Нервная и гуморальная регуляция дыхания.

Регуляция дыхания

Дыхательный центр — это совокупность нейронов, обеспечивающих деятельность аппарата дыхания и его приспособление к изменяющимся условиям внешней и внутренней среды. Эти нейроны находятся в спинном мозге, продолговатом мозге, варолиевом мосту и коре большого мозга . Основными являются нейроны, расположенные в продолговатом мозге . Именно они задают ритм и глубину дыхания и посылают импульсы к двигательным нейронам спинного мозга, которые контролируют сокращение дыхательных мышц. Дыхательный центр является двусторонним и состоит из двух функциональных отделов: центра вдоха и центра выдоха. Нейроны моста и коры полушарий большого мозга контролируют деятельность нейронов вдоха и выдоха. Функции дыхательного центра исследовал в 1885 году Н. А. Миславский. При перерезке мозга между продолговатым и спинным мозгом наблюдается полное прекращение дыхания, между мостом и продолговатым мозгом дыхание сохраняется. Повреждение нейронов вдоха и выдоха продолговатого мозга прекращает дыхание.


Дыхательный центр очень чувствителен к избытку углекислого газа, который является его главным естественным возбудителем. При этом избыток СО 2 действует на дыхательные нейроны как непосредственно (через кровь и спинномозговую жидкость), так и рефлекторно (через хеморецепторы сосудов и продолговатого мозга).

Дыхательный центр находится постоянно в состоянии активности, потому что в нём автоматически возникают импульсы возбуждения.

Рефлекторная (нервная) регуляция дыхания

Примерно через каждые 4 секунды из дыхательного центра продолговатого мозга к мышцам вдоха идут нервные импульсы, заставляющие поднимать грудную клетку и опускать диафрагму. Благодаря этому происходит вдох. Выдох же в состоянии покоя самопроизволен: грудная клетка опускается под действием силы тяжести. Лишь при глубоком дыхании включается центр выдоха, который заставляет работать мышцы, осуществляющие глубокий выдох.

На работу дыхательных центров оказывают влияние и высшие дыхательные центры, расположенные в коре больших полушарий. Благодаря их влиянию дыхание изменяется при разговоре и пении; возможно также сознательно изменять ритм дыхания во время физических упражнений.

В регуляции дыхания участвуют и такие защитные рефлексы, как чихание и кашель . Раздражение рецепторов слизистой носа пылью, неприятно пахнущим веществом вызывает поток нервных импульсов в продолговатый мозг, а оттуда к мышцам. Это приводит к остановке дыхания и смыканию голосовой щели. Затем начинается интенсивный (форсированный) выдох. Давление воздуха нарастает, и наступает момент, когда он с силой прорывается через сомкнутые голосовые связки. Струя воздуха направляется в нос, человек чихает, воздух прорывается наружу, а вместе с ним удаляется слизь, мешающая дыханию.

То же самое происходит и при кашле, только поток воздуха при выдохе выходит через ротовое отверстие. Причиной кашля может стать раздражение бронхов, трахеи, гортани или легочной оболочки - плевры.

Интенсивность дыхания меняется не только при физической нагрузке, но и в зависимости от эмоционального состояния человека. При волнении дыхание становится прерывистым, человеку трудно говорить, при гневе оно шумное и частое. Приятные эмоции могут сопровождаться снижением интенсивности дыхания ("Он слушал затаив дыхание"). При смехе происходит прерывистое открывание голосовой щели на выдохе, при плаче к судорожным движениям голосовых связок на выдохе присоединяются аналогичные движения на вдохе (всхлипывания).

При входе в холодную воду дыхание останавливается на вдохе. Биологический смысл этого рефлекса в том, что при этом сокращается испарение воды с поверхности легких, а следовательно, и потеря тепла, связанная с парообразованием. Дыхание прекращается лишь на несколько секунд, но за это время организм успевает приспособиться к новым температурным условиям.

Гуморальная регуляция дыхания

При мышечной работе усиливаются процессы окисления, а следовательно, выделяется больше углекислого газа. Кровь с избытком углекислого газа доходит до дыхательного центра и его раздражает, возбудимость повышается: человек начинает дышать глубже. Избыток углекислого газа удаляется, а недостаток кислорода восполняется, т.е. происходит гуморальная регуляция : углекислый газ непосредственно влияет на дыхательный центр через кровь.

Углекислый газ действует на дыхательный центр и рефлекторно, раздражая рецепторы стенок артерий, по которым кровь направляется в мозг.

Если концентрация углекислого газа в крови понижается, работа дыхательного центра также снижается, и наступает задержка дыхания на небольшой срок. Когда содержание CO 2 в крови восстановится до нормы, самопроизвольно восстановится и дыхание.

Благодаря регуляции дыхания концентрация углекислого газа и кислорода в крови поддерживается на определенном уровне в любых условиях.

Особенно важно постоянство соотношения этих газов для головного мозга: слишком большое содержание кислорода в крови вызывает спазмы сосудов мозга, что приводит его к кислородному голоданию. Этим, кстати, объясняется то, что горожане, выехавшие в лес, на природу, в первое время могут испытывать головокружение, головную боль и другие неприятные состояния. По мере привыкания к новой обстановке эти неприятные ощущения проходят.

Периодичность непроизвольного дыхания определяется дыхательным центром. Произвольная регуляция дыхания в момент речи, пения, дыхательных упражнений осуществляется корой больших полушарий головного мозга.

Гуморальная регуляция дыхания происходит под воздействием углекислого газа на дыхательный центр: чем активнее работа, тем больше тканями выделяется углекислого газа и тем интенсивнее легочное дыхание.

Гуморальная регуляция дыхания

Главным физиологическим стимулом дыхательных центров является двуокись углерода. Регуляция дыхания обусловливает поддержание нормального содержания СО 2 в альвеолярном воздухе и артериальной крови. Возрастание содержания СО 2 в альвеолярном воздухе на 0,17% вызывает удвоение МОД, а вот снижение О 2 на 39-40% не вызывает существенных изменений МОД.

Дыхание может учащаться и углубляться при гиперкапнии (повышено напряжение СО 2) и гипоксемии (понижено напряжение О 2) или урежаться и уменьшаться по глубине при гипокапнии (понижено напряжение СО 2).

При повышении в замкнутых герметических кабинах концентрации СО 2 до 5 - 8% у обследуемых наблюдалось увеличение легочной вентиляции в 7-8 раз. При этом концентрация СО 2 в альвеолярном воздухе существенно не возрастала, так как основным признаком регуляции дыхания является необходимость регуляции объема легочной вентиляции, поддерживающей постоянство состава альвеолярного воздуха.

Деятельность дыхательного центра зависит от состава крови, поступающей в мозг по общим сонным артериям. В 1890 г. это было показано Фредериком в опытах с перекрестным кровообращением. У двух собак, находившихся под наркозом, перерезали и соединяли перекрестно сонные артерии и яремные вены. При этом голова первой собаки снабжалась кровью второй собаки и наоборот. Если у одной из собак, например у первой, перекрывали трахею и таким путем вызывали асфиксию, то гиперпноэ развивалось у второй собаки. У первой же собаки, несмотря на увеличение в артериальной крови напряжения СО 2 и снижение напряжения О 2 , развивалось апноэ, так как в ее сонную артерию поступала кровь второй собаки, у которой в результате гипервентиляции снижалось напряжение СО 2 в артериальной крови.

Двуокись углерода, водородные ионы и умеренная гипоксия вызывают усиление дыхания. Эти факторы усиливают деятельность дыхательного центра, оказывая влияние на периферические (артериальные) и центральные (модулярные) хеморецепторы, регулирующие дыхание.

Артериальные хеморецепторы находятся в каротидных синусах и дуге аорты. Они расположены в специальных тельцах, обильно снабжаемых артериальной кровью. Аортальные хеморецепторы на дыхание влияют слабо и большее значение имеют для регуляции кровообращения.

Артериальные хеморецепторы являются уникальными рецепторными образованиями, на которые гипоксия оказывает стимулирующее влияние. Афферентные влияния каротидных телец усиливаются также при повышении в артериальной крови напряжения двуокиси углерода и концентрации водородных ионов. Стимулирующее действие гипоксии и гиперкапнии на хеморецепторы взаимно усиливается, тогда как в условиях гипероксии чувствительность хеморецепторов к двуокиси углерода резко снижается. Артериальные хеморецепторы информируют дыхательный центр о напряжении О 2 и СО 2 в крови, направляющейся к мозгу.

После перерезки артериальных (периферических) хеморецепторов у подопытных животных исчезает чувствительность дыхательного центра к гипоксии, но полностью сохраняется реакция дыхания на гиперкапнию и ацидоз.

Центральные хеморецепторы расположены в продолговатом мозге латеральнее пирамид. Перфузия этой области мозга раствором со сниженным рН резко усиливает дыхание, а при высоком рН дыхание ослабевает, вплоть до апноэ. То же происходит при охлаждении или обработке этой поверхности продолговатого мозга анестетиками. Центральные хеморецепторы, оказывая сильное влияние на деятельность дыхательного центра, существенно изменяют вентиляцию легких. Установлено, что снижение рН спинномозговой жидкости всего на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин.

Центральные хеморецепторы реагируют на изменение напряжения СО 2 в артериальной крови позже, чем периферические хеморецепторы, так как для диффузии СО 2 из крови в спинномозговую жидкость и далее в ткань мозга необходимо больше времени. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз - тормозят центральные хеморецепторы.

Для определения чувствительности центральных хеморецепторов к изменению рН внеклеточной жидкости мозга, изучения синергизма и антагонизма дыхательных газов, взаимодействия системы дыхания и сердечно-сосудистой системы используют метод возвратного дыхания. При дыхании в замкнутой системе выдыхаемый СО 2 вызывает линейное увеличение концентрации СО 2 и одновременно повышается концентрация водородных ионов в крови, а также во внеклеточной жидкости мозга.

Совокупность дыхательных нейронов следовало бы рассматривать как созвездие структур, осуществляющих центральный механизм дыхания. Таким образом, вместо термина «дыхательный центр» правильнее говорить о системе центральной регуляции дыхания, которая включает в себя структуры коры головного мозга, определенные зоны и ядра промежуточного, среднего, продолговатого мозга, варолиева моста, нейроны шейного и грудного отделов спинного мозга, центральные и периферические хеморецепторы, а также механорецепторы органов дыхания.

Своеобразие функции внешнего дыхания состоит в том, что она одновременно и автоматическая, и произвольно управляемая.

Регуляция дыхания

Потребность организма в кислороде во время покоя и при работе неодинакова; поэтому частота и глубина дыхания должны автоматически изменяться, приспосабливаясь к изменяющимся условиям. Во время мышечной работы потребление кислорода мышцами и другими тканями может возрасти в 4 - 5 раз.

Для осуществления дыхания необходимо согласованное сокращение множества отдельных мышц; эту координацию осуществляет дыхательный центр - специальная группа клеток, лежащая в одном из отделов головного мозга, называемом продолговатым мозгом. Из этого центра к диафрагме и межреберным мышцам ритмически посылаются залпы импульсов, вызывающие регулярное и координированное сокращение соответствующих мышц каждые 4 - 5 сек. При обычных условиях дыхательные движения совершаются автоматически, без контроля со стороны нашей воли. Но когда нервы, идущие к диафрагме (диафрагмальные нервы) и межреберным мышцам, перерезаны или повреждены (например, при детском параличе), дыхательные движения тотчас прекращаются. Конечно, человек может произвольно изменять частоту и глубину дыхания; он может даже некоторое время совсем не дышать, но он не в состоянии задержать дыхание на такое длительное время, чтобы это причинило сколько-нибудь существенный вред: автоматический механизм вступает в действие и вызывает вдох.

Естественно возникает вопрос: почему дыхательный центр периодически посылает залпы импульсов? С помощью ряда экспериментов было установлено, что если связи дыхательного центра со всеми другими частями головного мозга прерваны, т. е. если перерезаны чувствительные нервы и пути, идущие от высших мозговых центров, то дыхательный центр посылает непрерывный поток импульсов и мышцы, участвующие в дыхании, сократившись, остаются в сокращенном состоянии. Таким образом, дыхательный центр, предоставленный самому себе, вызывает полное сокращение мышц, участвующих в дыхании. Если, однако, либо чувствительные нервы, либо пути, идущие от высших мозговых центров, остались неповрежденными, то дыхательные движения продолжают совершаться нормально. Это означает, что для нормального дыхания необходимо периодическое торможение дыхательного центра, с тем чтобы он прекращал посылку импульсов, вызывающих сокращение мышц. Дальнейшие эксперименты показали, что пневмаксический центр, лежащий в среднем мозгу (фиг. :,268), вместе с дыхательным центром образуют «реверберирующий круговой путь», который и служит основой регулирования частоты дыхания. Кроме того, растяжение стенок альвеол во время вдоха стимулирует находящиеся в этих стенках чувствительные к давлению нервные клетки, и эти клетки посылают в головной мозг импульсы, тормозящие дыхательный центр, что приводит к выдоху.

Дыхательный центр стимулируют или тормозят также импульсы, приходящие к нему по многим другим нервным путям. Сильная боль в любой части тела вызывает рефлекторное учащение дыхания. Кроме того, в слизистой оболочке гортани и глотки имеются рецепторы, которые при их раздражении посылают в дыхательный центр импульсы, тормозящие дыхание. Это важные защитные приспособления. Когда какой-либо раздражающий газ, например аммиак или пары сильных кислот, входит в дыхательные пути, он стимулирует рецепторы гортани, которые посылают в дыхательный центр тормозящие импульсы, и у нас невольно «перехватывает дыхание»; благодаря этому вредное вещество не проникает в легкие. Точно так же, когда в гортань случайно попадает пища, она раздражает рецепторы в слизистой оболочке этого органа, заставляя их посылать тормозные импульсы в дыхательный центр. Дыхание мгновенно приостанавливается, и пища не входит в легкие, где она могла бы повредить нежный эпителий.

Во время мышечной работы частота и глубина дыхания должны возрастать, чтобы удовлетворить повышенную потребность организма в кислороде и предупредить накопление углекислоты. Концентрация углекислоты в крови служит главным фактором, регулирующим дыхание. Повышенное содержание углекислоты в крови, притекающей к головному мозгу, увеличивает возбудимость как дыхательного, так и пневмотаксического центра. Повышение активности первого из них ведет к усиленному сокращению дыхательной мускулатуры, а второго - к учащению дыхания. Когда концентрация углекислоты возвращается к норме, стимуляция этих центров прекращается и частота и глубина дыхания возвращаются к обычному уровню.

Этот механизм действует и в обратном направлении. Если человек произвольно сделает ряд глубоких вдохов и выдохов, содержание углекислоты в альвеолярном воздухе и в крови понизится настолько, что после того, как он перестанет глубоко дышать, дыхательные движения вовсе прекратятся до тех пор, пока уровень углекислоты в крови снова не достигнет нормального. Первый вдох новорожденного младенца вызывается главным образом действием этого механизма. Тотчас после рождения ребенка и отделения его от плаценты содержание углекислоты в его крови начинает повышаться и заставляет дыхательный центр посылать импульсы к диафрагме и межреберным мышцам, которые сокращаются и производят первый вдох. Иногда, когда первый вдох новорожденного младенца задерживается, в его легкие вдувают воздух, содержащий 10% углекислоты, чтобы привести этот механизм в действие.

Опыты показали, что главным фактором, стимулирующим дыхательный центр, служит не столько уменьшение количества кислорода, сколько увеличение количества углекислоты в крови. Если человека поместить в небольшую герметически закрытую камеру, так что ему придется дышать все время одним и тем же воздухом, содержание кислорода в воздухе будет постепенно убывать. Если в камеру поместить, кроме того, химическое вещество, способное быстро поглощать выделяемую углекислоту, с тем чтобы количество ее в легких и в крови не увеличивалось, то частота дыхания возрастет лишь незначительно, даже если эксперимент продолжать до тех пор, пока содержание кислорода не понизится очень сильно. Если же не удалять углекислоту, а позволить ей накапливаться, то дыхание резко участится и у человека возникнут неприятные ощущения и чувство удушья. Когда человеку дают дышать воздухом с нормальным количеством кислорода, но с повышенным содержанием углекислоты, опять-таки наблюдается учащение дыхания. Очевидно, дыхательный центр стимулируется не нехваткой кислорода, а главным образом накоплением углекислоты.

Для большей надежности осуществления надлежащей реакции на изменения концентрации в крови углекислоты и кислорода выработался еще один регулирующий механизм. У основания каждой из внутренних сонных артерий (arteria carotid) находится небольшое вздутие, называемое каротидным синусом, которое содержит рецепторы, чувствительные к изменениям химического состава крови. При повышении уровня углекислоты или понижении уровня кислорода эти рецепторы посылают нервные импульсы в дыхательный центр в продолговатом мозгу и повышают его активность.

Влияние тренировки. Упражнения и практика при спортивной тренировке повышают способность организма к выполнению той или иной задачи. Во-первых, мышцы при тренировке увеличиваются в размерах и становятся сильнее (вследствие роста отдельных мышечных волокон, а не увеличения их числа). Во-вторых, при многократном выполнении того или иного действия человек научается координировать работу мышц и сокращать каждую из них ровно с такой силой, с какой это необходимо для достижения желаемого результата, что ведет к экономии энергии. В-третьих, при этом происходят изменения в сердечно-сосудистой и дыхательной системах. Сердце тренированного физкультурника несколько увеличено и в покое сокращается медленнее. Во время мышечной работы оно перекачивает больший объем крови, причем не столько за счет учащения сокращений, сколько за счет большей силы каждого сокращения. Кроме того, атлет дышит медленнее и глубже, чем обычный человек, и при физической нагрузке количество проходящего через легкие воздуха у него повышается главным образом не за счет учащения дыхания, а за счет увеличения его глубины. Это более эффективный способ достижения той же цели.

Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:

1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахеи и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.

2. Ирритантные рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз). Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.

3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости. Эти явления возникают при застое в малом круге кровообращения или пневмониях.

Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к -респираторным нейронам, которые в свою очередь тормозят -респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует перерастяжению легких.

Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.

Гуморальная регуляция дыхания

В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает. Частота и глубина дыхания увеличиваются. При снижении напряжения кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаются и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.

Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на центральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.

Лекция по теме: «Физиология дыхания»

План лекции.

1. Дыхание, его значение для организма.

2. Механизм вдоха и выдоха.

3. Жизненная емкость легких.

4. Дыхательный центр.

5. Гуморальная и рефлекторная регуляция дыхания.

6. газообмен в легких и тканях.

Текст лекции

Дыхание, его значение для организма.

Большинство биологических процессов в организме происходит с использованием энергии. Для эффективного ее образования требуется постоянная доставка к митохондриям клеток кислорода. Доставка в организм кислорода и выведение из организма углекислого газа – это и есть дыхание, т.е. газообмен. Дыхание состоит из трех процессов – внешнего (легочного) дыхания,внутреннего (тканевого) дыхания и транспортагазов . Внешнее дыхание – это газообмен между окружающей средой и альвеолами, который происходит в капиллярах легких. Внутреннее дыхание – это газообмен между тканями и артериальной кровью, притекающей к тканям. Он идет в капиллярах тканей. Транспорт газов осуществляется кровью.

Механизм вдоха и выдоха.

Дыхание обеспечивается двумя актами - вдохом и выдохом . При вдохе (инспирации) порция воздуха поступает в легкие, а при выдохе выводится из них. При вдохе сокращаются межреберные мышцы и диафрагма. В результате ребра отходят вверх кпереди, выпуклость диафрагмы уменьшается, т.е. она уплощается. Все это приводит к увеличению объема грудной клетки, а за ней и объема легких. Давление в легких уменьшается, т.е. становится ниже атмосферного и воздух свободно заходит в легкие. При выдохе (экспирации) расслабляются межреберные мышцы и диафрагма, ребра возвращаются в исходное положение, выпуклость диафрагмы увеличивается. Все это приводит к уменьшению объема грудной клетки, а за ней пассивно уменьшается и объем легких. Давление в легких повышается и воздух из легких выделяется во внешнюю среду. Установлено, что большую роль в дыхании играет диафрагма, обеспечивая 75% глубины дыхания. Роль диафрагмы в дыхании доказана учеными в опыте. Если у новорожденного котенка перерезать диафрагмальный нерв, то он погибает от удушья. При форсированном, глубоком дыхании участвуют мышцы живота.

Жизненная емкость легких.

Показатели, характеризующие внешнее дыхание, принято подразделять на статические и динамические. К статическим показателям относятся: жизненная емкость легких (ЖЕЛ) и объемы ее составляющие.

ЖЕЛ – это максимальное количество воздуха, которое человек может выдохнуть после самого глубокого вдоха. Она в норме равна 3 -3,5 л.

ЖЕЛ состоит из трех объемов:

- дыхательный объем (ДО) – количество воздуха, поступающее в легкие при одном спокойном вдохе (ДО равно – 500мл);

- резервный объем вдоха (РО вд.) – это максимальное количество воздуха, которое человек может еще вдохнуть после спокойного вдоха (РО вд.равен -1500мл);

- резервный объем выдоха (РО выд.) – это максимальное количество воздуха, которое человек может еще выдохнуть после спокойного выдоха (РО выд. равен – 1500мл).

Таким образом, ЖЕЛ – это суммарный показатель:

ЖЕЛ = ДО + РОвд. + РОвыд.

ЖЕЛ определяется прибором спирометром. Методику ее определения называют спирометрией. Есть еще прибор спирограф, на котором графически изображается ЖЕЛ и объемы ее составляющие.

После максимально глубокого выдоха в легких в легких остается воздух, именуемый остаточным объемом (ОО равен – 1000мл).

Для характеристики дыхания человека определяют еще ряд динамических показателей, которые отражают эффективность функционирования системы дыхания во временном аспекте (обычно за 1минуту).

К динамическим показателям относятся:

1. Частота дыхательных движений (ЧДД). В норме она равна 18-20 дыхательных движений за 1 минуту.

2. Минутный объем дыхания (МОД) – количество воздуха, поступающего в легкие за 1 минуту:

МОД = ДО . ЧДД

Дыхательный центр.

Дыхательный центр – это совокупность нейронов, лежащих на разных уровнях ЦНС, и необходимых для нормального протекания дыхания.

Ритмическая последовательность вдоха и выдоха, а также изменениехарактера дыхательных движений в зависимости от состояния организма регулируются дыхательным центром, расположенным в продолговатом мозге.В дыхательном центре имеются две группы нейронов:инспираторные иэкспираторные.При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.

В верхней части моста головного мозга (варолиев мост) находится пневмотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинногомозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III-IV шейныхсегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III-XII) грудных сегментов спинного мозга.

По М. В. Сергиевскому, регуляция активности дыхательного центра представлена тремя уровнями.

Первый уровень регуляции - спинной мозг. Здесь располагаются центры диафрагмальных и межреберных нервов, обусловливающие сокращение дыхательных мышц.

Второй уровень регуляции - продолговатый мозг. Здесь находится дыхательный центр. Этот уровень регуляции обеспечивает ритмичную смену фаз дыхания и активность спинномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру.

Третий уровень регуляции - верхние отделы головного мозга, включающие и корковые нейроны. Только при участии коры большого мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям окружающей среды.

Гуморальная и рефлекторная регуляция дыхания..

Регуляция деятельности дыхательного центра осуществляется с помощью гуморальных, рефлекторных механизмов и нервных импульсов, поступающих из вышележащих отделов головного мозга.

Гуморальные механизмы . Специфическим регулятором активности нейронов дыхательного центра является углекислый газ, который действует на дыхательные нейроны непосредственно и опосредованно. В ретикулярной формации продолговатого мозга, вблизи дыхательного центра, а также в области сонных синусов и дуги аорты обнаруженыхеморецепторы, чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейронам, что приводит к повышению их активности.

Углекислый газ повышает возбудимость нейронов коры головного мозга. В свою очередь клетки КГМ стимулируют активность нейронов дыхательного центра.

При оптимальном содержании в крови углекислого газа и кислорода наблюдаются дыхательные движения, отражающие умеренную степень возбуждения нейронов дыхательного центра. Эти дыхательные движения грудной клетки получили название эйпноэ.

Избыточное содержание углекислого газа и недостаток кислорода в крови усиливают активность дыхательного центра, что обусловливает возникновение частых и глубоких дыхательных движений –гиперпноэ. Еще большее нарастание количества углекислого газа в крови приводит к нарушению ритма дыхания и появлению одышки диспноэ . Понижение концентрации углекислого газа и избыток кислорода в крови угнетают активность дыхательного центра. В этом случае дыхание становится поверхностным, редким и может наступить его остановка – апноэ.

Механизм первого вдоха новорожденного.

В организме матери газообмен плода происходит через пупочные сосуды. После рождения ребенка и отделения плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который, так же как и недостаток кислорода, гуморально возбуждает дыхательный центр. Кроме того, изменение условий существования ребенка приводит к возбуждению экстеро- и проприорецепторов, что также является одним из механизмов, принимающих участие в осуществлении первого вдоха новорожденного.

Рефлекторные механизмы.

Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на функциональное состояние дыхательного центра.

Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга - Брейера ), корня легкого и плевры (пульмоторакальныйрефлекс ), хеморецепторов дуги аорты и сонных синусов (рефлекс Гейманса ), проприорецепторов дыхательных мышц.

Наиболее важным рефлексом является рефлекс Геринга - Брейера. В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувствительными нервными окончаниями блуждающего нерва. Любое увеличение объема легочных альвеол возбуждает эти рецепторы.

Рефлекс Геринга - Брейера является одним из механизмов саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые, возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает условия для повышения возбудимости инспираторной части дыхательного центра и осуществлению активного вдоха.

Кроме того, активность инспираторных нейронов усиливается при нарастании концентрации углекислого газа в крови, что также способствует проявлению вдоха.

Пульмоторакальный рефекс возникает при возбуждении рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга.

К дыхательному центру постоянно поступают нервные импульсы от проприорецепторов дыхательных мышц. Во время вдоха происходит возбуждение проприорецепторов дыхательных мышц и нервные импульсы от них поступают в инспираторную часть дыхательного центра. Под влиянием нервных импульсов тормозится активность вдыхательных нейронов, что способствует наступлению выдоха.

Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных экстеро- и интерорецепторов. К ним относятся рефлексы, возникающие при раздражении рецепторов слизистой оболочки верхних дыхательных путей, слизистой носа, носоглотки, температурных и болевых рецепторов кожи, проприорецепторов скелетных мышц. Так, например, при внезапном вдыхании паров аммиака, хлора, сернистого ангидрида, табачного дыма и некоторых других веществ происходит раздражение рецепторов слизистой оболочки носа, глотки, гортани, что приводит к рефлекторному спазму голосовой щели, а иногда даже мускулатуры бронхов и рефлекторной задержке дыхания.

При раздражении эпителия дыхательных путей накопившейся пылью, слизью, а также попавшими химическими раздражителями и инородными телами наблюдается чиханье и кашель. Чиханье возникает при раздражении рецепторов слизистой оболочки носа, кашель - при возбуждении рецепторов гортани, трахеи, бронхов.

Газообмен в легких и тканях.

Кровь доставляет тканям кислород и уносит углекислый газ.

Движение газов из окружающей среды в жидкость и из жидкости в окружающую среду осуществляется благодаря разности их парциальногодавления. Газ всегда диффундирует из среды, где имеется высокое давление, в среду с меньшим давлением.

Парциальное давление кислорода в атмосферном воздухе - 158 мм рт. ст., в альвеолярном воздухе - 108-110 мм рт. ст. и в венозной крови, притекающей к легким,- 40 мм рт. ст.. В артериальной крови капилляров большого круга кровообращения напряжение кислорода составляет 102-104 мм рт. ст., в межтканевой жидкости - 40 мм рт. ст., в тканях -20 мм рт. ст. Таким образом, на всех этапах движения кислорода имеется разность его парциального давления, что способствует диффузии газа.

Движение углекислого газа происходит в противоположном направлении. Напряжение углекислого газа в тканях -60 и более мм рт. ст., в венозной крови - 46 мм рт. ст., в альвеолярном воздухе 0,3 мм рт. ст.. Следовательно, разность напряжения углекислого газа по пути его следования является причиной диффузии газа от тканей в окружающую среду.

Транспорт кислорода кровью. Кислород в крови находится в двух состояниях: физическом растворении и в химической связи с гемоглобином. Гемоглобин образует с кислородом очень непрочное, легко диссоциирующее соединение - оксигемоглобин: 1г гемоглобина связывает 1,34 мл кислорода. Максимальное количество кислорода, которое может быть связано 100 мл крови, -кислородная емкость крови(18,76 мл или 19 об%).

Насыщение гемоглобина кислородом колеблется от 96 до 98%. Степень насыщения гемоглобина кислородом и диссоциация оксигемоглобина (образование восстановленного гемоглобина) не находятся в прямой пропорциональной зависимости от напряжения кислорода.

При нулевом напряжении кислорода оксигемоглобина в крови нет. При низких значениях парциального давления кислорода скорость образования оксигемоглобина невелика. Максимальное количество гемоглобина (45- 80%) связывается с кислородом при его напряжении 26-46 мм рт. ст. Дальнейшее повышение напряжения кислорода приводит к снижению скорости образования оксигемоглобина.

Сродство гемоглобина к кислороду значительно понижается при сдвиге реакции крови в кислую сторону, что наблюдается в тканях и клетках организма вследствие образования углекислого газа

Переход гемоглобина в оксигемоглобин и из него в восстановленный зависит и от температуры. При одном и том же парциальном давлении кислорода в окружающей среде при температуре 37-38°С в восстановленную форму переходит наибольшее количество оксигемоглобина,

Транспорт углекислого газа кровью. Углекислый газ переносится к легким в форме бикарбонатов и в состоянии химической связи с гемоглобином (карбогемоглобин).

Итак, подводя итоги лекции, мы видим, что поступление кислорода в организм, процесс окисления субстратов в клетках и удаление углекислого газа в совокупности составляет дыхание. Известно, что без пищи человек погибает через 60-70 дней, без воды – через 3 дня, а без дыхания – через 3 минуты. Дыхание включает следующие процессы: 1) легочное дыхание, 2) транспорт газов кровью, 3) обмен газов между кровью и тканями, 4) окисление органических веществ в клетках. Регуляция дыхания осуществляется рефлекторным и гуморальным механизмами. Оба эти механизма обеспечивают ритмический характер дыхания и изменение его интенсивности, приспосабливая организм к различным условиям внешней и внутренней среды.


Нервная регуляция дыхания. Дыхательный центр расположен в продолговатом мозге. Он состоит из центров вдоха и выдоха, которые регулируют работу дыхательных мышц. Спадание лёгочных альвеол, которое происходит при выдохе, рефлекторно вызывает вдох, а расширение альвеол рефлекторно вызывает выдох. При задержке дыхания мышцы вдоха и выдоха сокращаются одновременно, благодаря чему грудная клетка и диафрагма удерживаются в одном положении. На работу дыхательных центров оказывают влияние и другие центры, в том числе расположенные в коре больших полушарий. Благодаря их влиянию дыхание изменяется при разговоре и пении. Возможно, также сознательно изменять ритм дыхания во время физических упражнений.

Гуморальная регуляция дыхания. При мышечной работе усиливаются процессы окисления. Следовательно, в кровь выделяется больше углекислого газа. Когда кровь с избытком углекислого газа доходит до дыхательного центра и начинает его раздражать, активность центра повышается. Человек начинает глубоко дышать. В итоге избыток углекислого газа удаляется, а недостаток кислорода восполняется. Если концентрация углекислого газа в крови понижается, работа дыхательного центра тормозится и наступает непроизвольная задержка дыхания. Благодаря нервной и гуморальной регуляции в любых условиях концентрация углекислого газа и кислорода в крови поддерживается на определенном уровне.

1.2. Система дыхания

Если сердце представляет собой насос, перекачивающий кровь и обеспечивающий ее доставку ко всем тканям, то легкие - главный орган дыхательной системы - насыщают эту кровь кислородом.

Чтобы яснее представить себе функциональные и резервные возможности дыхательной системы, вспомним анатомо-физиологические особенности аппарата дыхания. Он состоит из воздуховодных путей и легких. Воздуховодные пути включают в себя носоглотку, гортань, трахею, бронхи и бронхиолы, доставляющие атмосферный воздух в альвеолы, огромное количество которых и составляет собственно легочную ткань. Альвеолы - это тонкостенные, наполненные воздухом пузырьки, густо оплетенные кровеносными легочными капиллярами. Подсчитано, что легкие содержат около 600-700 млн. альвеол. Площадь их поверхности при выдохе равняется 30 м 2 , а при глубоком вдохе, т.е. при растяжении, достигает 100-120 м 2 . Напомним, что поверхность всего тела составляет около 2 м 2 .

Рис. 1. Система органов дыхания

Оказывается, физические нагрузки увеличивают число альвеол в легких, совершенствуя тем самым дыхательный аппарат и увеличивая его резервы.
Благодаря исследованиям А. Г. Эйнгорна (1956) было установлено, что у спортсменов количество альвеол и альвеолярных ходов увеличено на 15-20% по сравнению с таковыми у незанимающихся спортом. Это значительный анатомический и функциональный резерв. Дыхание осуществляется последовательным чередованием вдоха и выдоха. В норме здоровый взрослый человек в покое делает в среднем 15-18 вдохов и выдохов в минуту, причем за один вдох в легкие поступает примерно 500 мл воздуха. Эта величина называется дыхательным объемом, или дыхательным воздухом. Таким образом, вентиляция легких в одну минуту составляет 7.5-9 л. После обычного вдоха усилием воли можно дополнительно вдохнуть какое-то количество воздуха, он называется дополнительным. Точно так же после обычного выдоха возможно еще выдохнуть некоторое количество воздуха, его называют резервным. Сумма дыхательного, дополнительного и резервного воздуха составляет жизненную емкость легких.
Физические упражнения оказывают большое влияние на формирование аппарата дыхания. У спортсменов, например, жизненная емкость легких достигает 7 л и более. Спортивные врачи сборных команд страны по баскетболу и лыжам зарегистрировали величины, равные 8100 и 8700 мл.

Конечно, спортсмены - это люди, как правило, с изначально хорошими физическими данными. Но физические нагрузки развивают любой организм.
Обследование школьников одного возраста и с одинаковыми антропометрическими данными показали, что основные параметры внешнего дыхания, кислородного пульса (количество кислорода, используемое организмом за одно сокращение сердца), объема сердца, максимального потребления кислорода, работоспособности были выше в среднем на 20-27% у тех из них, кто занимался спортом.

При максимальных физических нагрузках частота дыхания может возрасти до 50-70 в минуту, а минутный объем дыхания до 100-150 л, т.е. в 10-15 раз превысить этот показатель, отмечаемый в состоянии покоя.

Хорошо развитый дыхательный аппарат - надежная гарантия полноценной жизнедеятельности клеток. Ведь известно, что гибель клеток организма в конечном итоге связана с недостатком в них кислорода. И напротив, многочисленными исследованиями установлено, что чем больше способность организма усваивать кислород, тем выше физическая работоспособность человека. Тренированный аппарат внешнего дыхания (легкие, бронхи, дыхательные мышцы) - это первый этап на пути к улучшению здоровья.
При использовании регулярных физических нагрузок максимальное потребление кислорода, как отмечают спортивные физиологи, повышается в среднем на 20-30%.
У тренированного человека система внешнего дыхания в покое работает более экономно. Так, частота дыхания снижается до 8-10 в минуту, при этом несколько возрастает его глубина. Из одного и того же объема воздуха, пропущенного через легкие, извлекается большее количество кислорода.

Возрастающая при мышечной активности потребность организма в кислороде «подключает» к решению энергетических задач незадействованные до этого резервы легочных альвеол. Это сопровождается усилением кровообращения во вступившей в работу ткани и повышением аэрации (насыщенность кислородом) легких. Считают, что этот механизм повышенной вентиляции легких укрепляет их. Кроме того, хорошо «проветриваемая» при физических усилиях легочная ткань менее подвержена заболеваниям, чем те ее участки, которые аэрированы слабее и потому хуже снабжаются кровью. Известно, что при поверхностном дыхании нижние доли легких в малой степени участвуют в газообмене. Именно в местах, где легочная ткань обескровлена, чаще всего возникают воспалительные очаги. И напротив, повышенная вентиляция легких оказывает целительное действие при некоторых хронических легочных заболеваниях.
При физических нагрузках возрастание легочной вентиляции связано с усилившейся амплитудой движений диафрагмы. Этот факт благоприятно отражается и на состоянии других внутренних органов. Так, сокращаясь при вдохе, диафрагма давит на печень и другие органы пищеварения, способствуя оттоку из них венозной крови и поступлению ее в правые отделы сердца. При выдохе диафрагма поднимается, облегчая приток артериальной крови к органам брюшной полости и улучшая их питание и работу. Таким образом, диафрагма является как бы вспомогательным аппаратом кровообращения для органов пищеварения.

Именно этот механизм - своеобразный мягкий массаж - имеют в виду специалисты лечебной физкультуры, рекомендуя некоторые упражнения дыхательной гимнастики для лечения органов пищеварения. Впрочем, индийские йоги с давних пор лечат заболевания желудка, печени и кишечника дыхательной гимнастикой, эмпирически установив целебное ее действие при многих недугах брюшной полости.
Периодическое повышение и понижение внутригрудного давления в акте дыхания существенно отражается и на кровоснабжении самого сердца. Во время вдоха при увеличении объема грудной клетки создается присасывающая сила отрицательного давления, которая усиливает приток крови из полых вен и легочной вены к сердцу. При этом, что особенно важно, расширяется просвет питающих сердце коронарных артерий, и сердце получает больше кислорода. Можно напомнить, что снижение кровотока именно в этих сосудах создает угрозу возникновения стенокардии и инфаркта миокарда - болезни номер один современного общества.

К регулирующему эффекту глубокого дыхания многие больные прибегают интуитивно. Пациенты рассказывали, как они научились купировать начинающийся приступ пароксизмальной тахикардии (болезненно учащенное сердцебиение), используя глубокий вдох с небольшим натуживанием. Физиологи считают, что усиленный вдох оказывает влияние на сердечный кровоток, а также на блуждающий нерв, который способен регулировать работу сердца.

В то же время недостаточно развитый аппарат внешнего дыхания может способствовать развитию различных болезненных нарушений в организме, ибо недостаточное поступление кислорода влечет за собой повышенную утомляемость, падение работоспособности, снижение сопротивляемости организма и рост риска заболеваний. Такие распространенные болезни, как ишемическая болезнь сердца, гипертония, атеросклероз, нарушение кровообращения головного мозга, так или иначе связаны с недостаточным поступлением кислорода.

Насколько важно повысить использование кислорода, настолько же важно выработать устойчивость организма к гипоксии, т.е. к кислородному голоданию тканей. Потому что возникающие при этом неблагоприятные изменения, которые вначале являются обратимыми, затем ведут к заболеваниям. При гипоксии страдает в первую очередь центральная нервная система: нарушается тонкая координация движений, появляются головная боль, сонливость, теряется аппетит. Затем снижаются обменные процессы, угнетаются функции внутренних органов. Наступают быстрая утомляемость, слабость, падает работоспособность. Любая работа, особенно умственная, требует больших усилий. Длительное воздействие гипоксии часто приводит к необратимым изменениям в сердце, печени, ускоренному развитию атеросклероза, раннему старению.
Как выработать устойчивость организма к недостатку кислорода? Рецепт прежний - тренировкой. Отличный тренирующий эффект дает продолжительное пребывание в горах на высоте около 2000-2500 м, где содержание кислорода (парциальное давление) в атмосферном воздухе снижено. Организм постепенно привыкает к недостатку кислорода, перестраивая свои функции и мобилизуя защитные резервы. Но всех желающих потренироваться невозможно переселить в горы. Следовательно, нужны способы создания искусственной гипоксии. Одним из таких способов является дыхательная гимнастика, в которую включаются упражнения с волевой задержкой дыхания (кстати, после неправильного использования именно таких упражнений мы наблюдали дыхательный дискомфорт).

Наилучшим же средством являются опять-таки физические нагрузки. Активно сокращающиеся мышцы резко увеличивают кислородный «запрос», иногда более чем в 100 раз. Сердечно-сосудистая система не в состоянии сразу обеспечить доставку такого большого его количества к тканям. Возникает кислородная задолженность (состояние гипоксии), которая исчезает в разные сроки после уменьшения нагрузки в зависимости от величины кислородного долга. Систематическое воздействие физических нагрузок определенной мощности создает в тканях гипоксию, которую организм ликвидирует, постоянно включая защитные механизмы, все более и более тренируя их. В итоге возникает состояние высокой устойчивости к недостатку кислорода.
Таким образом, физические нагрузки оказывают как бы двойной тренирующий эффект: повышают устойчивость к недостатку кислорода и, увеличивая мощность дыхательной и сердечно-сосудистой системы, способствуют лучшему его усвоению. Известный специалист в области физиологии дыхания профессор М. Е. Маршак считает, что именно мышечная работа служила в процессе эволюции основным стимулом к становлению и развитию системы дыхания.

error: Content is protected !!