Теория химического строения органических соединений. Классификация органических веществ

Классификация органических веществ

В зависимости от типа строения углеродной цепи органические вещества подразделяют на:

  • ациклические и циклические.
  • предельные (насыщенные) и непредельные (ненасыщенные).
  • карбоциклические и гетероциклические.
  • алициклические и ароматические.

Ациклические соединения — органические соединения, в молекулах которых отсутствуют циклы и все атомы углерода соединены друг с другом в прямые или разветвленные открытые цепи.

В свою очередь среди ациклических соединений выделяют предельные (или насыщенные), которые содержат в углеродном скелете только одинарные углерод-углеродные (С-С) связи и непредельные (или ненасыщенные), содержащие кратные — двойные (С=С) или тройные (С≡С) связи.

Циклические соединения - химические соединения, в которых присутствует три или более связанных атомов, образующие кольцо.

В зависимости от того, какими атомами образованы циклы различают карбоциклические соединения и гетероциклические соединения.

Карбоциклические соединения (или изоциклические) содержат в своих циклах только атомы углерода. Эти соединения в свою очередь делятся на алициклические соединения (алифатические циклические) и ароматические соединения.

Гетероциклические соединения содержат в составе углеводородного цикла один или несколько гетероатомов, чаще всего которыми являются атомы кислорода, азота или серы.

Простейшим классом органических веществ являются углеводороды – соединения, которые образованы исключительно атомами углерода и водорода, т.е. формально не имеют функциональных групп.

Поскольку углеводороды, не имеют функциональных групп для них возможна только классификация по типу углеродного скелета. Углеводороды в зависимости от типа их углеродного скелета делят на подклассы:

1) Предельные ациклические углеводороды носят название алканы. Общая молекулярная формула алканов записывается как C n H 2n+2 , где n — количество атомов углерода в молекуле углеводорода. Данные соединения не имеют межклассовых изомеров.

2) Ациклические непредельные углеводороды делятся на:

а) алкены — в них присутствует только одна кратная, а именно одна двойная C=C связь, общая формула алкенов C n H 2n ,

б) алкины – в молекулах алкинов также присутствует только одна кратная, а именно тройная С≡С связь. Общая молекулярная формула алкинов C n H 2n-2

в) алкадиены – в молекулах алкадиенов присутствуют две двойные С=С связи. Общая молекулярная формула алкадиенов C n H 2n-2

3) Циклические предельные углеводороды называются циклоалканы и имеют общую молекулярную формулу C n H 2n .

Остальные органические вещества в органической химии рассматривают как производные углеводородов, образуемые при введении в молекулы углеводородов так называемых функциональных групп, которые содержат другие химические элементы.

Таким образом, формулу соединений с одной функциональной группой можно записать как R-X, где R – углеводородный радикал, а Х – функциональная группа. Углеводородным радикалом называют фрагмент молекулы какого-либо углеводорода без одного или нескольких атомов водорода.

По наличию тех или иных функциональных групп соединения подразделяют на классы. Основные функциональные группы и классы соединений, в состав которых они входят, представлены в таблице:

Таким образом, различные комбинации типов углеродных скелетов с разными функциональными группами дают большое разнообразие вариантов органических соединений.

Галогенпроизводные углеводородов

Галогенпроизводными углеводородов называют соединения, получаемые при замене одного или нескольких атомов водорода в молекуле какого-либо исходного углеводорода на один или несколько атомов какого-либо галогена соответственно.

Пусть некоторый углеводород имеет формулу C n H m , тогда при замене в его молекуле X атомов водорода на X атомов галогена формула галогенпроизводного будет иметь вид C n H m- X Hal X . Таким образом, монохлорпроизводные алканов имеют формулу C n H 2n+1 Cl , дихлорпроизводные C n H 2n Cl 2 и т.д.

Спирты и фенолы

Спирты – производные углеводородов, один или несколько атомов водорода в которых заменены на гидроксильную группу -OH. Спирты с одной гидроксильной группой называют одноатомными, с двумя – двухатомными , с тремя трехатомными и т.д. Например:

Спирты с двумя и более гидроксильными группами называют также многоатомными спиртами. Общая формула предельных одноатомных спиртов C n H 2n+1 OH или C n H 2n+2 O. Общая формула предельных многоатомных спиртов C n H 2n+2 O x , где x – атомность спирта.

Спирты могут быть и ароматическими. Например:

бензиловый спирт

Общая формула таких одноатомных ароматических спиртов C n H 2n-6 O.

Однако, следует четко понимать, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один или несколько атомов водорода при ароматическом ядре не относятся к спиртам. Их относят к классу фенолы . Например, это данное соединение является спиртом:

А это представляет собой фенол:

Причина, по которой фенолы не относят к спиртам, кроется в их специфических химических свойствах, сильно отличающих их от спиртов. Как легко заметить, однотомные фенолы изомерны одноатомным ароматическим спиртам, т.е. тоже имеют общую молекулярную формулу C n H 2n-6 O.

Амины

Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.

Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH 2 , называют первичными аминами .

Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами . Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:

Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами . В общем виде формулу третичного амина можно записать как:

При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.

Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид C n H 2 n +3 N.

Ароматические амины с только одним непредельным заместителем имеют общую формулу C n H 2 n -5 N

Альдегиды и кетоны

Альдегидами называют производные углеводородов, у которых при первичном атоме углерода два атома водорода заменены на один атом кислорода, т.е. производные углеводородов в структуре которых имеется альдегидная группа –СН=О. Общую формулу альдегидов можно записать как R-CH=O. Например:

Кетонами называют производные углеводородов, у которых при вторичном атоме углерода два атома водорода заменены на атом кислорода, т.е. соединения, в структуре которых есть карбонильная группа –C(O)-.

Общая формула кетонов может быть записана как R-C(O)-R’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными.

Например:

пропанон бутанон

Как можно заметить, альдегиды и кетоны весьма схожи по строению, однако их все-таки их различают как классы, поскольку они имеют существенные различия в химических свойствах.

Общая молекулярная формула предельных кетонов и альдегидов одинакова и имеет вид C n H 2 n O

Карбоновые кислоты

Карбоновыми кислотами называют производные углеводородов, в которых есть карбоксильная группа –COOH.

Если кислота имеет две карбоксильные группы, такую кислоту называют дикарбоновой кислотой .

Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую молекулярную формулу вида C n H 2 n O 2

Ароматические монокарбоновые кислоты имеют общую формулу C n H 2 n -8 O 2

Простые эфиры

Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода, т.е. имеют формулу вида R-O-R’. При этом радикалы R и R’ могут быть как одинаковыми, так и разными.

Например:

Общая формула предельных простых эфиров такая же, как у предельных одноатомных спиртов, т.е. C n H 2 n +1 OH или C n H 2 n +2 О.

Сложные эфиры

Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе замещен на углеводородный радикал R. Фомулу сложных эфиров в общем виде можно записать как:

Например:

Нитросоединения

Нитросоединения – производные углеводородов, у которых один или несколько атомов водорода заменены на нитрогруппу –NO 2 .

Предельные нитросоединения с одной нитрогруппой имеют общую молекулярную формулу C n H 2 n +1 NO 2

Аминокислоты

Соединения, имеющие в своей структуре одновременно две функциональные группы – амино NH 2 и карбоксильную – COOH. Например,

NH 2 -CH 2 -COOH

Предельные аминокислоты с одной карбоксильной и одной аминогруппой изомерны соответствующим предельными нитросоединениям т.е. как и они имеют общую молекулярную формулу C n H 2 n +1 NO 2

В заданиях ЕГЭ на классификацию органических веществ важно уметь записывать общие молекулярные формулы гомологических рядов разных типов соединений, зная особенности строения углеродного скелета и наличия тех или иных функциональных групп. Для того, чтобы научиться определять общие молекулярные формулы органических соединений разных классов, будет полезен материал по этой теме .

Номенклатура органических соединений

Особенности строения и химических свойств соединений находят отражение в номенклатуре. Основными типами номенклатуры считаются систематическая и тривиальная .

Систематическая номенклатура фактически прописывает алгоритмы, в соответствии с которыми то или иное название составляется в строгом соответствии с особенностями строения молекулы органического вещества или, грубо говоря, его структурной формулы.

Рассмотрим правила составления названий органических соединений по систематической номенклатуре.

При составлении названий органических веществ по систематической номенклатуре наиболее важным является правильно определить число атомов углерода в наиболее длинной углеродной цепи или посчитать число атомов углерода в цикле.

В зависимости от количества атомов углерода в основной углеродной цепи, соединения, будут иметь в своем названии различный корень:

Количество атомов С в главной углеродной цепи

Корень названия

проп-

пент-

гекс-

гепт-

дек(ц)-

Вторая важная составляющая, учитываемая при составлении названий, — наличие/отсутствие кратных связей или функциональной группы, которые перечислены в таблице выше.

Попробуем дать название веществу, имеющему структурную формулу:

1. В главной (и единственной) углеродной цепи данной молекулы содержится 4 атома углерода, поэтому название будет содержать корень бут-;

2. В углеродном скелете отсутствуют кратные связи, следовательно, суффикс, который нужно использовать после корня слова будет -ан, как и у соответствующих предельных ациклических углеводородов (алканов);

3. Наличие функциональной группы –OH при условии, что нет более старших функциональных групп добавляет после корня и суффикса из п.2. еще один суффикс – «ол»;

4. В молекулах содержащих кратные связи или функциональные группы, нумерация атомов углерода главной цепи начинается с той стороны молекулы, к которой они ближе.

Рассмотрим еще один пример:

Наличие в главной углеродной цепи четырех атомов углерода говорит нам о том, что основой названия является корень «бут-», а отсутствие кратных связей говорит о суффиксе «-ан», который будет следовать сразу после корня. Старшая группа в данном соединении – карбоксильная, она и определяет принадлежность этого вещества к классу карбоновых кислот. Следовательно, окончание у названия будет «-овая кислота». При втором атоме углерода находится аминогруппа NH 2 — , поэтому данное вещество относится к аминокислотам. Также при третьем атоме углерода мы видим углеводородный радикал метил (CH 3 — ). Поэтому по систематической номенклатуре данное соединение называется 2-амино-3-метилбутановая кислота.

Тривиальная номенклатура, в отличие от систематической, как правило, не имеет связи со строением вещества, а обусловлена по большей части его происхождением, а также химическими или физическими свойствами.

Формула Название по систематической номенклатуре Тривиальное название
Углеводороды
CH 4 метан болотный газ
CH 2 =CH 2 этен этилен
CH 2 =CH-CH 3 пропен пропилен
CH≡CH этин ацетилен
CH 2 =CH-CH= CH 2 бутадиен-1,3 дивинил
2-метилбутадиен-1,3 изопрен
метилбензол толуол
1,2-диметилбензол орто -ксилол

(о -ксилол)

1,3-диметилбензол мета -ксилол

(м -ксилол)

1,4-диметилбензол пара -ксилол

(п -ксилол)

винилбензол стирол
Спирты
CH 3 OH метанол метиловый спирт,

древесный спирт

CH 3 CH 2 OH этанол этиловый спирт
CH 2 =CH-CH 2 -OH пропен-2-ол-1 аллиловый спирт
этандиол-1,2 этиленгликоль
пропантриол-1,2,3 глицерин
фенол

(гидроксибензол)

карболовая кислота
1-гидрокси-2-метилбензол орто -крезол

-крезол)

1-гидрокси-3-метилбензол мета -крезол

-крезол)

1-гидрокси-4-метилбензол пара -крезол

(п -крезол)

фенилметанол бензиловый спирт
Альдегиды и кетоны
метаналь формальдегид
этаналь уксусный альдегид, ацетальдегид
пропеналь акриловый альдегид, акролеин
бензальдегид бензойный альдегид
пропанон ацетон
Карбоновые кислоты
(HCOOH) метановая кислота муравьиная кислота

(соли и сложные эфиры — формиаты)

(CH 3 COOH) этановая кислота уксусная кислота

(соли и сложные эфиры — ацетаты)

(CH 3 CH 2 COOH) пропановая кислота пропионовая кислота

(соли и сложные эфиры — пропионаты)

C 15 H 31 COOH гексадекановая кислота пальмитиновая кислота

(соли и сложные эфиры — пальмитаты)

C 17 H 35 COOH октадекановая кислота стеариновая кислота

(соли и сложные эфиры — стеараты)

пропеновая кислота акриловая кислота

(соли и сложные эфиры — акрилаты)

HOOC-COOH этандиовая кислота щавелевая кислота

(соли и сложные эфиры — оксалаты)

1,4-бензолдикарбоновая кислота терефталевая кислота
Сложные эфиры
HCOOCH 3 метилметаноат метилформиат,

метиловый эфир мурвьиной кислоты

CH 3 COOCH 3 метилэтаноат метилацетат,

метиловый эфир уксусной кислоты

CH 3 COOC 2 H 5 этилэтаноат этилацетат,

этиловый эфир уксусной кислоты

CH 2 =CH-COOCH 3 метилпропеноат метилакрилат,

метиловый эфир акриловый кислоты

Азотсодержащие соединения
аминобензол,

фениламин

анилин
NH 2 -CH 2 -COOH аминоэтановая кислота глицин,

аминоуксусная кислота

2-аминопропионовая кислота аланин

Органических соединений много, но среди них имеются соединения с общими и сходными свойствами. Поэтому все они по общим признакам классифицированы, объединены в отдельные классы и группы. В основе классификации лежат углеводороды соединения, которые состоят только из атомов углерода и водорода. Остальные органические вещества относятся к «Другим классам органических соединений».

Углеводороды делятся на два больших класса: ациклические и циклические соединения.

Ациклические соединения (жирные или алифатические) соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды, у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Ненасыщенные (непредельные) углеводороды делятся на три группы: алкены, алкины и алкадиены.

Алкены (олефины, этиленовые углеводороды) ациклические непредельные углеводороды, которые содержат одну двойную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ен». Например, пропен, бутен, изобутилен или метилпропен.

Алкины (ацетиленовые углеводороды) углеводороды, которые содержат тройную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n-2 . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ин». Например, этин (ацителен), бутин, пептин.

Алкадиены органические соединения, которые содержат две двойные связи углерод-углерод. В зависимости от того, как располагаются двойные связи относительно друг друга диены делятся на три группы: сопряженные диены, аллены и диены с изолированными двойными связями. Обычно к диенам относят ациклические и циклические 1,3-диены, образующие с общими формулами C n H 2n-2 и C n H 2n-4 . Ациклические диены являются структурными изомерами алкинов.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические насыщенные (циклопарафины) и ароматические;
  2. гетероциклические соединения соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

В молекулах как ациклических, так и циклических соединений атомы водорода можно замещать на другие атомы или группы атомов, таким образом, с помощью введения функциональных групп можно получать производные углеводородов. Это свойство ещё больше расширяет возможности получения различных органических соединений и объясняет их многообразие.

Наличие тех или иных групп в молекулах органических соединений обуславливает общность их свойств. На этом основана классификация производных углеводородов.

К «Другим классам органических соединений» относятся следующие:

Спирты получаются замещением одного или нескольких атомов водорода гидроксильными группами OH. Это соединение с общей формулой R (OH) х, где х число гидроксильных групп.

Альдегиды содержат альдегидную группу (С = О), которая всегда находится в конце углеводородной цепи.

Карбоновые кислоты содержат в своём составе одну или несколько карбоксильных групп COOH.

Сложные эфиры производные кислородосодержащих кислот, которые формально являются продуктами замещения атомов водорода гидроокислов OH кислотной функции на углеводородный остаток; рассматриваются также как ацилпроизводные спиртов.

Жиры (триглицериды) природные органические соединения, полные сложные эфиры глицерина и односоставных жирных кислот; входят в класс липидов. Природные жиры содержат в своём составе три кислотных радикала с неразветвлённой структурой и, обычно, чётное число атомов углерода.

Углеводы органические вещества, которые содержат содержащими неразветвленную цепь из нескольких атомов углерода, карбоксильную группу и несколько гидроксильных групп.

Амины содержат в своём составе аминогруппу NH 2

Аминокислоты органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Белки высокомолекулярные органические вещества, которые состоят состоящие из альфа – аминокислот, соединённых в цепочку пептидной связью.

Нуклеиновые кислоты высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов.

Остались вопросы? Хотите знать больше о классификации органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Классификация органических веществ еще более сложна. Это обусловлено целым рядом причин: чрезвычайной многочисленностью органических соединений, сложностью и разнообразием их строения, самой историей изучения соединений углерода.
Действительно, до середины XIX в. органическая химия, по образному выражению Ф.Велера*, представлялась «дремучим лесом, полным удивительных вещей, безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть». Только с появлением в 1861 г. теории химического строения органических соединений «дремучий лес»
органической химии стал преобразовываться в залитый солнечным светом регулярный парк со строгой сеткой аллей и дорожек. Авторами этой теории явилось выдающееся интернациональное трио ученых-химиков: наш соотечественник А.М.Бутлеров**, немец Ф.А.Кекуле и англичанин А.Купер.

Рис. 5. Фридрих Велер
(1800–1882)


Рис. 6. Александр
Михайлович Бутлеров
(1828–1886)

Сущность созданной ими теории химического строения можно сформулировать в виде трех положений.
1. Атомы в молекулах соединены в определенном порядке согласно их валентности, причем углерод в органических соединениях четырехвалентен.
2. Свойства веществ определяются не только качественным и количественным элементным составом, но и порядком связи атомов в молекулах, т.е. химическим строением.
3. Атомы в молекулах оказывают друг на друга взаимное влияние, что отражается на свойствах веществ.
* Немецкий химик. Проводил исследования в области неорганической и органической химии. Установил существование явления изомерии, впервые осуществил синтез органического вещества (мочевины) из неорганического. Получил некоторые металлы (алюминий, бериллий и др.).
** Выдающийся русский химик, автор теории химического
строения органических веществ. На основании по
нятия о строении объяснил явление изомерии, предсказал существование изомеров ряда веществ и впервые их синтезировал. Первым осуществил синтез сахаристого вещества. Создатель школы русских хим иков, в которую входили В.В.Марковников, А.М.Зайцев, Е.Е.Вагнер, А.Е.Фаворский и др.

Сегодня кажется невероятным, что до середины XIX в., в период великих открытий в естествознании, ученые плохо представляли себе внутреннее устройство вещества. Именно Бутлеров ввел термин «химическое строение», подразумевая под ним систему химических связей между атомами в молекуле, их взаимное расположение в пространстве. Благодаря такому пониманию строения молекулы оказалось возможным объяснить явление изомерии, предсказать существование неизвестных изомеров, соотнести свойства веществ с их химическим строением. В качестве иллюстрации явления изомерии приведем формулы и свойства двух веществ – этилового спирта и диметилового эфира, имеющих одинаковый элементный состав С2Н6О, но различное химическое строение (табл. 2).
Таблица 2


Иллюстрация зависимости свойств вещества от его строения


Явление изомерии, очень широко распространенное в органической химии, является одной из причин многообразия органических веществ. Другая причина многообразия органических веществ заключается в уникальной способности атома углерода образовывать друг с другом химические связи, в результате чего получаются углеродные цепи
различной длины и строения: неразветвленные, разветвленные, замкнутые. Например, четыре атома углерода могут образовать такие цепи:


Если учесть, что между двумя атомами углерода могут существовать не только простые (одинарные) связи С–С, но также двойные С=С и тройные С≡С, то число вариантов углеродных цепей и, следовательно, различных органических веществ значительно увеличивается.
На теории химического строения Бутлерова основана и классификация органических веществ. В зависимости от того, атомы каких химических элементов входят в состав молекулы, все органичебольших групп: углеводороды, кислородсодержащие, азотсодержащие соединения.
Углеводородами называются органические соединения, состоящие только из атомов углерода и водорода.
По строению углеродной цепи, наличию или отсутствию в ней кратных связей все углеводороды делятся на несколько классов. Эти классы представлены на схеме 2.
Если углеводород не содержит кратных связей и цепь углеродных атомов не замкнута, он относится, как вы знаете, к классу предельных углеводородов, или алканов. Корень этого слова имеет арабское происхождение, а суффикс -ан присутствует в названиях всех углеводородов этого класса.
Схема 2


Классификация углеводородов


Наличие в молекуле углеводорода одной двойной связи позволяет отнести его к классу алкенов, причем его отношение к этой группе веществ подчеркивается
суффиксом -ен в названии. Простейшим алкеном является этилен, имеющий формулу CН2=СН2. Двойных связей С=С в молекуле может быть две, в этом случае вещество относится к классу алкадиенов.
Попытайтесь сами пояснить значение суффиксов -диен. Например, бутадиен-1,3 имеет структурную формулу: CН2=СН–CН=СН2.
Углеводороды с тройной углерод-углеродной связью в молекуле называют алкинами. На принадлежность к этому классу веществ указывает суффикс -ин. Родоначальником класса алкинов выступает ацетилен (этин), молекулярная формула которого С2Н2, а структурная – НС≡СН. Из соединений с замкнутой цепочкой углеродных
атомов важнейшими являются арены – особый класс углеводородов, название первого представителя которых вы наверняка слышали – это бензол С6Н6, структурная формула которого также известна каждому культурному человеку:


Как вы уже поняли, помимо углерода и водорода, в состав органических веществ могут входить атомы других элементов, в первую очередь кислорода и азота. Чаще всего атомы этих элементов в различных сочетаниях образуют группы, которые называют функциональными.
Функциональной группой называют группу атомов, определяющую наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.
Основные классы органических соединений, содержащих функциональные группы, представлены на схеме 3.
Схема 3
Основные классы органических веществ, содержащих функциональные группы


Функциональная группа –ОН называется гидроксильной и определяет принадлежность к одному из важнейших классов органических веществ – спиртам.
Названия спиртов образуются с помощью суффикса -ол. Например, наиболее известный представитель спиртов – это этиловый спирт, или этанол, С2Н5ОН.
Атом кислорода может быть связан с атомом углерода двойной химической связью. Группа >C=O называется карбонильной. Карбонильная группа входит в состав нескольких
функциональных групп, в том числе альдегидной и карбоксильной. Органические вещества, содержащие эти функциональные группы, называются, соответственно, альдегидами и карбоновыми кислотами. Наиболее известные представители альдегидов – это формальдегид НСОН и уксусный альдегид СН3СОН. С уксусной кислотой СН3СООН, раствор которой называется столовым уксусом, наверняка знаком каждый. Отличительным структурным признаком азотсодержащих органических соединений, и, в первую очередь, аминов и аминокислот является присутствие в их молекулах аминогруппы –NH2.
Приведенная классификация органических веществ также весьма относительна. Подобно тому, как в одной молекуле (например, алкадиенов) может содержаться две кратные связи, вещество может быть обладателем двух и даже более функциональных групп. Так, структурными единицами главных носителей жизни на земле – белковых молекул – являются аминокислоты. В молекулах этих веществ обязательно присутствуют как минимум две функциональные группы – карбоксильная иаминогруппа. Простейшая аминокислота называется глицин и имеет формулу:


Подобно амфотерным гидроксидам, аминокислоты сочетают в себе свойства кислот (за счет карбоксильной группы) и оснований (благодаря наличию в молекуле аминогруппы).
Для организации жизни на Земле амфотерные свойства аминокислот имеют особое значение – за счет взаимодействия аминогрупп и карбоксильных групп аминокис-
лоты соединяются в полимерные цепочки белков.
? 1. Назовите основные положения теории химического строения А.М.Бутлерова. Какую роль эта теория сыграла в развитии органической химии?
2. Какие классы углеводородов вам известны? По какому признаку проведена эта классификация?
3. Что называется функциональной группой органического соединения? Какие функциональные группы вы можете назвать? Какие классы органических соединений содержат названные функциональные группы? Запишите общие формулы классов соединений и формулы их представителей.
4. Дайте определение изомерии, запишите формулы возможных изомеров для соединений состава С4H10O. С помощью различных источников информации дайте названия каждому из них и приготовьте сообщение об одном из соединений.
5. Отнесите вещества, формулы которых: С6Н6, С2Н6, С2Н4, НСООН, СН3ОН, С6Н12О6, к соответствующим классам органических соединений. С помощью различных источников информации дайте названия каждому из них и приготовьте сообщение об одном из соединений.
6. Структурная формула глюкозы:К какому классу органических соединений вы отнесете это вещество? Почему его называют соединением с двойственной функцией?
7. Сравните органические и неорганические амфотерные соединения.
8. Почему аминокислоты относят к соединениям с двойственной функцией? Какую роль в организации жизни на Земле играет эта особенность строения аминокислот?
9. Приготовьте сообщение на тему «Аминокислоты – "кирпичики” жизни», используя возможности Интернета.
10. Приведите примеры относительности деления органических соединений на определенные классы. Проведите параллели подобной относительности для неорганических соединений.

В основу классификации органических соединений положена теория химического строения А. М. Бутлерова. Систематическая классификация - фундамент научной номенклатуры. Благодаря ей стало возможным дать название каждому известному ранее и новому органическому веществу, исходя из имеющейся

Классы органических соединений

Классифицируются по двум основным признакам: локализации и количеству функциональных групп в молекуле и структуре карбонового скелета.

Карбоновый скелет представляет собой часть молекулы, которая достаточно стабильна в различных химических реакциях. Органические соединения разделяются на большие группы, при этом учитывают органического вещества.

Ациклические соединения (биосоединения жирного ряда или алифатические соединения). Указанные органические соединения в структуре молекул содержат прямую или разветвленную карбоновую цепь.

Карбоциклические соединения - это вещества с замкнутыми карбоновыми цепями - циклами. Указанные биосоединения разделяют на группы: ароматические и алициклические.

Гетероциклические природные органические соединения - вещества, в структуре молекул которых есть циклы, образованные атомами карбона и атомами других химических элементов (Оксигена, Нитрогена, Сульфура) гетероатомами.

Соединения каждого ряда (группы) делятся на классы различных органических соединений. Принадлежность органического вещества к тому или иному классу определяют наличием в его молекуле определенных функциональных групп. Например, классы углеводородов (единственный класс органических веществ у которых отсутствуют функциональные группы), аминов, альдегидов, фенолов, карбоновых кислот, кетонов, спиртов и т.д.

Для определения принадлежности органического соединения к ряду и классу выделяют карбоновый скелет или карбоновую цепь (ациклические соединения), цикл (карбоциклических соединения) или ядро В дальнейшем определяют наличие в молекуле органического вещества других атомных (функциональных) групп, например, гидроксила - ОН, карбоксила - СООН, аминогруппы, иминогруппы, сульфгидридной группы - SH и т.д. Функциональная группа или группы определяют принадлежность биосоединения к определенному классу, его главные физические и химические свойства. Следует сказать, что каждая функциональная группа не только определяет эти свойства, но и влияет на другие атомы и атомные группы, одновременно испытывая и их влияние.

При замещении в молекулах ациклических и циклических углеводородов или гетероциклических соединений атома Гидрогена на различные функциональные группы получают органические соединения, которые относятся к определенным классам. Приводим отдельные функциональные группы, определяющие принадлежность органического соединения к определенному классу: углеводороды R-H, галогенопроизводные углеводородов - R-Hal, альдегиды - R-COH, кетоны - R1-CO-R2, спирты и фенолы R-OH, карбоновые кислоты - R-COOH, - R1-O-R2, галогеноангидриды карбоновых кислот R-COHal, R-COOR, нитросоединения - R-NO2, сульфокислоты -R-SO3H, металлоорганические соединения - R-Me, меркаптаны R-SH.

Органические соединения, имеющие в структуре своих молекул одну функциональную группу, называют органическими соединениями с простыми функциями, две и более - соединениями со смешанными функциями. Примерами органических соединений с простыми функциями могут быть углеводороды, спирты, кетоны, альдегиды, амины, карбоновые кислоты, нитросоединения и т.д. Примерами соединений со смешанными функциями могут быть гидроксикислоты, кетокислоты и т.п.

Особое место занимают сложные биоорганические соединения: протеины, протеиды, липиды, нуклеиновые кислоты, углеводы, в молекулах которых большое количество различных функциональных групп.

Органические вещества - это такие соединения, которые имеют в своем составе атом Карбона. Еще на ранних этапах развития химии все вещества разделяли на две группы: минеральные и органические. В те времена считали, что для того, чтобы синтезировать органическое веществонеобходимо иметь небывалую «жизненную силу», которая присущая только живым биосистемам. Поэтому осуществить синтез органических веществ из минеральных невозможен. И лишь в начале 19 века Ф. Веллер опровергнул существующее мнение и синтезировал карбамид из цианата аммония, то есть он получил органическое вещество из минерального. После чего рядом ученных были синтезированы хлороформ, анилин, ацетатная кислота и множество других химических соединений.

Органические вещества лежат в основе существования живой материи, а также являются основными продуктами питания для человека и животных. Большинство органических соединений являются сырьем для разных отраслей промышленности - пищевой, химической, легкой, фармацевтической и т.д.

На сегодня известно более 30 млн. разнообразных органических соединений. Поэтому органические веществапредставляют наиболее обширный класс Разнообразие органических соединений связано с уникальными свойствами и структурой Карбона. Соседние атомы Карбона связываются между собой одинарными или кратными (двойной, тройной) связями.

Характеризируются наличием ковалентных связей С-С, а также полярных ковалентных связей С-N, C-O, C-Hal, C-металл и т.д. Реакции, проходящие с участием органических веществ, имеют некоторые особенности по сравнению с минеральными. В реакциях неорганических соединений, как правило, участвуют ионы. Зачастую такие реакции очень быстро проходят, иногда мгновенно при оптимальной температуре. В реакциях с обычно участвуют молекулы. Следует сказать, что в этом случае одни ковалентные связи разрываются, а другие при этом образуются. Как правило, данные реакции протекают значительно медленнее, а для их ускорения необходимо повысить температуру или использовать катализатор (кислота или основание).

Как образуются органические вещества в природе? Большая часть органических соединений в природе синтезируется в из диоксида карбона и воды в хлорофиллах зеленых растений.

Классы органических веществ.

Основана на теории О. Бутлерова. Систематическая классификация является фундаментом научной номенклатуры, что дает возможность назвать органическое вещество, исходя из существующей структурной формулы. Классификация основана на двух основных признаках - структуре карбонового скелета, количеству и размещению функциональных групп в молекуле.

Карбоновый скелет - это стабильная в разных часть молекулы органического вещества. В зависимости от его строения все органические вещества разделяются на группы.

К ациклическим соединениям относят вещества с прямой или разветвленной углеродной цепью. К карбоциклическим соединениям относят вещества с циклами, их разделяют на две подгруппы - алициклические и ароматические. Гетероциклические соединения - вещества, в основе молекул которых циклы, образованы атомами Карбона и атомами других химических элементов (Оксиген, Нитроген, Сульфур), гетероатомами.

Также органические вещества классифицируют по наличию функциональных групп, которые входят в состав молекул. Например, классы углеводородов (исключение - в их молекулах нет функциональных групп), фенолов, спиртов, кетонов, альдегидов, аминов, эфиров, карбоновых кислот, и т.д. Следует помнить, что каждая функциональная группа (СООН, OH, NH2, SH, NH, NO) обуславливает физико-химические свойства данного соединения.

error: Content is protected !!