами и артериоло-венозными анастомозами. и другие отработанные продукты обмена веществ удаляются из организма также с помощью этих сосудов. Чем больше они удалены от сердца, тем сильнее их разветвление на более мелкие.

Капилляры: определение понятия

Если артерия и вена, несущие соответственно кровь от сердца и к нему, являются крупными сосудами, то капилляр - это очень тонкая кровеносная трубка, с диаметром всего 5-10 мкм. И так как вены и артерии, являясь только путём доставки питательных веществ к клеткам, не участвуют в процессах газообмена между ними и кровью, то эта функция закреплена за капиллярами. Первые их описания принадлежат итальянскому учёному М. Мальпиги, который в 1661 году дал им определение звена между артериальными и венозными сосудами. До него У. Гарвей предсказывал их существование.

Строение и размеры капилляров

Эти мелкие сосуды имеют приблизительные равные диаметры в различных органах. Более крупные из них достигают просвета до 30 мкм, а самые узкие - от 5 мкм. Легко убедиться, что широкие кровеносные капилляры на разрезах в поперечнике в просвете трубки выстланы несколькими слоями эндотелиальных клеток, тогда как просвет наиболее мелких образуется слоем всего в одну или две клетки. Такие тонкие сосуды расположены в мышцах, имеющих поперечнополосатую структуру, и поскольку их диаметр меньше, чем у эритроцитов, то последние при прохождении по узкому кровеносному руслу испытывают существенную деформацию.

Капилляр - это настолько тонкая трубка, что его стенка, состоящая из отдельных клеток эндотелия, которые тесно соприкасаются друг с другом, не имеет мышечного слоя и поэтому не способна сокращаться. Капиллярная сеть обычно содержит в себе крови только 25% от тех объёмов, которые могут в ней вмещаться. Но изменения этих объёмов могут достигаться при включении механизма саморегуляции, когда гладкомышечные клетки расслаблены.

Капиллярное ложе, венулы, артериолы

Ток крови направлен к сердцу по крупным сосудам, которые представляют собой вены. Капилляры передают кровь венам через венулы - мельчайшие собирательные составляющие. Они образуются в особых местах соединения капилляров, которые называются капиллярным ложе, и сливаются в вены.

Функционируя как единое целое, капиллярное ложе регулирует местное кровоснабжение, при этом соблюдаются потребности тканей в необходимых питательных веществах. Сосуд, несущий кровь к сердцу, определён как артерия. Капилляр получает кровь из артерии через артериолу - более мелкий, чем она, сосуд.

Артериолы в предшествуют капиллярам. В местах ответвления от артериол капилляров в стенках сосудов располагаются кольца мышечных клеток, которые чётко выражены и выполняют функцию сфинктеров. Они регулируют процессы поступления крови в сеть капилляров. В норме бывает открыта только небольшая часть этих сфинктеров, называемых прекапиллярными. Поэтому кровь может течь в это время не по всем имеющимся каналам.

Характерной особенностью кровообращения в месте капиллярного ложа является то, что здесь спонтанно периодически присутствуют циклы расслабления и сокращения гладкомышечных тканей, которые окружают прекапилляры и артериолы. Это позволяет создавать перемежающийся, прерывистый ток крови по сети капилляров.

Функции капиллярного эндотелия

Эндотелий капилляра обладает достаточной проницаемостью для обмена между тканями организма и кровью различными видами веществ. Поэтому то, что делают капилляры, является переносом питательных веществ и продуктов метаболизма.

Вода и вещества, растворённые в ней, в норме легко проходят через стенки сосуда в обоих направлениях. Но при этом белки и остаются внутри капилляров. Образованные в процессе жизнедеятельности продукты также проходят через кровеносный барьер для переноса их к местам выведения из тела. Таким образом, капилляр - это составляющая интегральной части всех тканей организма, образующей обширную сеть сосудов, взаимосвязанных между собой, имеющих тесный контакт с клеточными структурами. Их основная функция заключается в снабжении всех систем веществами, необходимыми для обеспечения нормальной жизнедеятельности, и удаления отработанных веществ.

Иногда размер молекул может быть слишком большим для диффузии через клетки эндотелия. В этом случае для переноса их используются либо процессы захвата - эндоцитоза, либо слияния - экзоцитоза. При воспалительных процессах в организме то, что делают капилляры, является частью механизма иммунного ответа. При этом на поверхности эндотелия возникают молекулы-рецепторы, которые задерживают иммунные клетки и помогают им переходить к очагам инфекции или других повреждений во внесосудистом пространстве.

Каждый капилляр - это составляющая часть огромной сети, которая обеспечивает кровоснабжение всех органов. При этом чем крупнее организм, тем обширнее капиллярная сеть. И чем выше активность клеток в процессах метаболизма, тем большее количество мелких сосудов требуется для того, чтобы обеспечивать потребности в различных веществах.

Движение крови по капиллярной сети

Кровь циркулирует в системе кровообращения не только потому, что в артериях создаётся давление вследствие активного ритмического сокращения артериальных стенок, но и благодаря активному сужению и расширению капиллярных. Кровеносные капилляры осуществляют относительно медленный ток крови, скорость которого не больше 0,5 мм в секунду. Это доказано многочисленными наблюдениями за данным процессом. В то же время сужения и расширения этих мелких сосудов могут достигать до 70% от величины диаметра их просвета. Физиологи связывают эту способность с особенностью функционирования адвентициальных элементов, которые сопровождают кровеносные сосуды и определяются как специальные клетки капилляров, способные сокращаться.

Также допускается, что и сами эндотелиальные стенки капилляров обладают определённой эластичностью и возможной сократимостью, и могут изменять величину просвета. Некоторые физиологи указывают на то, что им доводилось видеть кратковременные сокращения клеток эндотелия в тех местах, где отсутствуют адвентициальные клетки. Патологические состояния, такие как сильный ожог или шок, могут вызывать расширение капилляров в 3 раза выше нормы. Здесь, как правило, происходит значительное снижение скорости движения крови, что позволяет ей накапливаться в капиллярном русле в местах повреждений. Сжатие капилляров также приводит к уменьшению скорости кровообращения в них.

Три вида капилляров

Непрерывными капиллярами называются такие, в которых межклеточные соединения очень плотные. Это позволяет осуществлять диффузию маленьким ионам и молекулам.

Другой вид капилляров - фенестированные. Их стенки снабжены просветами для диффузии более крупных молекул или их соединений. Такие капилляры располагаются в эндокринных железах, кишечнике и других органах, где осуществляется интенсивный обмен веществами между тканями и кровью.

Синусоидные - такие капилляры, стенки которых отличаются строением и большей изменчивостью внутренних просветов. Они имеются в тех органах, где отсутствуют вышеописанные, более типичные виды.

Проблемы сосудов

Артерии, вены, капилляры - все они недостаточно защищены от воздействий окружающей среды и часто подвергаются повреждениям. Особенно уязвимыми являются самые тонкие кровеносные сосуды организма. Капилляры должны быть очень маленькими для того, чтобы пропускать внутрь клеток только жидкую составляющую крови, а не нужную и более плотную отделять. Поэтому у этих сосудов тончайшие, неплотные эндотелиальные стенки, сквозь которые совершаются процессы диффузии веществ. Именно то, что они состоят из малого количества клеточных слоёв, и делает их хрупкими.

Капилляры не имеют, как вены и артерии, защитного слоя. Поэтому у них нет защиты как от внешних воздействий, так и от повреждений теми веществами, которые они переносят вместе с кровью. При любых повреждениях или болезнях эти сосуды страдают в первую очередь. Если возникает такая ситуация, когда капилляры лопнули и повредились, они перестают выполнять свою основную функцию переноса питательных веществ. При этом клетка, не получившая их от сосуда с разрушенной стенкой, замедляет свою работу и погибает. И если снабжение кровью нарушается во всём органе или в системе органов, в них начинается массовая гибель клеток из-за дефицита веществ, необходимых для их жизнедеятельности. Так в организме начинают развиваться болезни, одним из начал которых является повреждение капилляров.

Взгляд в зеркало

Очень часто, разглядывая своё отражение в зеркале, можно увидеть на лице небольшие ниточки - красные капилляры, которых раньше не было. Многие пугаются, принимая их появление за симптомы опасных болезней. По статистике, 80% всего населения находят у себя такие изменения, когда расширенные капилляры становятся видимыми сквозь кожу. Прежде всего, это указывает на то, что нормальное функционирование сосудов нарушено. И хотя само по себе расширение капилляров особого вреда для здоровья не приносит, оно может ухудшить Сосудистые сетки на лице - куперозы - являются проявлением болезни, довольно безобидной её стадией, но служат сигналами о неполадках в организме.

Механизмы патологии

Сначала происходит расширение и укрупнение сосуда настолько, что он начинает просвечивать сквозь кожу и становится видимым. Чаще всего это явление можно наблюдать на лице или на коже рук и ног. Затем истончается соединительная ткань кожных покровов, и находящиеся под ними сосуды приподнимаются, приобретают бугристость и становятся видимыми ещё больше. Опасность здесь состоит в том, что истончаются и слабеют стенки самих капилляров, а это может привести к их разрыву. И если капилляры лопнули, то необходимо принимать меры не только для устранения косметических дефектов, но и выявления и лечения патологий, явившихся причиной повреждения сосудов.

Причины патологий капилляров

Нарушения капиллярного кровообращения могут вызываться самыми различными факторами. Прежде всего, сюда следует отнести высокое артериальное давление и возрастные изменения сосудов. Их разрушения при этом являются причиной старения всего организма. Различные воспаления кожных покровов, злоупотребления солнечными ваннами, сильные переохлаждения приводят к нарушению целостности капиллярных стенок.

Приём некоторых гормональных препаратов, оказывающих расслабляющее воздействие на вызывает их расширение и повреждения. При этом могут поражаться большие участки и развиваться осложнения. Подобные патологии капилляров могут возникать при гормональных сбоях организма, например, при беременности, абортах или после родов. Болезни печени, нарушения или венозного оттока становятся причиной разрушений капилляров. Немаловажную роль в этом вопросе играет и наследственная предрасположенность.

Расширенные капилляры у ребенка

Считается, что проблемы с тонкими кровеносными сосудами могут беспокоить только взрослых людей. Но бывает и так, что расширенные капилляры возникают и на детском лице. Причинами могут быть гормональные перестройки, наследственность или погодные условия, негативно влияющие на детскую нежную кожу. Обычно такие проблемы сами собой уходят по мере взросления ребёнка. Но чтобы определить риски более серьёзных патологий, родители должны получить консультацию дерматолога, который и решит вопрос о необходимости лечения или установит временность этого явления.

И артерии , капилляры принимают участие в между тканями и кровью. Так как стенки капилляров состоят из однослойного эндотелия , толщина которого очень мала, через них могут проходить липиды, вода, молекулы кислорода и некоторые другие вещества. Кроме того, через стенки капилляров также могут проходить продукты жизнедеятельности организма (такие как мочевина и диоксид углерода), которые вещества транспортируются для выведения через организм. Специальные молекулы влияют на проницаемость стенки капилляра.

Также среди важных функций эндотелия можно выделить перенос веществ-мессенджеров, питательных веществ и других соединений. Иногда молекулы бывают слишком больших размеров, чтобы проникнуть через стенку при помощи диффузии, тогда для их переноса используются другие механизмы – экзоцитоза и эндоцитоза. Стенки капилляров обладают высокой приницаемостью для всех низкомолекулярных веществ, растворенных в .

За счет капиллярной сети обеспечивается такой важный процесс как кровообращение органов . От метаболической активности молекул зависит потребность в капиллярах для обеспечения питательными веществами. В нормальных условиях капиллярная сеть обеспечена лишь четвертью того объема крови, который она может вместить в себя. Но механизмы саморегуляции, которые работают при расслаблении гладкомышечных клеток, могут увеличить этот объем еще больше. Но следует отметить, что любое увеличение просвета капилляра является пассивным, так как стенка не содержит мышечных клеток. Сигнальные вещества, которые синтезируются эндотелием, оказывают воздействие на мышечные клетки крупных сосудов, расположенных в непосредственной близости.

Существует несколько разновидностей капилляров:

  • Непрерывные капилляры
  • Фенестрированные капилляры
  • Синусоидные капилляры

Для непрерывных капилляров свойственны очень плотные межклеточные соединения, которые позволяют диффундировать лишь малым ионам и молекулам.

Фенестрированные капилляры находятся в эндокринных железах, кишечнике и других внутренних органах, в которых имеет место активный транспорт веществ между окружающими тканями и кровью. Стенки таких капилляров обладают просветами, позволяющими проникать крупным молекулам.

Синусоидные капилляры можно встретить в кроветворных и эндокринных органах, таких как селезенка и , в лимфоидной ткани, печени. Такие капилляры, расположенные в печеночных дольках, имеют в своем составе клетки Купфера, которые могут уничтожать и захватывать инородные тела. Синусоидные капилляры характерны тем, что они содержат щели (синусы), размер которых достаточен для проникновения вне просвета капилляра крупных молекул белка и .

Интересные факты

  • Общей длины капилляров взрослого человека достаточно, чтобы два раза обернуть Землю.
  • Общая площадь поперечных сечений данных тонких сосудов составляет около пятидесяти квадратных метров, что в 25 раз превышает поверхность тела.
  • В теле взрослого человека насчитывается около 100-160 миллиардов капилляров.

    Микроциркуляторное русло : артериола, прекапилляр со сфинктером (сфинктеры – одиночные гладкомышечные клетки), капилляры, посткапилляры, венулы и шунтирующие сосуды.

Течение крови в капиллярах: Увеличение общей поверхности обмена с тканью

    Самая низкая скорость

    Снижение гидростатического давления

Строение капилляров

    Радиус-3мкм, длина 750 мкм.

    Площадь поперечного сечения 30мкм2

    Площадь поверхности-14тыс. Мкм2

    Число капилляров- 40млрд.

    Общая эффективная обменная поверхность (включая венулы) 1000м2,это площадка 30х30м.

    Суммарная длина 100 000км. – 3 раза опоясать Земной шар.

    1мм3 -600 капилляров.

    Кровеносные капилляры являются самыми тонкими и многочисленными сосудами.

    Они располагаются в межклеточных пространствах.

    В органах с высоким уровнем метаболизма число капилляров на 1 мм поперечного сечения больше, чем в органах с менее интенсивным обменом.

Строение капилляров

    Условия обмена: 1. строение стенки, 2. скорость кровотока, 3. общая поверхность

    Три вида капилляров:

    • Соматический –мелкие поры 4-5 нм.- кожа, скелетные и гладкие мышцы

      Висцеральный – фенестры 40-60 нм – почки, кишечник, эндокринные железы

      Синусоидный – прерывистая стенка с большими просветами – селезенка, печень, костный мозг.

    Критическая толщина тканевого слоя – обеспечивает оптимальный транспорт от 10мкм (интенсивный обмен) до 1000 мкм в органах с замедленными процессами обмена

    Стенка капилляров представляет собой полупроницаемую мембрану, тесно связанную функционально и морфологически с окружающей соединительной тканью.

    Она состоит из двух оболочек: внутренней - эндотелиальной, наружной - базальной

Функция капилляров

Снабжение клеток питательными и пластическими веществами и удалении продуктов метаболизма, т. е. в обеспечении транскапиллярного обмена.

Для этого необходим ряд условий, важнейшими из которых являются:

    скорость кровотока в капилляре,

    величина гидростатического и онкотического давлений,

    проницаемость стенки капилляра,

    число перфузируемых капилляров на единицу массы ткани.

Плотность капилляров в тканях (капилляр/мм3)

    Миокард, Гол.мозг, печень- 2500-3000

    Скелетные мышцы-300-400

    Тонические мышцы-100

    Важно соотношение перфузируемых и не перфузируемых капилляров

Микроциркуляторная единица

    Это единица (микрорайон) обладает свойствами органа. Её можно рассматривать как элементарную цитоэкологическую систему, формирующуюся вокруг источника питания в процессе органогенеза, при переходе от клеточного уровня организации к органно-тканевому. (В.П.Казначеев, А.М.Чернух).

    Органоспецифичность микроциркуляторной единицы.

Капиллярный кровоток и его особенности

    в артериальной части капилляра кожи кровяное давление составляет в среднем 30 мм рт. ст., а в венулярном - 10.

    средняя линейная скорость капиллярного кровотока у млекопитающих достигает 0,5-1 мм/с.

    время контакта каждого эритроцита со стенкой капилляра длиной 100 мкм не превышает 0,15 с.

    Интенсивность эритроцитарного потока в капиллярах колеблется от 12 до 25 и более клеток в 1 с.

    Кровь является не ньютоновской жидкостью.

    При низкой скорости кровотока вязкость может увеличиваться в 1000 и более раз.

    Наблюдается обратимая и необратимая агрегация. Обратимая агрегация- образование «монетных столбиков».

    В сосудах 500 мкм – наблюдается «феномен сигма» – снижение вязкости за счет ориентации эритроцитов в сосуде

КАПИЛЛЯРЫ (лат. capillaris волосной) - самые тонкостенные сосуды микроциркуляторного русла, по к-рым движется кровь и лимфа. Различают кровеносные и лимфатические капилляры (рис. 1).

Онтогенез

Клеточные элементы стенки капилляров и клетки крови имеют единый источник развития и возникают в эмбриогенезе из мезенхимы. Однако общие закономерности развития кровеносных и лимф. К. в эмбриогенезе изучены еще недостаточно. На протяжении онтогенеза кровеносные К. постоянно меняются, что выражается в запустевании и облитерации одних К. и новообразовании других. Возникновение новых кровеносных К. происходит путем выпячивания («почкования») стенки ранее образовавшихся К. Этот процесс происходит при усилении функции того или иного органа, а также при реваскуляризации органов. Процесс выпячивания сопровождается делением эндотелиальных клеток и увеличением размеров «почки роста». При слиянии растущего К. со стенкой предсуществующего сосуда происходит перфорация эндотелиальной клетки, расположенной на верхушке «почки роста», и соединение просветов обоих сосудов. Эндотелий капилляров, образующихся путем почкования, не имеет межэндотелиальных контактов и называется «бесшовным». К старости строение кровеносных К. существенно меняется, что проявляется уменьшением числа и размеров капиллярных петель, увеличением расстояния между ними, появлением резко извитых К., в которых сужения просвета чередуются с выраженными расширениями (Старческий варикоз, по Д. А. Жданову), а также значительным утолщением базальных мембран, дистрофией эндотелиальных клеток и уплотнением соединительной ткани, окружающей К. Эта перестройка вызывает снижение функций газообмена и питания тканей.

Кровеносные капилляры имеются во всех органах и тканях, они являются продолжением артериол, прекапиллярных артериол (прекапилляров) или, чаще, боковыми ветвями последних. Отдельные К., объединяясь между собой, переходят в посткапиллярные венулы (посткапилляры). Последние, сливаясь друг с другом, дают начало собирательным венулам, выносящим кровь в более крупные венулы. Исключением из этого правила у человека и млекопитающих являются синусоидные (с широким просветом) К. печени, расположенные между приносящими и выносящими венозными микрососудами, и клубочковые К. почечных телец, расположенные по ходу приносящих и выносящих артериол.

Кровеносные К. впервые обнаружил в легких лягушки М. Мальпиги в 1661 г.; спустя 100 лет Спалланцани (L. Spallanzani) нашел К. и у теплокровных животных. Открытие капиллярных путей транспорта крови завершило создание научно обоснованных представлений о замкнутой системе кровообращения, заложенных У. Гарвеем. В России начало систематическому изучению К. положили исследования Н. А. Хржонщевского (1866), А. Е. Голубева (1868), А. И. Иванова (1868), М. Д. Лавдовспого (1870). Существенный вклад в изучение анатомии и физиологии К. внес дат. физиолог А. Крог (1927). Однако наибольшие успехи в изучении структурно-функциональной организации К. были достигнуты во второй половине 20 в., чему способствовали многочисленные исследования, выполненные в СССР Д. А. Ждановым с сотр. в 1940-1970 гг., В. В. Куприяновым с сотр. в 1958-1977 гг., А. М. Чернухом с сотр. в 1966-1977 гг., Г. И. Мчедлишвили с сотр. в 1958- 1977 гг. и др., а за рубежом - Лен-дисом (E. М. Landis) в 1926-1977 гг., Цвейфахом (В. Zweifach) в 1936-1977 гг., Ренкином (E. М. Renkin) в 1952- 1977 гг., Паладе (G.E. Palade) в 1953- 1977 гг., Касли-Смитом (Т. R. Casley-Smith) в 1961-1977 гг., Видерхильмом (С. A. Wiederhielm) в 1966-1977 гг. и др.

Кровеносным К. принадлежит существенная роль в системе кровообращения; они обеспечивают транскапиллярный обмен - проникновение растворенных в крови веществ из сосудов в ткани и обратно. Неразрывная связь гемодинамической и обменной (метаболической) функций кровеносных К. находит выражение в их строении. По данным микроскопической анатомии, К. имеют вид узких трубок, стенки которых пронизаны субмикроскопическими «порами». Капиллярные трубки бывают относительно прямыми, изогнутыми или закрученными в клубочек. Средняя длина капиллярной трубки от прекапиллярной артериолы до посткапиллярной венулы достигает 750 мкм, а площадь поперечного сечения- 30 мкм 2 . Калибр К. в среднем соответствует диаметру эритроцита, однако в разных органах внутренний диаметр К. колеблется от 3-5 до 30-40 мкм.

Как показали электронно-микроскопические наблюдения, стенка кровеносного К., часто называемая капиллярной мембраной, состоит из двух оболочек: внутренней - эндотелиальной и наружной - базальной. Схематическое изображение строения стенки кровеносного К. представлено на рисунке 2, более детальное - на рисунках 3 и 4.

Эндотелиальная оболочка образована уплощенными клетками - эндотелиоцитами (см. Эндотелий). Число эндотелиоцитов, ограничивающих просвет К., обычно не превышает 2-4. Ширина эндотелиоцита колеблется от 8 до 19 мкм и длина - от 10 до 22 мкм. В каждом эндотелиоците выделяют три зоны: периферическую, зону органелл, ядросодержащую зону. Толщина этих зон и их роль в обменных процессах различны. Половину объема эндотелиоцита занимают ядро и органеллы - пластинчатый комплекс (комплекс Гольджи), митохондрии, зернистая и незернистая сеть, свободные рибосомы и полисомы. Органеллы сконцентрированы вокруг ядра, вместе с к-рым составляют трофический центр клетки. Периферическая зона эндотелиоцитов выполняет в основном обменные функции. В цитоплазме этой зоны располагаются многочисленные микропиноцитозные везикулы и фенестры (рис. 3 и 4). Последние представляют собой субмикроскопические (50-65 нм) отверстия, которые пронизывают цитоплазму эндотелиоцитов и бывают перекрыты истонченной диафрагмой (рис. 4, в, г), являющейся дериватом клеточной мембраны. Микропиноцитозные везикулы и фенестры, участвующие в трансэндотелиальном переносе макромолекул из крови в ткани и обратно, в физиологии называют крупными «норами». Каждый эндотелиоцит покрыт снаружи тончайшим слоем продуцируемых им гликопротеидов (рис. 4, а), последние играют немаловажную роль в поддержании постоянства микросреды, окружающей клетки эндотелия, и в адсорбции веществ, транспортируемых через них. В эндотелиальной оболочке соседние клетки объединяются с помощью межклеточных контактов (рис. 4, б), состоящих из цитолемм смежных эндотелиоцитов и межмембранных промежутков, заполненных гликопротеидами. Эти промежутки в физиологии чаще всего отождествляют с мелкими «порами», через которые проникают вода, ионы и белки с низким молекулярным весом. Пропускная способность межэндотелиальных промежутков различна, что объясняется особенностями их строения. Так, в зависимости от толщины интерцеллюлярной щели различают межэндотелиальные контакты плотного, щелевого и прерывистого типов. В плотных контактах интерцеллюлярная щель на значительном протяжении полностью облитерирована благодаря слиянию цитолемм смежных эндотелиоцитов. В щелевых контактах величина наименьшего расстояния между мембранами соседних клеток колеблется между 4 и 6 нм. В прерывистых контактах толщина межмембранных промежутков достигает 200 нм и более. Межклеточные контакты последнего типа в физиол, литературе также отождествляют с крупными «порами».

Базальная оболочка стенки кровеносного К. состоит из клеточных и неклеточных элементов. Неклеточный элемент представлен базальной мембраной (см.), окружающей эндотелиальную оболочку. Большинство исследователей рассматривает базальную мембрану как своеобразный фильтр толщиной 30-50 нм с размерами пор, равными - 5 нм, в к-ром сопротивление проникновению частиц возрастает с увеличением диаметра последних. В толще базальной мембраны расположены клетки - перициты; их называют адвентициальными клетками, клетками Руже, или интрамуральными перицитами. Перициты имеют вытянутую форму и изогнуты в соответствии с внешним контуром эндотелиальной оболочки; они состоят из тела и многочисленных отростков, которые оплетают эндотелиальную оболочку К. и, проникая через базальную мембрану, вступают в контакты с эндотелиоцитами. Роль этих контактов, так же как и функции перицитов, достоверно не выяснена. Высказано предположение об участии перицитов в регуляции роста эндотелиальных клеток К.

Морфологические и функциональные особенности кровеносных капилляров

Кровеносные К. разных органов и тканей обладают типовыми особенностями строения, что связано со спецификой функции органов и тканей. Принято различать три типа К.: соматический, висцеральный и синусоидный. Стенка кровеносных капилляров соматического типа характеризуется непрерывностью эндотелиальном и базальной оболочек. Как правило, она малопроницаема для крупных молекул белка, но легко пропускает воду с растворенными в ней кристаллоидами. К. такой структуры обнаружены в коже, скелетной и гладкой мускулатуре, в сердце и коре полушарий большого мозга, что соответствует характеру обменных процессов в этих органах и тканях. В стенке К. висцерального типа имеются окошки - фенестры. К. висцерального типа характерны для тех органов, которые секретируют и всасывают большие количества воды и растворенных в ней веществ (пищеварительные железы, кишечник, почки) или же участвуют в быстром транспорте макромолекул (эндокринные железы). К. синусоидного типа обладают большим просветом (до 40 мкм), что сочетается с прерывистостью их эндотелиальной оболочки (рис. 4, д) и частичным отсутствием базальной мембраны. К. этого типа обнаружены в костном мозге, печени и селезенке. Показано, что через их стенки легко проникают не только макромолекулы (напр., в печени, к-рая продуцирует основную массу белков плазмы крови), но и клетки крови. Последнее характерно для органов, участвующих в процессе кроветворения.

Стенка К. имеет не только общую природу и тесную морфол, связь с окружающей соединительной тканью, но связана с ней и функционально. Поступающая из кровеносного русла через стенку К. в окружающую ткань жидкость с растворенными в ней веществами и кислород переносятся рыхлой соединительной тканью ко всем остальным тканевым структурам. Следовательно, перикапиллярная соединительная ткань как бы дополняет собой микроциркуляторное русло. Состав и физ.-хим. свойства этой ткани в значительной мере определяют условия транспорта жидкости в тканях.

Сеть К. является значительной рефлексогенной зоной, посылающей к нервным центрам различные импульсы. По ходу К. и окружающей их соединительной ткани находятся чувствительные нервные окончания. По-видимому, среди последних значительное место занимают хеморецепторы, сигнализирующие о состоянии обменных процессов. Эффекторные нервные окончания у К. в большинстве органов не обнаружены.

Сеть К., образованная трубками малого калибра, где суммарные показатели поперечного сечения и площади поверхности значительно превалируют над длиной и объемом, создает наиболее благоприятные возможности для адекватного сочетания функций гемодинамики и транскапиллярного обмена. Характер транскапиллярного обмена (см. Капиллярное кровообращение) зависит не только от типовых особенностей строения стенок К.; не меньшее значение в этом процессе принадлежит связям между отдельными К. Наличие связей свидетельствует об интеграции К., а следовательно, и о возможности различного сочетания их функц, активности. Основной принцип интеграции К.- объединение их в определенные совокупности, составляющие единую функциональную сеть. Внутри сети положение отдельных К. неодинаково по отношению к источникам доставки крови и ее оттока (т. е. к прекапиллярным артериолам и посткапиллярным венулам). Эта неоднозначность выражается в том, что в одной совокупности К. связаны между собой последовательно, благодаря чему устанавливаются прямые коммуникации между приносящими и выносящими микро-сосудами, а в другой совокупности К. располагаются параллельно по отношению к К. указанной выше сети. Такие топографические различия К. обусловливают неоднородность распределения потоков крови в сети.

Лимфатические капилляры

Лимфатические капилляры (рис. 5 и 6) представляют собой систему замкнутых с одного конца эндотелиальных трубок, которые выполняют дренажную функцию - участвуют во всасывании из тканей фильтрата плазмы и крови (жидкости с растворенными в ней коллоидами и кристаллоидами), некоторых форменных элементов крови (лимфоцитов, эритроцитов), участвуют также в фагоцитозе (захват инородных частиц, бактерий). Лимф. К. отводят лимфу через систему интра- и экстраорганных лимф, сосудов в главные лимф, коллекторы - грудной проток и правый лимф. проток (см. Лимфатическая система). Лимф. К. пронизывают ткани всех органов, за исключением головного и спинного мозга, селезенки, хрящей, плаценты, а также хрусталика и склеры глазного яблока. Диаметр их просвета достигает 20-26 мкм, а стенка, в отличие от кровеносных К., представлена лишь резко уплощенными эндотелиоцитами (рис. 5). Последние примерно в 4 раза крупнее, чем эндотелиоциты кровеносных К. В клетках эндотелия, кроме обычных органелл и микропиноцитозных везикул, встречаются лизосомы и остаточные тельца - внутриклеточные структуры, возникающие в процессе фагоцитоза, что объясняется участием лимф. К. в фагоцитозе. Другая особенность лимф. К. заключается в наличии «якорных», или «стройных», филаментов (рис. 5 и 6), осуществляющих фиксацию их эндотелия к окружающим К. коллагеновым протофибриллам. В связи с участием в процессах всасывания межэндотелиальные контакты в их стенке имеют различное строение. В период интенсивной резорбции ширина межэндотелиальных щелей увеличивается до 1 мкм.

Методы исследования капилляров

При изучении состояния стенок К., формы капиллярных трубок и пространственных связей между ними широко используют инъекционные и безынъекционные методики, различные способы реконструкции К., трансмиссионную и растровую электронную микроскопию (см.) в сочетании с методами морфометрического анализа (см. Морфометрия медицинская) и математического моделирования; для прижизненного исследования К. в клинике применяют микроскопию (см. Капилляроскопия).

Библиография: Алексеев П. П. Болезни мелких артерий, капилляров и артериовенозных анастомозов, Л., 1975, библиогр.; Казначеев В. П. и Дзизинский А. А. Клиническая патология транскапиллярного обмена, М., 1975, библиогр.; Куприянов В. В., Караганов Я. JI. и Козлов В. И. Микроциркуляторное русло, М., 1975, библиогр.; Фолков Б. и Нил Э. Кровообращение, пер. с англ., М., 1976; Чернух А. М., Александров П. Н. иАлексеев О. В. Микроциркуляции, М., 1975, библиогр.; Шахламов В. А. Капилляры, М., 1971, библиогр.; Шошенко К. А. Кровеносные капилляры, Новосибирск, 1975, библиогр.; Hammersen F. Anato-mie der terminalen Strombahn, Miinchen, 1971; К г о g h A. Anatomie und Physio-logie der Capillaren, B. u. a., 1970, Bibliogr.; Microcirculation, ed. by G. Kaley a. B. M. Altura, Baltimore a. o., 1977; Simionescu N., SimionescuM. a. P a I a d e G. E. Permeability of muscle capillaries to small heme peptides, J. cell. Biol., v. 64, p. 586, 1975; Z w e i-fach B. W. Microcirculation, Ann. Rev. Physiol., v. 35, p. 117, 1973, bibliogr.

Я. Л. Караганов.

error: Content is protected !!