Ивл с положительным давлением в конце выдоха (пдкв). Маневр рекрутмента в педиатрической практике Показатели респираторной поддержки и биомеханики на разных этапах маневра

По существу, различия между всеми этими режимами объясняются только разным программным обеспечением , а идеальная программа пока не создана. Вероятно, прогресс VTV будет связан с усовершенствованием программ и математического анализа информации, а не конструкций вентиляторов , которые и без того вполне совершенны.

Динамика изменения давления и потока газа в дыхательных путях пациента в течение дыхательного цикла при проведении принудительной TCPL вентиляции иллюстрируется рис.4, на котором схематично изображены параллельные графики давления и потока во времени. Реальные кривые давления и потока могут отличаться от изображенных. Причины и характер изменения конфигурации рассматриваются ниже.

ПАРАМЕТРЫ TCPL ВЕНТИЛЯЦИИ.

Основными параметрами при TCPL вентиляции являются те, что устанавливаются врачом на аппарате: поток, пиковое давление вдоха, время вдоха, время выдоха (или время вдоха и частота дыхательных циклов), положительное

Аббревиатура" href="/text/category/abbreviatura/" rel="bookmark">аббревиатурами и названиями (так, как они обозначены на панелях управления аппаратов ИВЛ).

Кроме основных параметров, большое значение имеют параметры производные, то есть те, что возникают от сочетания основных параметров и от состояния легочной механики пациента. К производным параметрам относятся: среднее давление в дыхательных путях (одна из основных детерминант оксигенации) и дыхательный объем – один из основных параметров вентиляции.

Flow – поток

Под этим параметром подразумевается постоянный инспираторный поток в дыхательном контуре пациента (не путать с потоком вдыхательных путях). Величина потока должна быть достаточной для достижения установленного значения пикового давления вдоха за установленное время вдоха, когда клапан APL закрыт. Величина потока зависит от массы тела пациента, от емкости применяемого дыхательного контура и от величины пикового давления. Для вентиляции среднего доношенного новорожденного с физиологическими параметрами и при использовании стандартного неонатального дыхательного контура достаточным является поток в 6литров/мин. Для недоношенных детей может быть достаточным поток в 3 – 5литров/мин. При использовании аппаратов “Stephan” разных моделей, которые имеют дыхательный контур меньшей емкости, чем стандартный одноразовый, могут использоваться меньшие значения потока. При необходимости применять высокие пиковые давления с большой частотой дыхательных циклов приходится увеличивать поток до 8 – 10л/мин., так как давление должно успеть подняться за короткое время вдоха. При вентиляции детей с массой – 12кг. (с большей емкостью дыхательного контура) могут потребоваться потоки в 25л/мин и выше.

От величины потока зависит форма кривой давления в дыхательных путях. Увеличение потока вызывает более быстрый подъем давления в ДП. Слишком большой поток мгновенно повышает давление в ДП (аэродинамический удар) и может вызвать беспокойство ребенка и спровоцировать «борьбу» с вентилятором. Зависимость формы кривой давления от величины потока иллюстрируется рис.5. Но форма кривой давления зависит не только от величины потока, но и от податливости (С) респираторной системы пациента. При низком С выравнивание давлений в контуре пациента и альвеолах будет происходить быстрее, а форма кривой давления приблизится к квадратной.

Выбор величины потока зависит и от размера интубационной трубки, в которой может возникнуть турбулентность, снижающая эффективность спонтанных вдохов и увеличивающая работу дыхания. В ИТ Ø 2,5мм турбулентность появляется при потоке 5л/мин, в ИТ Ø 3мм при потоке 10л/мин.

От величины потока в контуре пациента зависит и форма кривой потока в ДП. При низком потоке играет роль сжатие газа в дыхательном контуре (прежде всего в камере увлажнителя), поэтому инспираторный поток вначале нарастает, а затем по мере заполнения легких падает. При высоком потоке сжатие газа происходит быстро, поэтому инспираторный поток сразу поступает с максимальным значением. (рис.6)

При состояниях с высоким Raw и региональной неравномерностью вентиляции предпочтительно выбирать такие величины потока и времени вдоха, чтобы обеспечить форму кривой давления близкую к треугольной. Это приведет к улучшению распределения дыхательного объема, то есть позволит избежать развития волюмтравмы в участках с нормальными значениями Raw.


Если при спонтанных вдохах пациента давление в контуре снижается > 1cм Н2О, то поток недостаточен и его следует увеличить.

В аппаратах с неразделенным потоком (инспираторным и экспираторным) высокая скорость потока в дыхательном контуре с малым внутренним диаметром может создать сопротивление выдоху, что увеличивает значение РЕЕР (выше установленного) и может повысить работу дыхания пациента, провоцируя активный выдох.

https://pandia.ru/text/78/057/images/image005_109.jpg" width="614" height="204 src=">

Рис 6. Динамика потока в ДП при различных скоростях потока в дыхательном контуре

А) Инспираторный поток нарастает, но не успевает заполнить легкие за время

С) Инспираторный поток заполняет легкие, снижается и прекращается раньше

наступления времени выдоха.

Пиковое давление вдоха – PIP ( peak inspiratory pressure).

PIP является основным параметром, который определяет величину дыхательного объема (Vt), хотя последний зависит и от уровня РЕЕР. То есть Vt зависит от ΔР=PIP-PEEP (drive pressure), но уровень РЕЕР колеблется в значительно меньшем диапазоне. Но Vt будет зависеть и от легочной механики. При увеличении Raw (САМ, БЛД, бронхиолит, закупорка интубационной трубки) и коротком времени вдоха Vt будет снижаться. При снижении С (RDS, отек легких) Vt также снизится. Увеличение С (введение сурфактанта, дегидратация) повысит Vt. У пациентов с высокой податливостью респираторной системы (недоношенные со здоровыми легкими, ИВЛ которым проводится по поводу апноэ или оперативного лечения) величина PIP для обеспечения адекватной вентиляции может быть 10 – 12см Н2О. Для доношенных новорожденных с нормальными легкими PIP = 13 – 15см Н2О обычно бывает достаточным. В то же время у пациентов с «жесткими» легкими может потребоваться PIP > 25см Н2О для достижения минимального Vt то есть 5мл/кг массы тела.

Большинство осложнений ИВЛ связаны с неправильным подбором величины PIP. Высокие значения PIP (25 – 30см Н2О) ассоциируются с баро/волюмтравмой, снижением сердечного выброса, повышением внутричерепного давления, гипервентиляцией и ее последствиями. Недостаточная величина PIP (индивидуальная для каждого пациента) ассоциируется с ателектравмой и гиповентиляцией.

Подбор адекватной величины PIP проще всего проводить, ориентируясь на достижение «нормальных» экскурсий грудной клетки. Однако, такой подбор является субъективным и должен подкрепляться аускультативными данными и (по возможности) мониторингом дыхания, то есть измерением Vt, определением форм кривых и петель, а также данными газового анализа крови.

Для поддержания адекватной вентиляции и оксигенации следует выбирать минимально возможные значения PIP, так как это снижает тканевой стресс и риск развития VILI (ventilator-induced lung injury).

Положительное давление в конце выдоха – PEEP

( positive end- expiratory pressure).

Каждый интубированый пациент должен быть обеспечен уровнем РЕЕР не менее 3см Н2О, что моделирует эффект смыкания голосовой щели во время выдоха в норме. Этот эффект препятствует развитию ЭЗДП и поддерживает ФОЕ. FRC = PEEP × C при проведении ИВЛ. Вентиляция с нулевым уровнем РЕЕР – ZEEP (zero end-expiratory pressure) является режимом, повреждающим легкие.

РЕЕР препятствует спадению альвеол и способствует открытию нефункционирующих бронхиол и альвеол у недоношенных детей. РЕЕР способствует перемещению жидкости их альвеолярного в интерстициальное пространство (baby lung effect), сохраняя, таким образом, активность сурфактанта (в том числе и экзогенного). При сниженной растяжимости легких повышение уровня РЕЕР облегчает раскрытие альвеол (recruitment) и снижает работу дыхания при спонтанных вдохах, а растяжимость легочной ткани увеличивается, но не всегда. Пример улучшения растяжимости легких при увеличении РЕЕР до уровня СРР (collapse pressure point) иллюстрируется рис. 7.

Рис 7. Увеличение растяжимости респираторной системы при повышении РЕЕР

до уровня СРР.

Если снижение растяжимости респираторной системы связано с торакоабдоминальными факторами (пневмоторакс, высокое стояние диафрагмы и др.), то увеличение РЕЕР только ухудшит гемодинамику, но не улучшит газообмен.

При спонтанном дыхании РЕЕР уменьшает западение уступчивых мест грудной клетки, особенно у недоношенных детей.

При TCPL вентиляции увеличение РЕЕР всегда снижает ΔР определяющую Vt. Снижение дыхательного объема может привести к развитию гиперкапнии, что потребует увеличения PIP или частоты дыхания.

РЕЕР является параметром вентиляции в наибольшей степени влияющим на МАР (mean airway pressure) и, соответственно, на диффузию кислорода и оксигенацию.

Подбор адекватного значения РЕЕР для каждого конкретного пациента является непростой задачей. Следует учитывать характер поражения легких (данные рентгенографии, конфигурацию петли P/V, наличие экстрапульмонального шунтирования), изменение оксигенации в ответ на изменение РЕЕР. При вентиляции больных с неповрежденными легкими следует применять РЕЕР = 3см Н2О, что соответствует физиологической норме. В острую фазу легочных заболеваний уровень РЕЕР не должен быть < 5см Н2О, исключением является персистирующая легочная гипертензия, при которой рекомендуется ограничивать РЕЕР до 2см Н2О. Считается, что величины РЕЕР < 6см Н2О не оказывают отрицательного воздействия на легочную механику, гемодинамику и мозговой кровоток. Однако, Keszler M. 2009; считает, что при очень низкой растяжимости легких вполне уместны уровни РЕЕР в 8см Н2О и выше, которые способны восстановить V/Q и оксигенацию. При баротравме, особенно интерстициальной эмфиземе, возможно снижение уровня РЕЕР до нуля, если нет возможности перевести пациента с CMV на HFO. Но при любых обстоятельствах оптимальными значениями РЕЕР являются наименьшие, при которых достигается наилучший газообмен с применением относительно безопасных концентраций кислорода.

Высокие значения РЕЕР оказывают неблагоприятное воздействие на гемодинамику и мозговой кровоток. Снижение венозного возврата уменьшает сердечный выброс, увеличивают гидростатическое давление в легочных капиллярах (гемодинамическая альтерация), что может потребовать применения инотропной поддержки. Ухудшается лимфатический дренаж не только легких, но и спланхнической зоны. Повышается легочное сосудистое сопротивление и может произойти перераспределение кровотока в мало вентилируемые зоны, то есть шунтирование. Повышается работа дыхания при спонтанной дыхательной активности. Наблюдается задержка жидкости в организме. Открытие всех ДП и перерастяжение их увеличивает мертвое пространство (Vd). Но особенно вредны высокие уровни РЕЕР при негомогенных поражениях легких. Они приводят к перерастяжению легко рекрутируемых здоровых альвеол еще до окончания вдоха и высокому конечному инспираторному объему, то есть к волюмтравме и/или баротравме.

Установленный врачом уровень РЕЕР в действительности может быть выше за счет возникновения auto-PEEP. Это явление связано либо с высоким Raw, либо с недостаточным временем выдоха, а чаще с сочетанием этих факторов. Вредные эффекты auto-PEEP те же, что при высоких значениях РЕЕР, но непредусмотренное врачом снижение ΔР может привести к серьезной гиповентиляции. При наличии auto-PEEP выше риск развития баротравмы, выше порог чувствительности сенсоров потока и давления в триггерных системах. Наличие auto-РЕЕР можно определить только с помощью дыхательного монитора, как в абсолютных величинах, так и по графику потока. Снижения auto-PEEP можно добиться: применением бронхолитиков, снижением Vt, увеличением времени выдоха. У новорожденных с нормальным Raw возникновение auto-PEEP маловероятно, если время выдоха > 0,5 сек. Более вероятно развитие этого феномена при частоте дыхания > 60 в минуту. При ВЧ ИВЛ он имеет место всегда, кроме HFO.

Частота дыхания – R ( respiratory rate).

Это обозначение наиболее часто встречается в TCPL вентиляторах. В аппаратуре германского производства в основном устанавливаются время вдоха и выдоха, а частота дыхания является производной. В вентиляторах для взрослых пациентов и в наркозно-дыхательной аппаратуре частота дыхательных циклов чаще обозначается как f (frequency).

Этот параметр в значительной мере определяет минутный объем дыхания и минутный объем альвеолярной вентиляции. MV = Vt × R. MValv = R(Vt – Vd).

Можно условно выделить три диапазона частот дыхания, используемых у новорожденных: до 40 в минуту, 40 – 60 в минуту, что соответствует физиологической норме и >60 в минуту. У каждого диапазона есть свои преимущества и недостатки, но нет единого мнения об оптимальной частоте дыхания. Во многом вопрос о выборе частоты определяется приверженностью клинициста к тем или иным диапазонам. Но, в конечном итоге, любая из выбранных частот должна обеспечивать необходимый уровень минутной альвеолярной вентиляции. Нужно учитывать тип нарушений легочной механики, фазу заболевания, собственную частоту дыхания пациента, наличие баротравмы и данные КОС.

Частоты < 40/мин могут использоваться при вентиляции пациентов с неповрежденными легкими (по хирургическим или неврологическим показаниям), при уходе от ИВЛ, что стимулирует дыхательную активность пациента. Низкие частоты более эффективны при высоком Raw, так как позволяют увеличивать время вдоха и выдоха. В острую фазу легочных заболеваний некоторые авторы используют низкую частоту дыхания с инвертированным соотношением I:Е (для повышения МАР и оксигенации), что часто требует парализации больного и увеличивает вероятность баротравмы и снижения сердечного выброса из-за повышенного МАР.

Частоты/мин эффективны при лечении большинства легочных заболеваний, однако, не всегда могут обеспечить адекватную альвеолярную вентиляцию.

Частоты > 60/мин необходимы при использовании минимальных дыхательных объемов (4 – 6мл/кг массы тела), так как при этом возрастает роль мертвого пространства (Vd), которое вдобавок может увеличиваться за счет емкости сенсора потока. Этот подход может успешно применяться при «жестких» легких, так как снижает работу дыхания для преодоления эластического сопротивления, снижает тканевой стресс, уменьшает легочное сосудистое сопротивление и снижает вероятность баро/волюмтравмы легких. Однако, при укороченном времени выдоха велика вероятность возникновения auto PEEP c соответствующими неблагоприятными эффектами. Врач может не догадываться об этом, если не использует дыхательный монитор. Использование низких Vt наряду с auto PEEP может привести к развитию гиповентиляции и гиперкапнии.

Использование частот 100 – 150/мин (HFPPV- high frequency positive pressure ventilation) в настоящем материале не рассматривается.

Время вдоха – Ti ( time inspiratory), время выдоха – Te ( time expiratory) и

соотношение Ti / Te ( I: E ratio).


Общим правилом при определении минимальных значений Ti и Te является достаточность для поступления необходимого дыхательного объема и эффективного опорожнения легких (без появления auto PEEP). Эти параметры зависят от растяжимости (С) и аэродинамического сопротивления (Raw), то есть от ТС (C × Raw).

У новорожденных с неповрежденными легкими для вдоха обычно используются значения 0,35 – 0,45 сек. При снижении растяжимости легких (RDS, отек легких, диффузная пневмония – состояния с низкими значениями ТС) допустимо использовать короткое время вдоха и выдоха 0,25- 0,3 сек. При состояниях с высоким Raw (бронхообструкция, БЛД, САМ) Ti следует удлинять до 0,5, а при БЛД и до 0,6 сек. При удлинении Ti свыше 0,6 сек. может спровоцировать активный выдох против аппаратного вдоха. При Ti > 0,8 сек. многие авторы отмечают отчетливое увеличение частоты развития баротравмы.

У годовалых детей частота дыхания ниже, а Ti увеличивается до 0,6 – 0,8 сек.

Соотношение I:E. В норме вдох при спонтанном дыхании всегда короче выдоха, ввиду сопротивления экспираторному потоку голосовой щели и уменьшения сечения бронхов, что увеличивает Raw на выдохе. При поведении ИВЛ эти закономерности сохраняются, поэтому в большинстве случаев Ti < Te.

Фиксированные значения I:E применяются в основном в наркозно–дыхательной аппаратуре и в некоторых устаревших моделях TCPL вентиляторов. Это является неудобством, так как при низкой частоте дыхания время вдоха может значительно удлиняется (например, в режиме IMV). В современных вентиляторах I:E вычисляется автоматически и выводится на панель управления. Собственно соотношение I:E не так важно, как абсолютные значения Ti и Te.

Вентиляция с инвертированным соотношением I:E (Ti > Te) обычно применяется в крайних случаях, когда иным путем не удается добиться улучшения оксигенации. Основным фактором повышения оксигенации в этом случае является повышение МАР без повышения PIP.

При уходе от ИВЛ снижается частота дыхания за счет увеличения Te, при этом I:E изменяется от 1:3 до 1:10. При мекониальной аспирации некоторые авторы рекомендуют соотношения 1:3 – 1:5 для профилактики «воздушных ловушек».

Неоценимую помощь в подборе адекватных значений Ti и Te оказывает дыхательный монитор (особенно если определяет Тс). Оптимизировать значения Ti и Te можно, анализируя график потока в ДП на дисплее монитора. (Рис. 8)

Концентрация кислорода – FiO 2

От FiO2 зависит парциальное давление кислорода в дыхательной смеси, а следовательно и градиент Palv O2 – Pv O2, определяющий диффузию кислорода через альвеолокапиллярную мембрану. Поэтому FiO2 является основной детерминантой оксигенации. Но высокие концентрации кислорода токсичны для организма. Гипероксия вызывает оксидативный стресс (свободнорадикальное окисление), поражающий весь организм. Местное действие кислорода повреждает легкие (см. раздел VILI). Отдаленные последствия токсического воздействия кислорода на организм могут быть весьма печальными (слепота, ХЗЛ, неврологический дефицит и др.).

Многолетние рекомендации всегда начинать ИВЛ новорожденным с FiO2 1,0 для быстрого восстановления оксигенации к настоящему моменту считаются устаревшими. Хотя Приказ № 000 от г «О совершенствовании первичной реанимационной помощи новорожденным в родильном зале» пока остается действующим, готовится новый, учитывающий результаты исследований, выполненных уже в XXI веке. Этими исследованиями установлено, что вентиляция чистым кислородом увеличивает неонатальную смертность, оксидативный стресс сохраняется до 4 недель, усиливается повреждение почек и миокарда, увеличивается время неврологического восстановления после асфиксии . Во многих ведущих неонатальных центрах в развитых странах уже приняты иные протоколы реанимации новорожденных. Нет доказательств, что повышение FiO2 может улучшить ситуацию, если у новорожденного, несмотря на адекватную вентиляцию, сохраняется брадикардия. При необходимости проведения ИВЛ, ее начинают комнатным воздухом. Если через 30 сек вентиляции сохраняется брадикардия и/или SpO2 < 85%, то ступенчато увеличивают FiO2 с шагом 10% до достижения SpO2 < 90%. Имеются доказательства эффективности подобного подхода (доказательная медицина).

В острую фазу легочных заболеваний относительно безопасно проводить ИВЛ с FiO2 0,6 не более 2 суток. При длительной ИВЛ относительно безопасно использовать FiO2 < 0,4. Можно добиться увеличения оксигенации и иными мерами (работа с МАР, дегидратация, увеличение сердечного выброса, применение бронхолитиков и др.).

Относительно безопасны кратковременные увеличения FiO2 (к примеру, после аспирации мокроты). Мероприятия по профилактике токсичности кислорода изложены в разделе VILI.

IF - inspiratory flow EF - expiratory flow

Рис 8. Оптимизация Ti и Te с помощью анализа кривых потока в ДП.

А) Ti оптимально (поток успевает снизиться до 0). Есть резерв для увеличения

частоты дыхания за счет экспираторной паузы.

В) Ti недостаточно (поток не успевает снизиться). Увеличить Ti и/или PIP.

Допустимо при использовании минимальных Vt.

C) Ti недостаточно (поток низкий и не успевает заполнить легкие). Увеличить

поток в дыхательном контуре и/или Ti.

D) Te недостаточно (экспираторный поток не успевает достигнуть изолинии, то

есть прекратиться) Auto – PEEP. Увеличить Те за счет снижения частоты (R).

E) Ti и Te недостаточны, ни вдох ни выдох не успевают завершится. Вероятна

выраженная бронхообструкция. Auto – PEEP. Увеличить Ti и особенно Те и,

возможно, PIP.

F) Возможно уменьшение Ti1 до Ti2 без снижения Vt, так как между Ti1 и Ti2

потока в ДП нет, если не преследуется цель увеличения МАР за счет PIP плато.

Есть резерв увеличения частоты дыхания за счет инспираторной паузы.

Среднее давление в дыхательных путях – MAP( mean airway pressure).

Газообмен в легких происходит как во время вдоха, так и во время выдоха, поэтому именно МАР определяет разницу между атмосферным и альвеолярным давлениями (дополнительное давление, увеличивающее диффузию кислорода через альвеолокапиллярную мембрану). Это справедливо, если МАР = Palv. Однако, не всегда МАР отражает среднее альвеолярное давление, которое определяет диффузию кислорода и гемодинамические эффекты ИВЛ. При высокой частоте дыхания не все альвеолы успевают достаточно вентилироваться при коротком времени вдоха (особенно в зонах с повышенным Raw), поэтому Palv < MAP. При высоком Raw и коротком времени выдоха Palv > MAP из-за auto-PEEP. При высоком минутном объеме дыхания Palv > MAP. Но в обычных условиях МАР отражает среднее альвеолярное давление и поэтому является второй важной детерминантой оксигенации.

МАР является производным параметром TCPL вентиляции, так как зависит от величин основных параметров: PIP, PEEP, Ti, Te, (I:E) и потока в дыхательном контуре.

МАР можно вычислить по формуле: МАР = КΔР(Ti/Te + Te) +PEEP, где К – скорость повышения давления в ДП. Поскольку К зависит от скорости потока в контуре пациента и механических свойств легких, а реальную величину этого коэффициента мы не можем вычислить, то проще понять что такое МАР можно, используя графическую интерпретацию (в виде площади фигуры, которую образует кривая давления в ДП во время дыхательного цикла. Рис.9 а, в. Влияние потока, PIP, PEEP, Ti и I:E представлено на рис.9c, d.

Рис 9. Графическая интерпретация МАР и влияние параметров ИВЛ.

Современные вентиляторы определяют МАР автоматически, и эта информация всегда присутствует на панели управления. Манипулируя разными параметрами вентиляции, мы можем изменять МАР, не изменяя вентиляции или наоборот и т. п.

Роль различных параметров вентиляции в изменении величины МАР (и оксигенации) неодинакова: РЕЕР > PIP > I:E > Flow. Представленная иерархия справедлива при вентиляции поврежденных легких. При вентиляции здоровых легких влияние параметров ИВЛ на уровень МАР и оксигенацию может быть иным:PIP > Ti > PEEP. При баротравме повышение уровня МАР снизит оксигенацию. Увеличение частоты дыхания увеличивает МАР, так как (при неизменных прочих параметрах вентиляции) укорачивается время выдоха, а следовательно, изменяется и I:E.

Повышение уровня МАР > 14см Н2О может снизить оксигенацию из-за снижения сердечного выброса и нарушения доставки кислорода тканям. Вредные эффекты высоких уровней МАР описаны выше в разделе РЕЕР (так как именно РЕЕР в наибольшей степени влияет на уровень МАР).

Дыхательный объем – Vt ( volume tidal).

Дыхательный объем является одной из основных детерминант вентиляции (МОД, МОАВ). При ТCPL вентиляции Vt является производным параметром, так как зависит не только от установок на вентиляторе, но и от состояния легочной механики пациента, то есть от С, Raw и Тс. Vt можно только измерить с помощью дыхательного монитора.

Если не принимать во внимание влияние Raw, то Vt определяется разницей между PIP и Palv в конце выдоха и растяжимостью легких: Vt = C(PIP – Palv). Поскольку, в отсутствие auto – PEEP в конце выдоха Рalv = PEEP, то Vt = CΔP. Поэтому, при одинаковых установках на вентиляторе у одного и того же пациента Vt может быть разным. Например: У недоношенного с RDS Cdyn = 0,5мл/cм H2O, PIP – 25см H2O и РЕЕР – 5см Н2О, Vt = 0,5(25 – 5) = 10мл. После введения сурфактанта, через 12 часов Cdyn = 1,1мл/см Н2О, параметры вентиляции прежние, Vt = 1,1×20 = 22 мл. Однако, эти расчеты весьма приблизительны, так как на Vt влияют и форма кривой давления, и время вдоха/выдоха, и возможная турбулентность в ДП. Сохранение ΔР = const. при разных уровнях РЕЕР скорее всего изменит Vt, но как и насколько – трудно предсказать, ввиду нелинейного характера изменения растяжимости. Поэтому, Vt следует измерять после изменения любого из параметров вентиляции.

В настоящее время общей рекомендацией является поддержание Vt в пределах физиологических значений 5 – 8мл/кг массы тела, как у новорожденных так и у взрослых (6 – 8мл/кг вычисленной идеальной массы тела). При вентиляции здоровых легких допустимы значения 10 – 12мл/кг. «Протективная вентиляция» (lung protective ventilation) предполагает использование минимальных дыхательных объемов 5 – 6мл/кг. Это снижает тканевой стресс пораженных малорастяжимых легких.

Однако, вентиляция легких малыми объемами снижает альвеолярную вентиляцию, так как значительная часть Vt вентилирует мертвое пространство. Это обстоятельство вынуждает увеличивать альвеолярную вентиляцию за счет повышения частоты дыхания. Но при частотах > 70/мин минутный объем вентиляции начинает снижаться из-за укорочения Ti, когда Paw не успевает достигнуть уровня PIP, что снижает ΔР и Vt. А укорочение Te вызывает появление auto – PEEP, что тоже снижает ΔР и Vt. Попытки увеличения ΔР за счет снижения РЕЕР не всегда эффективны, так как низкие значения РЕЕР способствуют коллапсу части альвеол и бронхиол, что снижает площадь дыхательной поверхности.

При высоком Raw можно увеличить Vt увеличением Ti, если инспираторный поток не успевает снизиться. Однако, после выравнивания давлений (PIP = Palv) увеличение Ti не приведет к увеличению Vt. Это хорошо отслеживается при анализе кривой потока в ДП.

У детей с экстремально низкой массой тела датчик потока весьма существенно увеличивает мертвое пространство. В этой группе пациентов Vt не должен быть < 6 – 6,5мл/кг. При гиперкапнии можно увеличить альвеолярную вентиляцию уменьшением мертвого пространства, сняв переходники, датчик потока и укоротив интубационную трубку. При проведении протективной вентиляции гиперкапния в той или иной степени имеет место всегда, но ее необходимо поддерживать в допустимых пределах (permissive hypercapnia).

Только регулярные исследования газового состава крови помогают полностью контролировать адекватность альвеолярной вентиляции уровню метаболизма пациента (продукции углекислоты). В отсутствие лабораторного контроля об адекватности вентиляции можно судить по хорошей синхронизации пациента с вентилятором (если не применяется обезболивание наркотическими аналгетиками или антиконвульсанты, такие как барбитураты и бензодиазепины). Клинические же проявления гипокапнии и гиперкапнии у новорожденных практически отсутствуют, в отличие от взрослых.

Мониторинг дыхания позволяет отследить динамику изменения объема в течение дыхательного цикла (график время/объем). В частности, можно определить утечку Vt между ИТ и гортанью (Рис 10.).

Рис 10. Графики время/объем. А) Нормальный. В) Утечка объема.

Цифровая информация позволяет определить объем утечки . Допустима утечка около 10% объема. Если утечки нет, то объем выдоха может превышать объем вдоха. Это связано со сжатием газа при высоких значениях PIP и с расширением газа при согревании, если температура в дыхательном контуре невысока.

РЕГУЛЯЦИЯ ДЫХАНИЯ ПРИ ИВЛ И ВЗАИМОДЕЙСТВИЕ

ПАЦИЕНТА С ВЕНТИЛЯТОРОМ.

Большинство новорожденных не перестают дышать самостоятельно во время проведения ИВЛ, так как работа их дыхательных центров (в продолговатом мозге – РаСО2, оливах мозжечка – РН ликвора, в каротидных синусах – РаО2) не прекращается. Однако, характер ответной реакции на изменения газового состава крови и РН сильно зависит от срока гестации и постнатального возраста. Чувствительность хеморецепторов дыхательных центров снижена у недоношенных детей, а гипоксемия, ацидоз, гипотермия и особенно гипогликемия снижают ее дополнительно. Поэтому при гипоксии любого генеза у недоношенных быстро развивается депрессия дыхания. Эта центральная гипоксическая депрессия обычно проходит к третьей неделе постнатального периода. Доношенные новорожденные реагируют на гипоксию одышкой, но впоследствии может наступить депрессия дыхания, связанная с усталостью дыхательной мускулатуры. Снижение МОД в ответ на повышение FiO2 у доношенных детей развивается на вторые сутки жизни, а у недоношенных на второй неделе. Барбитураты, наркотические аналгетики и бензодиазепины вызывают депрессию дыхания тем больше, чем ниже срок гестации и постнатальный возраст.

Существует обратная связь дыхательного центра с изменениями легочных объемов, которую обеспечивают рефлексы Геринга – Бройера, регулирующие соотношение частоты и глубины дыхания. Выраженность этих рефлексов максимальна у доношенных детей, но с возрастом снижается.

1). Инспираторно – тормозящий рефлекс:

Раздувание легких на вдохе преждевременно его прекращает.

2). Экспираторно – облегчающий рефлекс:

Раздувание легких на выдохе задерживает наступление следующего вдоха.

3). Рефлекс на спадение легких:

Уменьшение объема легких стимулирует инспираторную активность и

укорачивает выдох.

Кроме рефлексов Геринга – Бройера существует так называемый парадоксальный рефлекс вдоха Геда, который заключается в углублении собственного вдоха под влиянием механического, но он наблюдается не у всех детей.

В интерстиции альвеолярных стенок содержатся т. н.”J” рецепторы, которые стимулируются перерастяжением альвеол (например, при Ti > 0,8 сек), вызывая активный выдох, что может вызвать баротравму. “J” рецепторы могут стимулироваться интерстициальным отеком и застойными явлениями в легочных капиллярах, что ведет к развитию тахипноэ (в частности TTN).

Таким образом, можно наблюдать 5 разновидностей взаимодействия пациента с вентилятором:

1). Апноэ чаще всего связано с гипокапнией (гипервентиляция), тяжелым

поражением ЦНС или медикаментозной депрессией.

2).Торможение спонтанного дыхания под влиянием рефлексов Геринга –Бройера.

3). Стимуляция спонтанного дыхания.

4). Выдох пациента против механического вдоха – «борьба» с вентилятором.

5). Синхронизация спонтанного дыхания с ИВЛ.

Наличие спонтанного дыхания при проведении ИВЛ является полезным фактором, так как:

1). Улучшает V/Q.

2). Тренирует дыхательную мускулатуру.

3). Уменьшает неблагоприятные влияния ИВЛ на гемодинамику, ВЧД и мозговой

кровоток.

4). Корректирует газовый состав крови и РН.

Исходя из вышеизложенного, оптимальными режимами ИВЛ являются те, которые позволяют синхронизировать работу пациента и вентилятора. В начальной фазе лечения пациента допустимо подавить его дыхательную активность гипервентиляцией, однако, следует помнить о ее неблагоприятном воздействии на мозговой кровоток. CMV (control mandatory ventilation) – управляемая принудительная вентиляция должна применяться при апноэ любого генеза и гиповентиляции (гипоксемия + гиперкапния). Также оправдано ее применение для снижения повышенной работы дыхания пациента (и системного потребления кислорода) при тяжелой ДН. При этом, однако, приходится подавлять дыхательную активность гипервентиляцией, седацией и/или миоплегией.

Несмотря на то, что CMV может быстро и эффективно восстановить газообмен, у нее есть существенные недостатки. К недостаткам CMV относятся: необходимость постоянного, жесткого контроля оксигенации и вентиляции, так как пациент не может их контролировать, снижение сердечного выброса, задержка жидкости в организме, гипотрофия дыхательной мускулатуры (при длительном применении), гипервентиляция может вызвать бронхоспазм. Общая продолжительность ИВЛ при использовании CMV увеличивается. Поэтому CMV должна применяться как вынужденная и, желательно, кратковременная мера.

По мере улучшения состояния пациента вентиляционная поддержка должна постепенно уменьшаться. Это стимулирует его дыхательную активность, позволяет ему частично контролировать газообмен и тренировать дыхательную мускулатуру. Мероприятия по снижению вентиляционной поддержки можно проводить разными способами. Выбор способа зависит от возможностей и качества используемой дыхательной аппаратуры и опыта врача.

Наиболее простым решением является применение режима IMV (intermittent mandatory ventilation) – перемежающейся принудительной вентиляции. Этот режим не требует использования сложной дыхательной аппаратуры (подходит любая) и заключается в постепенном снижении частоты механических вдохов. Между механическими вдохами пациент дышит самостоятельно, используя непрерывный поток в дыхательном контуре. МОД контролируется врачом лишь частично. Это представляет определенную опасность при нерегулярной дыхательной активности и требует внимания персонала. При хорошей дыхательной активности и поэтапном снижении частоты механических вдохов МОД постепенно переходит под полный контроль пациента.


0

Одной из основных задач отделения реанимации и интенсивной терапии (ОРИТ) является обеспечение адекватной респираторной поддержки. В связи с этим, для специалистов, работающих в данной области медицины, особенно важно правильно ориентироваться в показаниях и видах искусственной вентиляции легких (ИВЛ).

Показания к искусственной вентиляции легких

Основным показанием для искусственной вентиляции легких (ИВЛ) является наличие у больного дыхательной недостаточности. Прочие показания включают длительное пробуждение пациента после анестезии, нарушения сознания, отсутствие защитных рефлексов, а также усталость дыхательной мускулатуры. Главная цель искусственной вентиляции легких (ИВЛ) - улучшить газообмен, уменьшить работу дыхания и избежать осложнений при пробуждении больного. Независимо от показания к искусственной вентиляции легких (ИВЛ), основное заболевание должно быть потенциально обратимым, в противном случае невозможно отлучение от искусственной вентиляции легких (ИВЛ).

Дыхательная недостаточность

Наиболее частым показанием для респираторной поддержки служит дыхательная недостаточность. Это состояние возникает в тех ситуациях, когда происходит нарушение газообмена, приводящее к гипоксемии. может встречаться изолированно или сочетаться с гиперкапнией. Причины дыхательной недостаточности могут быть различными. Так, проблема может возникнуть на уровне альвеолокапиллярной мембраны (отек легких), дыхательных путей (перелом ребер) и т.д.

Причины дыхательной недостаточности

Неадекватный газообмен

Причины неадекватного газообмена:

  • пневмония,
  • отек легких,
  • острый респираторный дистресс-синдром (ОРДС).

Неадекватное дыхание

Причины неадекватного дыхания:

  • повреждение грудной стенки:
    • перелом ребер,
    • флотирующий сегмент;
  • слабость дыхательной мускулатуры:
    • миастения, полиомиелит,
    • столбняк;
  • угнетение центральной нервной системы:
    • психотропные препараты,
    • дислокация ствола головного мозга.
Нарушение проходимости дыхательных путей

Причины нарушения проходимости дыхательных путей:

  • обструкция верхних дыхательных путей:
    • круп,
    • отек,
    • опухоль;
  • обструкция нижних дыхательных путей (бронхоспазм).

В ряде случаев показания к искусственной вентиляции легких (ИВЛ) трудно определить. В этой ситуации следует руководствоваться клиническими обстоятельствами.

Основные показания к искусственной вентиляции легких

Выделяют следующие основные показания к искусственной вентиляции легких (ИВЛ):

  • Частота дыханий (ЧД) >35 или < 5 в мин;
  • Усталость дыхательной мускулатуры;
  • Гипоксия - общий цианоз, SaO2 < 90% при дыхании кислородом или PaO 2 < 8 кПа (60 мм рт. ст.);
  • Гиперкапния - PaCO 2 > 8 кПа (60 мм рт. ст.);
  • Снижение уровня сознания;
  • Тяжелая травма грудной клетки;
  • Дыхательный объем (ДО) < 5 мл/кг или жизненная емкость легких (ЖЕЛ) < 15 мл/кг.

Прочие показания к искусственной вентиляции легких (ИВЛ)

У ряда больных искусственная вентиляция легких (ИВЛ) проводится в качестве компонента интенсивной терапии состояний, не связанных с патологией дыхания:

  • Контроль внутричерепного давления при черепно-мозговой травме;
  • Защита дыхательных путей ();
  • Состояние после сердечно-легочной реанимации;
  • Период после длительных и обширных хирургических вмешательств или тяжелой травмы.

Виды искусственной вентиляции легких

Наиболее частым режимом искусственной вентиляции легких (ИВЛ) является вентиляция с перемежающимся положительным давлением (intermittent positive pressure ventilation - IPPV). При этом режиме легкие раздуваются под действием положительного давления, генерируемого вентилятором, газоток доставляется через эндотрахеальную или трахеостомическую трубку. Интубацию трахеи выполняют, как правило, через рот. При продленной искусственной вентиляции легких (ИВЛ) пациенты в ряде случаев лучше переносят назотрахеальную интубацию. Тем не менее, назотрахеальную интубацию технически сложнее выполнить; кроме того, она сопровождается более высоким риском кровотечений и инфекционных осложнений (синусит).

Интубация трахеи не только позволяет проводить IPPV, но и снижает объем "мертвого пространства"; кроме того, она облегчает туалет дыхательных путей. Однако, если пациент адекватен и доступен контакту, искусственную вентиляцию легких (ИВЛ) можно проводить неинвазивным способом через плотно подогнанную носовую или лицевую маску.

В принципе, в отделении реанимации и интенсивной терапии (ОРИТ) используются два типа вентиляторов - регулируемые по заранее установленному дыхательному объему (ДО) и по давлению на вдохе. Современные аппараты искусственной вентиляции легких (ИВЛ) обеспечивают различные типы искусственной вентиляции легких (ИВЛ); с клинической точки зрения важно подобрать тот вид искусственной вентиляции легких (ИВЛ), который наиболее подходит данному конкретному пациенту.

Типы искусственной вентиляции легких

Искусственная вентиляция легких (ИВЛ) по объему

Искусственная вентиляция легких (ИВЛ) по объему осуществляется в тех случаях, когда вентилятор доставляет в дыхательные пути больного заранее установленный дыхательный объем независимо от выставленного на респираторе давления. Давление в дыхательных путях определяется податливостью (жесткостью) легких. Если легкие жесткие, давление резко повышается, что может вести к риску баротравмы (разрыва альвеол, который приводит к пневмотораксу и эмфиземе средостения).

Искусственная вентиляция легких (ИВЛ) по давлению

Искусственная вентиляция легких (ИВЛ) по давлению заключается в том, что аппарат искусственной вентиляции легких (ИВЛ) достигает заранее заданный уровень давления в дыхательных путях. Таким образом, доставляемый дыхательный объем определяется податливостью легких и сопротивлением дыхательных путей.

Режимы искусственной вентиляции легких

Контролируемая искусственная вентиляция легких (ИВЛ) (controlled mechanical ventilation - CMV)

Данный режим искусственной вентиляции легких (ИВЛ) определяется исключительно установками респиратора (давление в дыхательных путях, дыхательный объем (ДО), частоту дыхания (ЧД), отношение вдоха к выдоху - I:E). Этот режим не очень часто используется в отделениях реанимации и интенсивной терапии (ОРИТ), так как не обеспечивает синхронизации со спонтанным дыханием больного. В результате CMV не всегда хорошо переносится пациентом, что требует седатации или назначения миорелаксантов для прекращения "борьбы с вентилятором" и нормализации газообмена. Как правило, режим CMV широко применяется в операционной в ходе анестезиологического пособия.

Вспомогательная искусственной вентиляции легких (ИВЛ) (assisted mechanical ventilation - AMV)

Существует несколько режимов вентиляции, позволяющих поддержать попытки спонтанных дыхательных движений больного. При этом вентилятор улавливает попытку вдоха и поддерживает ее.
У данных режимов есть два основных преимущества. Во-первых, они лучше переносятся больным и снижают потребность в седативной терапии. Во-вторых, они позволяют сохранить работу дыхательных мышц, что предотвращает их атрофию. Дыхание больного поддерживается за счет заранее установленного давления на вдохе или дыхательного объема (ДО).

Выделяют несколько разновидностей вспомогательной вентиляции:

Перемежающаяся принудительная вентиляция (intermittent mechanical ventilation - IMV)

Перемежающаяся принудительная вентиляция (intermittent mechanical ventilation - IMV) является сочетанием спонтанных и принудительных дыхательных движений. Между принудительными вдохами больной может дышать самостоятельно, без вентиляторной поддержки. Режим IMV обеспечивает минимальную минутную вентиляцию, однако может сопровождаться значительными вариациями между принудительными и спонтанными вдохами.

Синхронизированная перемежающаяся принудительная вентиляция (synchronized intermittent mechanical ventilation - SIMV)

При этом режиме принудительные дыхательные движения синхронизируются с собственными дыхательными попытками больного, что обеспечивает ему больший комфорт.

Вентиляция с поддержкой давлением (pressure-support ventilation - PSV или assisted spontaneous breaths - ASB)

При попытке собственного дыхательного движения в дыхательные пути подается заранее установленный по давлению вдох. Этот вид вспомогательной вентиляции обеспечивает больному наибольший комфорт. Степень поддержки давлением определяется уровнем давления в дыхательных путях и может постепенно снижаться в ходе отлучения от искусственной вентиляции легких (ИВЛ). Принудительных вдохов не подается, и вентиляция целиком зависит от того, может ли больной осуществлять попытки самостоятельного дыхания. Таким образом, режим PSV не обеспечивает вентиляции легких при апноэ; в этой ситуации показано его сочетание с SIMV.

Положительное давление в конце выдоха (positive end expiratory pressure - PEEP)

Положительное давление в конце выдоха (positive end expiratory pressure - PEEP) используется при всех видах IPPV. На выдохе поддерживается положительное давление в дыхательных путях, что обеспечивает раздувание спавшихся участков легких и предотвращает ателектазирование дистальных дыхательных путей. В результате улучшаются . Тем не менее, PEEP приводит к повышению внутригрудного давления и может снизить венозный возврат, что приводит к снижению артериального давления, особенно на фоне гиповолемии. При использовании PEEP до 5-10 см вод. ст. эти отрицательные эффекты, как правило, поддаются коррекции путем инфузионной нагрузки. Постоянное положительное давление в дыхательных путях (continuous positive airway pressure - CPAP) эффективно в той же степени, что и PEEP, но применяется, главным образом, на фоне спонтанного дыхания.

Начало искусственной вентиляции легких

В начале искусственной вентиляции легких (ИВЛ) ее основной задачей является обеспечение больного физиологически необходимыми дыхательным объемом (ДО) и частотой дыхания (ЧД); их величины адаптированы к исходному состоянию больного.

Начальные установки вентилятора для искусственной вентиляции легких
FiO 2 В начале искусственной вентиляции легких (ИВЛ) 1,0, затем - постепенное снижение
PEEP 5 см вод. ст.
Дыхательный объем (ДО) 7-10 мл/кг
Давление на вдохе
Частота дыхания (ЧД) 10-15 в мин
Поддержка давлением 20 см вод. ст. (на 15 см вод. ст. выше PEEP)
I:E 1:2
Триггер потока 2 л/мин
Триггер давления От -1 до -3 см вод. ст.
"Подвздохи" Ранее предназначались для профилактики ателектазов, в настоящий момент их эффективность оспаривается
Эти установки изменяют в зависимости от клинического состояния и комфорта больного

Оптимизация оксигенации при искусственной вентиляции легких

При переводе больного на искусственную вентиляцию легких (ИВЛ), как правило, рекомендуют изначально устанавливать FiO 2 = 1,0 с последующим снижением этого показателя до той его величины, которая позволила бы поддерживать SaO 2 > 93%. В целях профилактики повреждения легких, обусловленного гипероксией, необходимо избегать поддержания FiO 2 > 0,6 в течение длительного времени.

Одним из стратегических направлений по улучшению оксигенации без повышения FiO 2 может служить увеличение среднего давления в дыхательных путях. Этого можно добиться путем повышения PEEP до 10 см вод. ст. или, при вентиляции, контролируемой по давлению, путем увеличения пикового давления на вдохе. Однако следует помнить о том, что при повышении этого показателя > 35 см вод. ст. резко возрастает риск баротравмы легких. На фоне тяжелой гипоксии () может потребоваться применение дополнительных методов респираторной поддержки, направленных на улучшение оксигенации. Одним из таких направлений служит дальнейшее увеличение PEEP > 15 см вод. ст. Кроме того, может быть использована стратегия низких дыхательных объемов (6-8 мл/кг). Следует помнить, что применение этих методик может сопровождаться артериальной гипотензией, которая наиболее часто встречается у больных, получающих массивную инфузионную терапию и инотропную / вазопрессорную поддержку.

Еще одно из направлений респираторной поддержки на фоне гипоксемии - увеличение времени вдоха. В норме отношение вдоха к выдоху составляет 1:2, при нарушениях оксигенации оно может быть изменено до 1:1 или даже 2:1. Следует помнить, что увеличение времени вдоха может плохо переноситься теми пациентами, которые требуют седации. Снижение минутной вентиляции может сопровождаться повышением PaCO 2 . Эта ситуация получила название "пермиссивная гиперкапния". С клинической точки зрения она не представляет особых проблем за исключением тех моментов, когда необходимо избежать повышения внутричерепного давления. При пермиссивной гиперкапнии рекомендуется поддерживать pH артериальной крови выше 7,2. При тяжелом ОРДС может быть использовано положение на животе, позволяющее улучшить оксигенацию путем мобилизации спавшихся альвеол и улучшения соотношения между вентиляцией и перфузией легких. Однако это положение затрудняет мониторинг за пациентом, поэтому его необходимо применять достаточно осторожно.

Улучшение элиминации углекислого газа при искусственной вентиляции легких

Выведение углекислого газа можно улучшить за счет увеличения минутного объема вентиляции. Этого можно достичь путем увеличения дыхательного объема (ДО) или частоты дыхания (ЧД).

Седация при искусственной вентиляции легких

Большинство пациентов, находящихся на искусственной вентиляции легких (ИВЛ), требуют для того, чтобы адаптироваться к пребыванию эндотрахеальной трубки в дыхательных путях. В идеале должна назначаться лишь легкая седация, при этом пациент должен оставаться контактным и, в то же время, адаптированным к вентиляции. Кроме того, необходимо, чтобы на фоне седации больной был способен осуществлять попытки самостоятельных дыхательных движений, чтобы исключить риск атрофии дыхательных мышц.

Проблемы в ходе искусственной вентиляции легких

"Борьба с вентилятором"

При десинхронизации с респиратором в ходе искусственной вентиляции легких (ИВЛ) отмечается падение дыхательного объема (ДО), обусловленное повышением сопротивления на вдохе. Это приводит к неадекватной вентиляции и гипоксии.

Различают несколько причин десинхронизации с респиратором:

  • Факторы, обусловленные состоянием больного - дыхание, направленное против вдоха со стороны аппарата искусственной вентиляции легких (ИВЛ), задержка дыхания, кашель.
  • Снижение податливости легких - патология легких (отек легких, пневмония, пневмоторакс).
  • Увеличение сопротивления на уровне дыхательных путей - бронхоспазм, аспирация, избыточная секреция трахеобронхиального дерева.
  • Дисконнекция вентилятора или , утечка, неисправность аппаратуры, закупорка эндотрахеальной трубки, ее перекрут или дислокация.

Диагностика проблем с вентиляцией

Высокое давление в дыхательных путях в результате обструкции эндотрахеальной трубки.

  • Пациент мог пережать трубку зубами - введите воздуховод, назначьте седативные препараты.
  • Обструкция дыхательных путей в результате избыточной секреции - проведите отсасывание содержимого трахеи и при необходимости лаваж трахеобронхиального дерева (5 мл физиологического раствора NaCl). Если необходимо, реинтубируйте больного.
  • Эндотрахеальная трубка сместилась в правый главный бронх - подтяните трубку назад.

Высокое давление в дыхательных путях в результате внутрилегочных факторов:

  • Бронхоспазм? (хрипы на вдохе и выдохе). Убедитесь в том, что эндотрахеальная трубка не введена слишком глубоко и не стимулирует карину. Назначьте бронходилататоры.
  • Пневмоторакс, гемоторакс, ателектаз, плевральный выпот? (неравномерные экскурсии грудной клетки, аускультативная картина). Проведите рентгенографию грудной клетки и назначьте соответствующее лечение.
  • Отек легких? (Пенистая мокрота, с кровью, и крепитация). Назначьте диуретики, терапию сердечной недостаточности, аритмии и т.д.

Факторы седатации / анальгезии:

  • Гипервентиляция вследствие гипоксии или гиперкапнии (цианоз, тахикардия, артериальная гипертензия, потоотделение). Увеличьте FiO2 и среднее давление в дыхательных путях, используя PEEP. Увеличьте минутную вентиляцию (при гиперкапнии).
  • Кашель, дискомфорт или боль (повышение ЧСС и АД, потоотделение, выражение лица). Оцените возможные причины дискомфорта (нахождение эндотрахеальной трубки, полный мочевой пузырь, боль). Оцените адекватность анальгезии и седации. Перейдите на тот режим вентиляции, который лучше переносится больным (PS, SIMV). Миорелаксанты следует назначать только в тех случаях, когда исключены все остальные причины десинхронизации с респиратором.

Отлучение от искусственной вентиляции легких

Искусственная вентиляция легких (ИВЛ) может осложняться баротравмой, пневмонией, снижением сердечного выброса и рядом других осложнений. В связи с этим, необходимо прекратить искусственную вентиляцию легких (ИВЛ) как можно быстрее, как только позволяет клиническая ситуация.

Отлучение от респиратора показано в тех случаях, когда в состоянии пациента отмечается положительная динамика. Многие больные получают искусственную вентиляцию легких (ИВЛ) в течение короткого промежутка времени (например, после длительных и травматичных оперативных вмешательств). У ряда пациентов, напротив, искусственная вентиляция легких (ИВЛ) проводится в течение многих дней (например, ОРДС). При длительной искусственной вентиляции легких (ИВЛ) развиваются слабость и атрофия дыхательной мускулатуры, в связи с этим скорость отучения от респиратора во многом зависит от длительности искусственной вентиляции легких (ИВЛ) и характера ее режимов. Для предотвращения атрофии дыхательных мышц рекомендованы вспомогательные режимы вентиляции и адекватная нутритивная поддержка.

Больные, восстанавливающиеся после критических состояний, относятся к группе риска по возникновению "полинейропатии критических состояний". Это заболевание сопровождается слабостью дыхательной и периферической мускулатуры, снижением сухожильных рефлексов и сенсорными нарушениями. Лечение симптоматическое. Есть данные, свидетельствующие о том, что длительное назначение миорелаксантов из группы аминостероидов (векурониум) может вызвать персистирующий мышечный паралич. В связи с этим, векурониум не рекомендован для длительной нервно-мышечной блокады.

Показания для отлучения от искусственной вентиляции легких

Решение о начале отлучения от респиратора часто является субъективным и основывается на клиническом опыте.

Однако наиболее частыми показаниями к отлучению от искусственной вентиляции легких (ИВЛ) являются следующие состояния:

  • Адекватная терапия и положительная динамика основного заболевания;
  • Функция дыхания:
    • ЧД < 35 в мин;
    • FiO 2 < 0,5, SaO2 > 90%, PEEP < 10 см вод. ст.;
    • ДО > 5 мл/кг;
    • ЖЕЛ > 10 мл/кг;
  • Минутная вентиляция < 10 л/мин;
  • Отсутствие инфекции или гипертермии;
  • Стабильность гемодинамики и ВЭБ.

Перед началом отлучения от респиратора не должно быть признаков остаточной нервно-мышечной блокады, доза седативных препаратов должна быть сведена к минимуму, позволяющему поддерживать адекватный контакт с пациентом. В том случае, если сознание пациента угнетено, при наличии возбуждения и отсутствии кашлевого рефлекса, отлучение от искусственной вентиляции легких (ИВЛ) малоэффективно.

Режимы отлучения от искусственной вентиляции легких

До сих пор остается неясным, какой из методов отлучения от искусственной вентиляции легких (ИВЛ) является наиболее оптимальным.

Различают несколько основных режимов отлучения от респиратора:

  1. Тест на спонтанное дыхание без поддержки аппарата искусственной вентиляции легких (ИВЛ). Временно отключают аппарат искусственной вентиляции легких (ИВЛ) и подключают к интубационной трубке Т-образный коннектор или дыхательный контур для проведения СРАР. Периоды спонтанного дыхания постепенно удлиняют. Таким образом, пациент получает возможность для полноценной работы дыхания с периодами отдыха при возобновлении искусственной вентиляции легких (ИВЛ).
  2. Отлучение с помощью режима IMV. Респиратор доставляет в дыхательные пути больного установленный минимальный объем вентиляции, который постепенно снижают, как только пациент в состоянии увеличить работу дыхания. Аппаратный вдох при этом может синхронизироваться с собственной попыткой вдоха (SIMV).
  3. Отлучение с помощью поддержки давлением. При этом режиме аппарат подхватывает все попытки вдоха больного. Этот метод отлучения предусматривает постепенное снижение уровня поддержки давлением. Таким образом, пациент становится ответственным за увеличение объема спонтанной вентиляции. При снижении уровня поддержки давлением до 5-10 см вод. ст. выше PEEP можно начать тест на спонтанное дыхание с Т-образным коннектором или СРАР.

Невозможность отлучения от искусственной вентиляции легких

В процессе отлучения от искусственной вентиляции легких (ИВЛ) необходимо пристально наблюдать за больным, чтобы своевременно выявить признаки усталости дыхательной мускулатуры или неспособности к отлучению от респиратора. Эти признаки включают в себя беспокойство, одышку, снижение дыхательного объема (ДО) и нестабильность гемодинамики, в первую очередь, тахикардию и артериальную гипертензию. В этой ситуации необходимо увеличить уровень поддержки давлением; часто на восстановление дыхательной мускулатуре требуются многие часы. Оптимально начать отлучение от респиратора в утреннее время, чтобы обеспечить надежный мониторинг за состоянием больного в течение дня. При затянувшемся отлучении от искусственной вентиляции легких (ИВЛ) рекомендуют на ночной период увеличивать уровень поддержки давлением, чтобы обеспечить адекватный отдых пациента.

Трахеостомия в отделении интенсивной терапии

Наиболее частое показание к трахеостомии в ОРИТ - облегчение продленной искусственной вентиляции легких (ИВЛ) и процесса отлучения от респиратора. Трахеостомия позволяет снизить уровень седации и таким образом улучшает возможность контакта с больным. Кроме того, она обеспечивает эффективный туалет трахеобронхиального дерева у тех пациентов, кто неспособен к самостоятельному дренажу мокроты в результате ее избыточной продукции или слабости мышечного тонуса. Трахеостомия может проводиться в операционной, как и другая хирургическая процедура; кроме того, ее можно выполнять в палате ОРИТ у постели больного. Для ее проведения широко используется . Время для перехода с интубационной трубки на трахеостому определяется индивидуально. Как правило, трахеостомию осуществляют, если высока вероятность длительной искусственной вентиляции легких (ИВЛ) или возникают проблемы с отучением от респиратора. Трахеостомия может сопровождаться рядом осложнений. К ним относятся блокада трубки, ее диспозиция, инфекционные осложнения и кровотечение. Кровотечение может непосредственно осложнить хирургическое вмешательство; в отдаленном послеоперационном периоде оно может носить эрозийный характер за счет повреждения крупных кровеносных сосудов (например, безымянной артерии). Прочие показания к трахеостомии - обструкция верхних дыхательных путей и защита легких от аспирации при угнетении гортанно-глоточных рефлексов. Кроме того, трахеостомия может выполняться как часть анестезиологического или хирургического пособия при ряде вмешательств (например, при ларингэктомии).


Понравилась медицинская статья, новость, лекция по медицине из категории

Конечно-экспираторное давление (PEEP) по мере нарастания накапливаемого объема газа в альвеолах увеличивается. Поскольку в данном случае нет реальных условий, препятствующих продвижению объема выдоха по дыхательным путям (открытая бесклапанная система, крайне низкий объем аппаратного мертвого пространства), то логично предположить, что увеличение конечно-экспираторного давления осуществляется за счет повышения альвеолярного давления, которое формируется на выдохе перед началом последующего вдоха.

Его величина связана только с объемом газа, остающегося в альвеолах, который, в свою очередь, зависит от растяжимости легких и аэродинамического сопротивления дыхательных путей, что носит название «постоянной времени легких» (произведение растяжимости на сопротивление дыхательных путей) и влияет на время заполнения и опорожнения альвеол. Поэтому, в отличие от PEEP (positive end expiratory pressure), положительное альвеолярное давление, являясь «внутренним», относительно независимым от внешних условий, в литературе носит название auto-PEEP

Этот тезис находит себе подтверждение при анализе динамики данных параметров при различных частотах ВЧС . На рисунке представлены результаты регистрации PEEP и auto-PEEP при нарастающих частотах вентиляции в условиях приблизительно одинакового дыхательного объема и отношения I: Е= 1: 2.
По мере увеличения частоты вентиляции отмечается неуклонное возрастание обоих параметров (диаграмма А). Причем удельный вес auto-PEEP в составе конечно-экспираторного давления составляет 60-65%.

На величину auto-PEEP , помимо частоты вентиляции, оказывает влияние также продолжительность фаз дыхательного цикла I:Е.
Частотный уровень проявления auto-PEEP находится в прямой зависимости от частоты вентиляции и продолжительности экспираторной фазы дыхательного цикла.

Приведенные выше данные позволяют констатировать , что при ВЧС ИВЛ конечно-экспираторное давление (PEEP) тесно связано с auto-PEEP и, как auto-PEEP, зависит от продолжительности выдоха и объема оставшейся в альвеолах газовой смеси после его прекращения. Это обстоятельство позволяет сделать вывод, что при ВЧС ИВЛ основу конечного экспираторного давления составляет альвеолярное давление.
Данное заключение подтверждается результатами корреляционного анализа взаимовлияния PEEP и auto-PEEP с другими параметрами респираторной механики.

Корреляционные связи auto-PEEP с другими параметрами механики дыхания теснее, чем у PEEP. Особенно отчетливо это проявляется при сравнении коэффициентов корреляции дыхательного объема (VT), что является еще одним подтверждением установленной ранее природы и закономерности возникновения auto-PEEP.

Приведенные выше факты позволяют утверждать , что при отсутствии выраженной обструкции дыхательных путей конечно-экспираторное давление, определяемое современными струйными респираторами, является не чем иным, как альвеолярным давлением (auto-PEEP), но зарегистрированным не на уровне альвеол, а в проксимальных отделах дыхательного контура. Поэтому величины этих давлений существенно различаются. По нашим данным, уровень auto-PEEP может превышать величины PEEP в полтора и более раз.
Следовательно, по уровню PEEP нельзя получить корректную информацию о состоянии альвеолярного давления и степени гиперинфляции. Для этого необходимо иметь информацию об auto-PEEP.

  • Дыхательный маневр, который строит квазистатическую кривую давления/объема
  • Упрощенная оценка возможности раскрытия объема легких у пациентов с острым респираторным дистресс-синдромом
  • Легкое и безопасное выполнение маневров рекрутмента легких
  • Можно сочетать с измерением пищеводного давления

Инструмент для защиты легких во время вентиляции, используемый при диагностике и рекрутменте

Инструмент для защиты легких во время вентиляции (P/V Tool Pro) обеспечивает дыхательный маневр, который строит квазистатическую кривую давления/объема. Этот метод может использоваться при оценке возможности раскрытия объема легких и определения необходимой стратегии рекрутмента.

P/V Tool Pro также может использоваться для выполнения маневра рекрутмента с применением длительной инфляции и измерения увеличения объема легких. Инструмент особенно полезен при лечении пациентов с острым респираторным дистресс-синдромом, поскольку выбор надлежащей стратегии рекрутмента легких и правильные настройки уровня PEEP имеют решающее значение для данной группы больных.

Использование функции измерения пищеводного давления вместе с инструментом P/V Tool Pro позволяют получить более четкое представление о механике легких и грудной клетки. Это делает возможным применение стратегии вентиляции с защитой легких с помощью регулировки уровня PEEP (Talmor 2008) и оптимизации параметров маневра рекрутмента, рабочего давления и дыхательного объема.

Отзывы клиентов об инструменте P/V Tool Pro

Камилла Невилль,

врач-инструктор отделения искусственной вентиляции легких,

больница в г. Орландо, штат Флорида, США

Мы рекомендуем штатным специалистам по дыхательной терапии использовать P/V Tool сразу после перевода пациента на искусственную вентиляцию легких. Это помогает достичь оптимального PEEP. По отзывам наших специалистов, этот инструмент очень полезен, особенно в тяжелых случаях.

Кен Харгетт,

главный врач отделения искусственной вентиляции легких,

методистская больница Хьюстона, Техас, США

Мы используем инструмент P/V Tool для определения исходных настроек PEEP почти у всех пациентов на искусственной вентиляции. Это делается перед интубацией, сразу после вводного наркоза. Еще мы часто применяем P/V Tool для рекрутмента, особенно у пациентов с рецидивирующим ателектазом.

Научное обоснование


  • P/V Tool является эквивалентом метода CPAP для отслеживания статических кривых P/V дыхательной системы (Piacentini 2009).
  • При проведении вентиляции с защитой легких (включая установку параметров PEEP на основе нижней точки перегиба (LIP) показатели выживаемости выше, чем при использовании традиционных методов (Amato 1998).
  • У пациентов с острым респираторным дистресс-синдромом линейная податливость дыхательной системы (Crs) взаимосвязана с возможностью раскрытия объема легких (Veillard-Baron 2003).
  • Гистерезис кривой P/V может использоваться для оценки возможности раскрытия объема легких во время стационарного лечения (Demory 2008).
  • На ранней стадии развития острого респираторного дистресс-синдрома у большинства пациентов удалось раскрыть объем легких (Borges 2006).
  • При длительной инфляции раскрытие объема легких в большинстве случаев происходит в течение первых 10 секунд (Arnal 2011).

Принцип работы P/V Tool Pro

При выполнении маневра с использованием P/V Tool Pro не нужно отсоединять дыхательный контур или изменять режим и настройки аппарата ИВЛ. Обычную вентиляцию легких можно возобновить в любое время.

Квазистатическая кривая давления/объема (P/V)

P/V Tool Pro регистрирует соотношение давления и объема легких при низкой скорости потока (2 смH2O/с). Давление в дыхательном контуре линейно зависит от заданного оператором целевого значения давления. Когда достигается целевое значение, давление снижается к начальному уровню. Полученные кривые могут быть использованы для анализа:

  • нижней точки перегиба инфляционной кривой давления/объема;
  • линейной податливости инфляционной кривой давления/объема;
  • гистерезиса (разница объема между двумя кривыми).

Маневр рекрутмента с применением длительной инфляции

Давление в дыхательном контуре линейно зависит от заданного оператором целевого значения давления при заданной оператором скорости Ramp. Конечные изменения объема записываются. При достижении целевого значение активируется заданная оператором пауза. После паузы давление спускается в линейном соотношении к заданному оператором показателю «Кон. PEEP». Интегрирование потока во время паузы и определяет объем заполненного легкого.

Загрузки

Список литературы

Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998 Feb 5;338(6):347-54

Arnal JM, Paquet J, Wysocki M, Demory D, Donati S, Granier I, Corno G, Durand-Gasselin J. Optimal duration of a sustained inflation recruitment maneuver in ARDS patients. Intensive Care Med. 2011 Oct;37(10):1588-94.

Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CS, Carvalho CR, Amato MB. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006 Aug 1;174(3):268-78.

Demory D, Arnal JM, Wysocki M, Donati S, Granier I, Corno G, Durand-Gasselin J. Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients. Intensive Care Med. 2008 Nov;34(11):2019-25

Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, Slutsky AS, Marco Ranieri V. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002 Apr;96(4):795-802.

Piacentini E, Wysocki M, Blanch L. Intensive Care Med. A new automated method versus continuous positive airway pressure method for measuring pressure-volume curves in patients with acute lung injury. 2009 Mar;35(3):565-70

Talmor D, Sarge T, Malhotra A, O"Donnell CR, Ritz R, Lisbon A, Novack V, Loring SH. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008 Nov 13;359(20):2095-104

Vieillard-Baron A, Prin S, Chergui K, Page B, Beauchet A, Jardin F. Early patterns of static pressure-volume loops in ARDS and their relations with PEEP-induced recruitment. Intensive Care Med. 2003 Nov;29(11):1929-35

Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006 May;34(5):1311-8

78 Часть II. Основные современные

более чем на 2-3 см вод.ст. Исходное PEEP рекомендуют устанавливать на уровне 5-6 см вод.ст. Чем выше PEEP, тем на меньшую величину его можно увеличивать (при PEEP > 7 - 8 см вод.ст. - не более чем на 1-2 см вод.ст.). После изменения PEEP в те­ чение 25-30 минут врач должен оце­ нить состояние пациента, после чего, если необходимо, допустимо вновь уве­ личить или уменьшить PEEP.

С другой стороны, ни в коем случае нельзя резко снижать PEEP - это мо­ жет вызвать отек слизистой оболочки бронхиол и усиление бронхосекреции. Кроме того, резкая отмена PEEP может привести к появлению экссудата в плев­ ральной полости. Снижение PEEP сле­ дует производить постепенно и никог­ да - до нуля. Типичной ошибкой/при отучении больного от ИВЛ является снижение PEEP до 2-3 см вод.ст. При этом во время спонтанных попыток вдоха давление в дыхательных путях становится отрицательным (по отноше­ нию к атмосферному), что способству­ ет развитию отека слизистой оболочки бронхов, усилению кашля, увеличению сопротивления дыхательных путей, дискомфорту больного и в целом задер­ живает процесс «отучения» от ИВЛ. Практика показала, что до самого окон­ чания МВЛ необходимо поддерживать PEEP не ниже 4-5 см вод.ст. («физио­ логическое» PEEP), используя все его положительные эффекты.

Итак, при подборе «оптимального» PEEP необходимо ориентироваться на следующие критерии (13, 15, 109, 151):

1. Оксигенация пациента по данным Sa0 2 , Pa0 2 , Pv0 2 , Sv0 2 и Fi0 2 . Как прави­ ло, на фоне нетоксических цифр Fi0 2 при повышении PEEP увеличиваются

Sa02 и Ра02 . Стремиться нужно к под­ держанию Sa02 > 90-92 % и Ра02

> 65-70 мм рт.ст. на фоне Fi02 < 60 %; по возможности (если позво­

ляет гемодинамика) - Sa02 > 95 %, Ра02 > 70 мм рт.ст. при Fi02 не более

50 %. Одновременно с ростом Sa02 и РаО, может расти и РаС02 , но с точки зрения принципа «пермиссивной гиперкапнии» (см. стр. 108, а также стр. 243-244) это допустимо. Если увели­ чение PEEP до 10 см вод.ст. не при­ водит к желаемому результату, необходимо изменить режим и/или параметры вентиляции (например, пе­ рейти на вентиляцию с управляемым давлением, увеличить время вдоха и т. д.). Повышение Pv02 и Sv02 (в нор­ мальных пределах) также является признаком улучшения оксигенации при увеличении PEEP. Снижение в ди­ намике уровня Pv02 и Sv02 (особенно ниже 30 мм рт.ст. и 65 % соответствен­ но) на фоне увеличения PEEP свиде­ тельствует о возможных гемодинамических нарушениях. Само собой разумеется, при оценке параметров оксигенации следует принимать во внимание и другие факторы, влияю­ щие на газообмен (например, проходи­ мость дыхательных путей, своевремен­ ность санации трахеобронхиального дерева, вероятность утечки из дыха­ тельного контура и т. д.).

2. Оксигенационный коэффициент Ра0 2 / Fi0 2 > 200-250.

3. Растяжимость легких. PEEP можно увеличивать до тех пор, пока возра­ стает податливость (статический комплайнс) легких. Если при очередном повышении PEEP податливость сни­ жается, необходимо вернуться к пре­ жнему значению. Следует иметь в виду, что как правило, увеличение PEEP свыше 12-14 см вод.ст. уже не способствует дальнейшему увеличе­ нию растяжимости легких.

4. Гемодинамика. Повышение PEEP прекращают при развитии артериаль­ ной гипотензии и тахикардии (брадикардии), при этом следует обязатель­ но оценить волемический статус пациента. Если диагностирована гиповолемия - показана дополнитель­ ная инфузионная терапия, после чего

Глава 4. Пр нулительная вентиляция легких 79

вновь возможно увеличение PEEP. Если имеется необходимость в высо­ ком PEEP, дополнительную инфузионную терапию проводят, как прави­ ло, и при нормоволемии. При наличии противопоказаний к допол­ нительной инфузии (гиперволемия, ОПН, СН) налаживают титрование инотропных препаратов (например, дофамина со скоростью 4-8 мкг/кг/ мин). После стабилизации гемодина­ мики при необходимости увеличивают PEEP. Если есть возможность инвазивной или неинвазивной оценки ЦГД, то после каждого увеличения PEEP в динамике следует оценивать данные МОК, СИ, УИ и ДНЛЖ.

5. Степень внутрилегочного шунтирования крови (Qs/Qt) менее 15 %. Оценива­ ется в том случае, если есть возмож­ ность инвазивного определения цен­ тральной гемодинамики и транспорта кислорода с помощью катетера Swan-Ganz в легочной артерии.

6. Разница РаС02 -ЕТС02 не более 4- 6 мм рт.ст.

7. Газовый состав смешанной венозной

крови: Pv02 в пределах 34-40 мм рт.ст., Sv02 - 70-77 %. Снижение этих показателей свидетельствует об усилении экстракции кислорода тка­ нями, что косвенно свидетельствует об ухудшении гемодинамики и пер­ фузии органов. С другой стороны, увеличение этих показателей говорит о шунтировании артериальной крови в тканях и тканевой гипоксии.

8. Петля объем-давление (см. главу 8; стр. 204). «Оптимальное» PEEP должно приближаться к точке давления открытия легких.

Показания

и противопоказания к PEEP

Показания к применению PEEP:

1. Умеренный уровень PEEP (4-5 см вод.ст.) показан всем больным, кото­ рым проводится ИВЛ, даже при от-

сутствии явной патологии легких. Этот уровень PEEP считается «физи­ ологическим», так как при обычном спонтанном дыхании в конце выдо­ ха смыкание голосовой щели создает PEEP порядка 2-3 см вод.ст. «Физи­ ологический» PEEP способствует пре­ дупреждению ателектазов, лучшему распределению подаваемого газа по легочным полям и снижению сопро­ тивления дыхательных путей.

2. Основным показанием к более высо­ ким цифрам PEEP (> 7 см вод.ст., при необходимости - до 10-15 см вод.ст.) является рестриктивная пато­ логия легких, особенно сопровожда­ ющаяся ателектазированием и кол­ лапсом альвеол с внутрилегочным шунтированием венозной крови - ОРДС (РДСВ), двухсторонняя поли­ сегментарная пневмония. Сохраняю­ щееся снижение SaO, и РаО, на фоне высокого Fi02 (> 60 %), а также ко­ эффициент Pa02 /Fi02 < 250 являют­ ся абсолютным показанием к увели­ чению PEEP для предупреждения экспираторного коллабирования аль­ веол.

3 . ИВЛ при отеке легких: PEEP способ­ ствует удержанию внесосудистой воды в интерстициальном пространстве лег­ ких. При этом требуется особо тща­ тельный мониторинг гемодинамики и зачастую показано титрование инот­ ропных препаратов (например, дофа­ мина со скоростью 4~8 мкг/кг/мин). Рекомендуемое PEEP при отеке лег­ ких - 6-8 см вод.ст.

4 . ИВЛ у больных с обострением хро­ нической обструктивной патологией легких. PEEP на уровне 5-6 см вод.ст. позволяет снизить сопротив­ ление и уменьшить раннее экспира­ торное закрытие мелких дыхательных путей, преодолеть нежелательные эффекты autoPEEP (аутоПДКВ), по­ высить эффективность бронходилатирующей терапии (у больных с бронхиальной астмой и ХОЗЛ),

80 Часть II. Основные современные режимы МВЛ

уменьшить работу спонтанного дыха­ ния пациента и улучшить синхрони­ зацию с вентиляторо^.

5. Вспомогательная вентиляция легких в процессе «отучения» от ИВЛ. PEEP на уровне 4-5 см вод.ст. сохраняют до момента экстубации (или отключения аппарата от трахеостомической труб­ ки). Применение PEEP позволяет луч­ ше синхронизировать пациента с вен­ тилятором, снижает работу дыхания по преодолению сопротивления эндотрахеальной (трахеостомической) трубки и предупреждает вторичное ателектазирование.

Относительные противопоказания

к PEEP (> 5 см Н 2 0):

одностороннее или локальное тяже­ лое поражение легких;

высокое Pmean (> 18-19 см вод.ст.);

рецидивирующий пневмоторакс;

выраженная гиповолемия и артери­ альная гипотензия (систолическое АД < 90 мм рт.ст.);

высокое ВЧД, отек головного мозга;

ТЭЛА (PEEP > 4-5 см вод.ст. может еще больше увеличить сопротивление в бассейне легочной артерии).

PCV - вентиляция

с управляемым давлением (Pressure Control Ventilation)

В течение последних 10-15 лет, особен­ но со второй половины 90-х, вентиля­ ция с управляемым давлением стала одной из наиболее широко применяе­ мых режимов ИВЛ у больных с тяже­ лой легочной патологией, а также в педиатрической практике (6, 13, 21). В настоящее время невозможно себе пред­ ставить эффективное лечение пациен­ тов с выраженной рестриктивной пато­ логией легких без PCV, особенно больных с ОПЛ и ОРДС (РДСВ). Соб­ ственно говоря, именно с разработкой

новых механизмов лечения ОРДС и началась история создания режима PCV (34, 42). Традиционные режимы ИВЛ с контролем по объему не могли обеспе­ чить удовлетворительной вентиляции, ведь для любой рестриктивной патоло­ гии легких (особенно ОРДС) характерна «мозаичность» ателектазов, связанная с негомогенным поражением и коллапсом альвеол.

Как уже описывалось выше (см. ИВЛ с контролем по объему), при подаче принудительного дыхательного объема он преимущественно поступает в более податливые зоны легких, эти участки перераздуваются, а более пораженные участки остаются коллабированными. Развивающееся высокое пиковое давле­ ние в дыхательных путях становится причиной тяжелой баротравмы относи­ тельно здоровых участков легочной тка­ ни, а также способствует активизации высвободившихся из паренхимы легких медиаторов воспаления, которые поддер­ живают ОРДС (РДСВ) (74, 96, 48). Высокое PEEP при объемной вентиля­ ции не решает проблемы, так как в еще большей степени увеличивает пиковое давление и отрицательно влияет на ге­ модинамику за счет роста Pmean и внутригрудного давления. В результате чрез­ мерного увеличения пикового и среднего давления в дыхательных путях становится возможной компрессия ка­ пилляров, что усугубляет вентиляцион- но-перфузионные нарушения.

Вот почему вполне логично появи­ лось предложение регулировать при ОРДС не объем, а давление. Уже к кон­ цу 80-х годов стало ясно, что вентиля­ ция с управляемым давлением и регу­ лированием времени принудительного вдоха позволяет свести к минимуму риск баротравмы и значительно улуч­ шить оксигенацию при тяжелой рест­ риктивной патологии легких (166, 167). С начала 90-х годов режим PCV стал неотъемлемой составной частью венти­ ляторов всех основных мировых произ-

Глава 4. Принудительная вентиляция легких 81

водителей дыхательной аппаратуры (Siemens, Drager, Hamilton Medical, Mallinckrodt-NPB, Bird, Newport Medical и т. д.).

Суть режима PCV состоит в контро­ лированном обеспечении и поддержании заданного инспираторного (пикового) давления в дыхательных путях в течение всего заданного времени вдоха (рис. 4.19, а). В большинстве современ­ ных вентиляторов 4-го поколения в ре­ жиме PCV уровень контролируемого давления Pcontrol устанавливается «сверх PEEP», т. е. общее контролируемое инспираторное (пиковое) давление Pinsp (Ppeak) равно сумме Pcontrol и PEEP (Pinsp = Pcontrol + PEEP). В респира­ торах предыдущего поколения Pinsp (оно же Ppeak) устанавливалось непос­ редственно вне зависимости от PEEP. Данное обстоятельство следует учиты­ вать при установке параметров режима PCV на различных аппаратах. На прак­ тике реальный уровень контролируемо­ го давления оценивают по данным мо­ ниторинга Ppeak на аппарате. Важно отметить, что режим с контролем по дав­ лению является циклированным по вре­

мени (Pressure Control Time-Cycled Ventilation): аппаратный вдох начинает­ ся через определенный промежуток вре­ мени (который зависит от установлен­ ной частоты дыхания) и оканчивается через заданное время вдоха. Непосред­ ственная регулировка времени вдоха Ti, в течение которого удерживается конт­ ролируемое инспираторное давление, является характерной чертой PCV.

Сразу после начала вдоха аппарат создает достаточно мощный поток для быстрого достижения заданного уровня давления в контуре. Как только давле­ : ; ние в контуре достигает заданного уровня, поток автоматически снижает­ ся и клапан вдоха закрывается (точка В1 , рис. 4.19, б). Мощный принудитель­ ный поток из аппарата не может мгно­ венно переместиться из контура в брон­ хиолы и альвеолы. Таким образом, в самом начале вдоха в режиме PCV со­ здается довольно значительный гради­ ент между давлением в дыхательном контуре и крупных бронхах, с одной стороны, и внутрилегочным (внутриальвеолярным) давлением - с другой. Ре­ зультатом такого градиента является

82 Часть II. Основные современные режимы МВЛ

поток, направленный из крупных брон­ хов в мелкие дыхательные пути (брон­ хиолы) и альвеолы. Уровень этого по­ тока максимален в начале вдоха, когда еще имеется существенный градиент давлений между трахеей и бронхиола­ ми. Постепенно, вследствие повышения внутрилегочного давления, градиент давлений между контуром и легкими уменьшается, поэтому и поток дыха­

I тельного газа также снижается (отрезок В1 -С, рис. 4.19, б). Форма инспираторной потоковой кривой оказывается нисходящей, что является одной из ха­ рактерных особенностей режима PCV. Как только давление в крупных и мел­ ких дыхательных путях уравнивается, поток прекращается (точка С, рис. 4.19, б). Если время принудитель­ ного вдоха еще не окончилось, насту­ пает фаза нулевого потока (отрезок С1 - D1 , рис. 4.19, б), в этот период поданная воздушно-кислородная смесь продолжа­ ет участвовать в распределении по дистальным легочным полям и газообмене. При этом экспираторный клапан оста­ ется закрытым, и инспираторное давле­ ние удерживается на заданном уровне до окончания времени вдоха.

В течение всего времени вдоха аппа­ рат поддерживает и контролирует задан­ ный уровень давления благодаря согла­ сованному закрытию клапанов вдоха и выдоха. В отличие от объемной венти­ ляции, при PCV давление в дыхатель­

ных путях в течение вдоха не растет, так как по достижении заданного давления принудительный поток немедленно пре­ кращается и далее носит спонтанный нисходящий характер. После окончания принудительного времени вдоха откры­ вается экспираторный клапан и насту­ пает пассивный выдох (отрезки С-D и D"-E1 , рис. 4.19, а и б) до уровня уста­ новленного внешнего PEEP.

Врач может выбрать на аппарате лю­ бой уровень инспираторного давления, который аппарат будет жестко контро­ лировать в течение всего заданного вре­ мени вдоха. Таким образом, жесткий контроль инспираторного (пикового) давления в течение принудительного вдоха - самая характерная особенность режима PCV (42, 43).

Чем больше установлен пиковый инспираторный поток, тем быстрее бу­ дет достигнуто рабочее инспираторное давление Pinsp, т. е., по современной терминологии, будет больше скорость нарастания давления Pramp (другие на­ звания - Rise Time, Flow Acceleration). Pramp - это время, в течение которо­ го достигается 66 % (в некоторых мо­ делях респираторов - 95 %) от Pcontrol. Оно определяется величиной пикового инспираторного потока (рис. 4.20).

Ряд современных вентиляторов по­ зволяет непосредственно регулировать величину Pramp, при этом подстраива-

Глава 4. Принудительная вентиляция легких 83

ние потока происходит автоматически. Наибольшее значение величина Ргатр имеет при проведении управляемовспомогательной или полностью вспо­ могательной вентиляции (смотри опи­ сание режимов P-SIMV и PSV), ее используют для адекватной синхрони­ зации аппарата с пациентом.

Как видно из рисунка 4.20, в режи­ ме управляемой вентиляции PCV пока­ затель Ргатр влияет на время удержа­ ния заданного давления и, соответственно, на среднее давление в дыхательных путях Pmean. При низкой скорости нарастания давления (Ргатр > 150 мс) Ртеап может снизиться до такого уровня, что будет страдать оксигенация. При высокой скорости нарас­ тания давления (Ргатр 25 - 75 мс) Ртеап существенно увеличится; у ряда больных (особенно при высоком PEEP) это может отрицательно повлиять на гемодинамику. В целом при режиме PCV рекомендуется поддерживать по возможности как можно более высокую скорость нарастания давления, чтобы на графике кривая давления была прибли­ жена к прямоугольнику (прямоугольной трапеции) (б), а не к пологой трапеци­ евидной форме (а). С другой стороны, следует избегать быстрого нарастания давления у пациентов с неустраненной гиповолемией и стойкой артериальной гипотензией.

Современные вентиляторы позволя­ ют проводить синхронизированную (ассистированную) вентиляцию с уп­

равляемым давлением. Если у больно­ го сохранены попытки спонтанного ды­ хания и триггер настроен оптимально, заданные параметры PCV (Pcontrol, Pramp, Ti) будут синхронизировано по­ даваться при каждой попытке вдоха (рис. 4.21, а), при этом общая частота дыхания может быть больше установ­ ленной. Если такие попытки редки, очень слабые или прекращаются, чис­ ло вдохов PCV будет соответствовать установленной частоте принудитель­ ных вдохов (рис. 4.21, б).

Одним из явных преимуществ режима PCV считается возможность обеспече­ ния стратегии защиты легких и улучше­ ние вентиляции наиболее пострадавших зон. Стабильное давление поддержива­ ется на заданном предсказуемом уров­ не, значительно снижается вероятность баротравмы и имеется возможность со­ хранять Ppeak в безопасных пределах. Считается, что сочетание стабильного инспираторного давления в течение все­ го времени вдоха и нисходящей формы инспираторного потока обеспечивает наиболее оптимальные условия для рав­ номерной вентиляции различных зон легких, пораженных в большей и мень­ шей степени (13, 43, 45, 116).

На двухкомпонентной модели легких уже было показано, что при объемной ИВЛ преимущественно вентилируются и перераздуваются «здоровые» участки легких (74, 96, 123, 148). Пиковое дав­ ление непредсказуемо и значительно выше в «здоровых» участках (Р,), чем в

84 Часть II. Основные современные режимы МВД

пораженных (Р2 ) (рис. 4.22, а). Если эти зоны соседствуют друг с другом, то за счет градиента давления появляются так называемые «разрывающие» силы, вы­ зывающие баротравму легочной ткани. При высоком давлении создаются усло­ вия для повреждения бронхиолярного и альвеолярного эпителия, стимулирует­ ся высвобождение медиаторов воспале­ ния, запускаются и поддерживаются механизмы ОПЛ (ОРДС) и патологи­ ческий процесс в легких усугубляется. Сдавление капилляров вызывает нару­ шение легочного кровотока в относи­ тельно «здоровых» участках легких. Давление же в пораженных зонах (Р2 ) остается относительно низким, недоста­ точным для открытия коллабированных альвеол, и патологические участки лег­ ких остаются спавшимися. В результа­ те - ателектазирование, нарушение га­ зообмена и усугубление шунтирования неоксигенированной крови справа на­ лево, прогрессирование гипоксемии и гипоксической гипоксии.

Значительно более благоприятная си­ туация с распределением вентиляции, по современным представлениям, имеет место при ИВЛ в режиме PCV (рис. 4.22, б). Как уже отмечалось, жестко контро­ лируемое давление в дыхательных путях

вместе с нисходящим инспираторным потоком приводят к приблизительному уравниванию давлений в различных зо­ нах легких - «здоровой» (Р,) и «боль­ ной» (Р2 ), Р, ~ Р2 . Пораженные участки альвеол в течение всего времени вдоха испытывают на себе мощное контроли­ руемое давление, что заставляет спавши­ еся альвеолы открыться и вентилиро­ ваться (по крайней мере, часть из них). Если Р, ~ Р2 , то градиент давлений между «больными» и «здоровыми» зонами от­ носительно небольшой, «разрывающие» силы если и появляются, то невелики, и патологические механизмы ОПЛ и/или ОРДС не прогрессируют. Вовлечение в вентиляционный процесс большего ко­ личества альвеол, стабильность раскры­ тия альвеол в режиме PCV, безусловно, способствует:

улучшению податливости (растяжи­ мости) легочной ткани (увеличивается объем при том же давлении);

уменьшению степени шунтирования неоксигенированной крови;

улучшению оксигенации без приме­ нения в высоких концентрациях кис­ лорода (Fi0 2 < 60 %).

Кроме того, при PCV за счет контроли­ руемого инспираторного давления гради­ ент между Pcontrol и PEEP можно (и

нужно!) поддерживать относительно не­ большим, что имеет значение для сни­ жения риска баротравмы. Небольшая разница между инспираторным давлени­ ем и PEEP способствует уменьшению транспульмонального давления и ампли­ туды движения легких, что создает от­ носительный «покой пораженному орга­ ну - легким» (13, 151). Многие авторы отмечают улучшение оксигенации при ИВЛ в режиме PCV у больных с рестриктивной патологией (ОРДС, коэффи­ циент Pa02 /Fi02 удерживается более 200), уменьшение внутрилегочного шун­ тирования при поддержании относитель­ но невысокого пикового давления и дыхательного объема (13, 20, 31, 34, 39, 43, 82, 123). Это свидетельствует о зна­ чительном улучшении распределении газа в легких при данном режиме ИВЛ.

PCVM концепция «открытых легких»

Кроме стратегии защиты легких от ба­ ротравмы, режим PCV позволяет в наи­ большей степени поддерживать концеп­ цию «открытых легких» (ОЛ). Суть концепции ОЛ, разработаной

В. Lachman и соавт. (121, 122), состоит

в том, что необходимо добиться раскры­ тия спавшихся пораженных зон легких (альвеол) и поддерживать их в раскры­ том состоянии в течение всех фаз ды­ хания (вдоха и выдоха), не допуская коллабирования. Нет необходимости объяснять, что постоянное поддержание мелких дыхательных путей и альвеол в открытом состоянии увеличивает объем ФОЕ, улучшает газообмен и оксигенацию без использования высоких кон­ центраций кислорода. Именно на основе концепции ОЛ построена современная тактика ИВЛ при ОРДС (РДСВ). При этом очень важно не только раскрыть бронхиолы и альвеолы, но и поддержи­ вать их в таком состоянии, не допуская повторного спадения. Чередование кол­ лапса альвеол (на выдохе) с их прину-

дительным раскрытием на вдохе непри­ емлемо: для этого требуется значитель­ но большее инспираторное давление (риск баротравмы) и, кроме того, усу­ губляется процесс инактивации и уда­ ления сурфактанта и усиливаются «раз­ рывающие» силы между альвеолами.

Концепция ОЛ построена на глубо­ ком понимании физиологии легких и влияния различных режимов ИВЛ на легочную ткань. Как известно из фи­ зиологии и биофизики, огромную роль в поддержании альвеол в расправлен­ ном состоянии играет легочный сурфактант - фосфолипидное вещество, вы­ рабатываемое пневмоцитами II типа. Сурфактант снижает силу поверхност­ ного натяжения стенки альвеол, предуп­ реждая их спадение во время выдоха. Он же способствует равномерному рас­ правлению во время вдоха альвеол раз­ личного размера.

По закону Лапласа (Laplace),

где Р - давление в альвеолах, Т - поверхностное натяжение альвеол, R - радиус альвеол.

Согласно формуле, чем меньше раз­ мер альвеол, тем большее давление тре­ буется для их расправления. Однако в норме этого не происходит: концентра­ ция сурфактанта выше именно в альве­ олах малого радиуса, поверхностное натяжение в них снижается в большей степени и они более податливы, чем альвеолы с большим радиусом. В резуль­ тате во время вдоха при одном и том же давлении альвеолы с разным радиусом расправляются в одинаковой степени.

При тяжелой патологии легких (осо­ бенно рестриктивной, негомогенной) происходит нарушение выработки и раз­ рушение сурфактанта, концентрация его в пораженных участках легких снижает­ ся, поверхностное натяжение альвеол увеличивается, радиус их уменьшается. Во время выдоха значительная часть аль­ веол коллабируется и объем ФОЕ легких

86 Часть II. Основные современные режимы МВД

существенно уменьшается. Как следует из закона Лапласа, для расправления спавшихся альвеол (с малым радиусом) требуется значительно большее инспираторное давление, чем для открытых аль­ веол (с большим радиусом). Вентиляция с контролем по объему не способствует более или менее адекватному раскрытию коллабированных участков легких, и основная часть принудительного объема уходит в «здоровую» часть легких, вы­ зывает их перерастяжение и появление «разрывных» силы между спавшимися и раздуваемыми ацинусами, баротравму, «вымывание» сурфактанта и т. д. Следо­ вательно, для расправления патологичес­ ких зон легких физиологически оправ­ дана вентиляция с управляемым давлением, обеспечивающая теоретичес­ ки и практически более равномерное га­ зораспределение с удержанием и уравно­ вешиванием давления в различных участках легких.

Как правило (но не всегда оправдан­ но!), к вентиляции в режиме PCV при­ бегают уже после того, как некоторое время применялась объемная ИВЛ и уже имеет место прогрессирование ле­ гочной патологии и падение оксигенации. На основании подобного рода на­ блюдений автор рекомендует, при наличии времени и соответствующей дыхательной аппаратуры, применять режим PCV у больных с риском тяже-

лой легочной патологии как можно раньше, не дожидаясь грубых наруше­ ний легочной механики и оксигенации.

Применение концепции «открытых легких»

При выраженном рестриктивном пора­ жении легких общая поверхность лег­ ких, участвующая в газообмене, значи­ тельно снижена. В основном, это связано с коллапсом существенной ча­ сти альвеол, которые остаются спавши­ мися не только на выдохе, но и на вдо­ хе. Согласно концепции «Открытых Легких», в таких случаях основной це­ лью ИВЛ является «открытие» альвеол и поддержание их и мелких дыхатель­ ных путей в раскрытом состоянии в те­ чение всего дыхательного цикла. Реаль­ но этого можно достигнуть с помощью режима PCV и/или его аналогов (PSIMV, BIPAP).

Для первоначального раскрытия спавшихся участков легких необходимо достигнуть определенного уровня дав­ ления «открытия альвеол». Это тот уро­ вень контролируемого инспираторного давления, при котором преодолевается сила поверхностного натяжения колла­ бированных альвеол, они начинают вен­ тилироваться и принимать участие в газообмене. Безусловно, речь идет о тех альвеолах, которые потенциально еще

Глава 4. Принудительная вентиляция легких 87

способны расправляться. Для предуп­ реждения последующего спадения аль­ веол на выдохе требуется адекватный уровень PEEP.

На рисунке 4.23 видно, что инспираторный объем начинает поступать в рестриктивные зоны легких только пос­ ле достижения достаточного давления «открытия альвеол» Ро. Как только аль­ веолы оказываются раскрытыми, для их последующей вентиляции уже тре­ буется меньшее инспираторное давление (Pv), что необходимо иметь в виду при настройке Pcontrol. Таким образом, Pv - это минимальное инспираторное давление, позволяющее вентилировать коллабированные отделы легких после их открытия (при помощи Ро). Конт­ ролируемое давление не должно быть ниже уровня Pv, иначе пораженные (но потенциально вентилируемые) альвео­ лы не будут раздуваться на вдохе. В связи с этим приходится довольного часто менять контролируемое давление, чтобы в конце концов добиться его оп­ тимального и наименее возможного уровня для достаточной вентиляции.

На практике при переводе ИВЛ в режим PCV соотношение вдоха к вы­ доху устанавливают 1: 1,5 - 1: 1 (Ti = 1,5-2,5 с) и затем начинают под­ бирать необходимое инспираторное давление и PEEP. Концентрацию кис­ лорода Fi02 устанавливают на уровне

50-55 % (при необходимости, с целью коррекции имеющейся тяжелой гипок­ сии, вначале ее уровень может быть выше - до 60-70 %).

Если больной до этого вентилиро­ вался с контролем по объему, началь­ ный уровень Pcontrol в режиме PCV ус­ танавливают равным предыдущему давлению инспираторной паузы (Pplat) (рис. 4.24). Если же ИВЛ сразу же на­ чинается с PCV, то начальное Pcontrol устанавливают на уровне 18-20 см вод.ст., начальные значения PEEP - 6-7 см вод.ст.

Как уже отмечалось, PCV показан больным с ОДН легочно-паренхиматоз- ного генеза (двухсторонняя полисегмен­ тарная пневмония, ОРДС, ателектазы и т. д.), когда имеется значительное сни­ жение податливости легочной ткани (Cst < 35 мл/см вод.ст.) и нарушение оксигенации.

После начала вентиляции в режиме PCV с вышеуказанными заданными параметрами Pcontrol, PEEP и I: E от­ мечают начальные значения Vle , пульсоксиметрии (Sa02 ), АД, ЧСС и газов крови (прежде всего Ра02 и РаС02 ). Если патология легких еще не привела к серьезному расстройству газообмена, эти показатели могут находиться в пре­ делах нормы (Sa02 > 94 %, Pa02 > 65 мм рт.ст.). В такой ситуации было бы ошибкой возвращаться к режиму с кон-

error: Content is protected !!