В чем отличие ферментов от неорганических катализаторов. Ферментативный катализ


Неорганические катализаторы практически не зависят от реакции среды.  

Неорганические катализаторы, как показывает опыт, могут отлично работать и при более высоких температурах - до нескольких сот градусов.  

От неорганических катализаторов ферменты отличаются рядом характерных особенностей. Прежде всего ферменты чрезвычайно эффективны и проявляют в миллионы и миллиарды раз более высокую каталитическую активность в условиях умеренной температуры (температура тела), нормального давления и в области близких к нейтральным значениям рН среды.  

Как и неорганические катализаторы, ферменты ускоряют только те реакции, которые протекают самопроизвольно, но с очень малыми скоростями.  


В отличие от неорганических катализаторов ферменты проявляют свою активность в строго определенном диапазоне значений рН среды. В табл. 43 приведены значения рН, при которых различные ферменты проявляют свою максимальную активность.  

В отличие от неорганических катализаторов ферменты проявляют свою активность в строго определенном диапазоне значений рН среды. В табл. 20 приведены значения рН, при которых различные ферменты проявляют свою максимальную активность.  

Ферменты отличаются от неорганических катализаторов колоссальной активностью, которая вместе с химической специфичностью составляет главную особенность ферментативного катализа. Абсолютная активность ферментов достигает огромных величин, которые на несколько порядков превышают даже самые производительные неорганические катализаторы.  

Ферменты значительно эффективнее обычных неорганических катализаторов. При ферментативном катализе реакции часто идут в 100 000 - 1 000 000 раз быстрее, чем при обычном катализе. Если бы реакции протекали медленнее, то жизнь была бы невозможна. Известно, например, что одна из основных реакций в нервной системе проходит всего за миллионные доли секунды.  

Если сравнить влияние органических и неорганических катализаторов, то первые при горении тротила были более эффективны в области низких давлений, а при горении нитрогуанидина - в области высоких. При горении ВВ с металлооргапическими солями в том случае, когда данный металл не является катализатором, преобладает ингибирующее действие органической части молекулы добавки, являющейся восстановителем.  

По сравнению с неорганическими катализаторами ферменты имеют значительно более сложное строение. Каждый фермент содержит белок, которым и обусловлена высокая специфичность биологических катализаторов. По своему строению ферменты подразделяются на два больших класса: однокомпонентные и двухкомпонентные. К однокомпонентным относятся ферменты, состоящие только из белковых тел, которые обладают каталитическими свойствами. У этих ферментов роль активных групп выполняют определенные химические группировки, входящие в состав белковой молекулы и получившие название активных центров.  

По сравнению с неорганическими катализаторами строение ферментов значительно более сложное.  

По сравнению с неорганическими катализаторами ферменты имеют значительно более сложное строение. Каждый фермент содержит белок, которым и обусловлена высокая специфичность биологических катализаторов. По своему строению ферменты подразделяются на два больших класса: однокомпонент-ные и двухкомпонентные. К однокомпонентным относятся ферменты, состоящие только из белковых тел, которые обладают каталитическими свойствами. У этих ферментов роль активных групп выполняют определенные химические группировки, входящие в состав белковой молекулы и получившие название активных центров.  

Отличия:

1. Скорость ферментативных реакций выше, чем реакций, катализируемых неорганическими катализаторами.

2. Ферменты обладают высокой специфичностью к субстрату.

3. Ферменты по своей химической природе белки, катализаторы - неорганика.

4. Ферменты подвержены регуляции (есть активаторы и ингибиторы ферментов), неорганические катализаторы работают нерегулируемо.

5. Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей.

6. Ферментативные реакции протекают только в физиологических условиях, т. к. работают внутри клеток, тканей и организма (это определенные значения температуры, давления и рН).

Общие свойства ферментов:

1. Не расходуются в процессе катализа ;

2. Имеют высокую активность по сравнению с катализаторами др. природы;

3. Обладают высокой специфичностью;

4. Лабильность (неустойчивость);

5. Ускоряют только те реакции, которые не противоречат законам термодинамики .

Общие свойства неорганических катализаторов:

1. Химическая природа - низкомолекулярные вещества;

2. В ходе реакции структура катализатора изменяется незначительно, или не изменяется вовсе;

3. Оптимум pH - сильнокислая или щелочная;

4. Увеличение скорости реакции намного меньше, чем при действии ферментов.

Специфичность - очень высокая избирательность ферментов по отношению к субстрату. Специфичность фермента объясняется совпадением пространственной конфигурации субстрата и субстратного центра. За специфичность фермента ответственен как активный центр фермента, так и вся его белковая молекула. Активный центр фермента определяет тип реакции, который может осуществить данный фермент. Различают три вида специфичности: абсолютную, относительную, стереохимическую.

Абсолютная специфичность. Такой специфичностью обладают ферменты, которые действуют только на один субстрат. Например, сахараза гидролизует только сахарозу , лактаза - лактозу, мальтаза - мальтозу, уреаза - мочевину, аргиназа - аргинин и т.д.

Относительная специфичность - это способность фермента действовать на группу субстратов с общим типом связи, т.е. относительная специфичность проявляется только по отношению к определенному типу связи в группе субстратов. Пример: липаза расщепляют сложноэфирную связь в жирах животного и растительного происхождения. Амилаза гидролизует α-гликозидную связь в крахмале, декстринах и гликогене. Алкогольдегидрогеназа окисляет спирты (метанол , этанол и др.).

Стереохимическая специфичность - это способность фермента действовать только на один стереоизомер. Например: 1) L, B-изомерия: L- амилаза слюны и сока поджелудочной железы расщепляет только L-глюкозидные связи в крахмале и не расщепляет D-глюкозидные связи клетчатки; 2) L и В-изомерия: В нашем организме превращения подвергаются только L-аминокислоты, т.к. эти превращения осуществляются ферментами L-оксидазами, способными реагировать только с L-формой аминокислот; 3) Цис-, транс-изомерия: Фумаратгидратаза может превращать только транс-изомер (фумаровую кислоту) в яблочную. Цис-изомер (малеиновая кислота) таким превращениям в нашем организме не подвергается.


Локализация ферментов зависит от их функций. Одни ферменты просто растворены в цитоплазме, другие связаны с определенными органоидами. Например, окислительно-восстановительные ферменты сосредоточены в митохондриях.

Эктоферменты - ферменты, локализующиеся в плазматической мембране и действующие снаружи от нее

Эндоферменты - функционируют внутри клетки. Они катализируют реакции биосинтеза и энергетического обмена.

Экзоферменты - выделяются клеткой в окружающую среду, за пределами клетки расщепляют крупные молекулы на более мелкие осколки и тем самым способствуют проникновению их в клетку. К ним относятся гидролитические ферменты, играющие исключительно важную роль в питании микроорганизмов.

Ферменты и их значение в процессах жизнедеятельности

Из курса химии вам известно, что такое катализатор. Это вещество, которое ускоряет реакцию, оставаясь в конце реакции неизменным (не расходуясь). Биологические катализаторы называются ферментами (от лат. fermentum – брожение, закваска), или энзимами .

Почти все ферменты – это белки (но не все белки – ферменты!). В последние годы стало известно, что и некоторые молекулы РНК имеют свойства ферментов.

Впервые высокоочищенный кристаллический фермент был выделен в 1926 г. американским биохимиком Дж.Самнером. Этим ферментом была уреаза , которая катализирует расщепление мочевины. К настоящему времени известно более 2 тыс. ферментов, и их количество продолжает расти. Многие из них выделены из живых клеток и получены в чистом виде.

В клетке постоянно идут тысячи реакций. Если смешать в пробирке органические и неорганические вещества точно в тех же соотношениях, что и в живой клетке, но без ферментов, то почти никаких реакций с заметной скоростью идти не будет. Именно благодаря ферментам реализуется генетическая информация и осуществляется весь обмен веществ.

Для названия большинства ферментов характерен суффикс -аза, который чаще всего прибавляется к названию субстрата – вещества, с которым взаимодействует фермент.

Строение ферментов

По сравнению с молекулярной массой субстрата ферменты имеют гораздо большую массу. Такое несоответствие наводит на мысль, что не вся молекула фермента участвует в катализе. Чтобы разобраться в этом вопросе, необходимо познакомиться со строением ферментов.

По строению ферменты могут быть простыми и сложными белками. Во втором случае в составе фермента кроме белковой части (апофермент ) имеется добавочная группа небелковой природы – активатор (кофактор , или кофермент ), вследствие чего образуется активный голофермент . Активаторами ферментов выступают:

1) неорганические ионы (например, для активации фермента амилазы, находящегося в слюне, необходимы ионы хлора (Сl–);

2) простетические группы (ФАД, биотин), прочно связанные с субстратом;

3) коферменты (НАД, НАДФ, кофермент А), непрочно связанные с субстратом.

Белковая часть и небелковый компонент в отдельности лишены ферментативной активности, но, соединившись вместе, приобретают характерные свойства фермента.

В белковой части ферментов содержатся уникальные по своей структуре активные центры, представляющие собой сочетание определенных аминокислотных остатков, строго ориентированных по отношению друг к другу (в настоящее время структура активных центров ряда ферментов расшифрована). Активный центр взаимодействует с молекулой субстрата с образованием «фермент-субстратного комплекса». Затем «фермент-субстратный комплекс» распадается на фермент и продукт или продукты реакции.

Согласно гипотезе, выдвинутой в 1890 г. Э.Фишером, субстрат подходит к ферменту, как ключ к замку , т.е. пространственные конфигурации активного центра фермента и субстрата точно соответствуют (комплементарны ) друг другу. Субстрат сравнивается с «ключом», который подходит к «замку» – ферменту. Так, активный центр лизоцима (фермента слюны) имеет вид щели и по форме точно соответствует фрагменту молекулы сложного углевода бактериальной палочки, которая расщепляется под действием этого фермента.

В 1959 г. Д. Кошланд выдвинул гипотезу, по которой пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу назвали гипотезой «руки и перчатки» (гипотеза индуцированного взаимодействия). Этот процесс «динамического узнавания» – на сегодня наиболее распространенная гипотеза.

Отличия ферментов от небиологических катализаторов

Ферменты во многом отличаются от небиологических катализаторов.

1. Ферменты значительно эффективнее (в 10 4 –10 9 раз). Так, единственная молекула фермента каталазы может расщепить за одну секунду 10 тыс. молекул токсичной для клетки перекиси водорода:

2Н 2 О 2 ––> 2H 2 O + O 2 ­,

которая возникает при окислении в организме различных соединений. Или еще один пример, подтверждающий высокую эффективность действия ферментов: при комнатной температуре одна молекула уреазы способна за за одну секунду расщепить до 30 тыс. молекул мочевины:

H 2 N–CO–NH 2 + Н 2 О ––> СО 2 ­ + 2NН 3 ­.

Не будь катализатора, на это потребовалось бы около 3 млн лет.

2. Высокая специфичность действия ферментов. Большинство ферментов действуют лишь на один или очень небольшое число «своих» природных соединений (субстратов). Специфичность ферментов отражает формула «один фермент – один субстрат» . Благодаря этому в живых организмах множество реакций катализируется независимо.

3. Ферменты доступны тонкой и точной регуляции. Активность фермента может увеличиваться или уменьшаться при незначительном изменении условий, в которых он «работает».

4. Небиологические катализаторы в большинстве случаев хорошо работают лишь при высокой температуре. Ферменты же, присутствуя в клетках в малых количествах, работают при обычной температуре и давлении (хотя рамки действия ферментов ограничены, так как высокая температура вызывает денатурацию). Поскольку большинство ферментов являются белками, их активность наиболее высока при физиологически нормальных условиях: t=35–45 °C; слабощелочная среда (хотя для каждого фермента существует свое оптимальное значение рН).

5. Ферменты образуют комплексы – так называемые биологические конвейеры. Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций. Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет своего рода биохимический конвейер.

6. Ферменты способны регулироваться, т.е. «включаться» и «выключаться» (правда, это относится не ко всем ферментам, например, не регулируется амилаза слюны и ряд других пищеварительных ферментов). В большинстве молекул апоферментов есть участки, которые узнают еще и конечный продукт, «сходящий» с полиферментного конвейера. Если такого продукта слишком много, то активность самого начального фермента тормозится им, и наоборот, если продукта мало, то фермент активизируется. Так регулируется множество биохимических процессов.

Таким образом, ферменты обладают целым рядом преимуществ по сравнению с небиологическими катализаторами.

| следующая лекция ==>
Аналіз останніх досліджень і публікацій. Проблеми фінансування регіонів Європейського Союзу і України розглядали такі науковці як: Возняк Г.В., Григор’єва О.Н., Бєліченко А.Ф. |

При растворении в воде молекулы белка приобретают положительный заряд.

Как это свойство белка выразить с помощью значения рI ?

+ а. рI > 7 г. pI < 3

б. pI = 7 д. по знаку заряда нельзя судить об

в. pI< 7 интервале значения рI.

3. При растворении в воде белка, содержащего аминокислоты глутамат, аргинин, валин, молекулы белка приобрели положительный заряд. Что можно сказать о аминокислотном составе белка?

а. глутамата больше, чем аргинина + г. аргинина больше, чем глутамата

б. валина меньше, чем глутамата д. аргинина и глутамата одинаковое

в. валина больше, чем глутамата количество

4 . У белка крови альбумина значение величины рI равно 4,6. Это означает, что в водном растворе

+ а. белок заряжен отрицательно г. знак заряда может быть любой

б. белок заряжен положительно д. знак заряда определить невозможно

в. белок не имеет заряда

Сходство ферментов с неорганическими катализаторами заключается в том,

а. фермент обладает высокой специфичностью

б. скорость ферментативной реакции регулируется

+ г. в ходе катализа энергия системы остается постоянной

Отличие ферментов от неорганических катализаторов заключается в том, что

(2 ответа):

+ а. фермент обладает высокой специфичностью

+ б. скорость ферментативной реакции регулируется

в. в ходе катализа энергия химической системы изменяется

г. ферменты катализируют энергетически невозможные реакции

д. в ходе катализа направление химической реакции изменяется

7. Объясняя строение фермента, упомянули термины « кофактор и кофермент».

Следует уточнить:

+а. кофактор и кофермент находятся вне активного центра

б. только кофактор находится в активном центре

в. только кофермент находится в активном центре

г. кофактор и кофермент находятся в активном центре

д. кофермент находится вне активного центра

8. По определению: «Денатурация белка-это

а. потеря растворимости г. изменение пространственной

б. гидролиз всех пептидных связей структуры

в. частичный протеолиз +д. потеря природных свойств белка.

9. Обсуждая функции белка, применили термин «апофермент». Что имели ввиду:

а. сложный белок-фермент + г. белковую часть фермента

б. простой белок-фермент д. инактивированный белок-фермент.

в. небелковую часть фермента

10. Активный центр сложного белка-фермента включает в себя участки:



а. только каталитический г. субстратный и аллостерический

б. только субстратный д. каталитический и аллостерический

+ в. субстратный и каталитический

11. В основу понятия «специфичность» фермента положены:

а. тип реакции г. строение продукта реакции

б. строение субстрата д. тип реакции, строение субстрата

+в. тип реакции и строение субстрата и продукта реакции.

12. При изучении свойств фермента обнаружили, что он действует на субстраты одного химического класса, имеющие сходное пространственное строение. Как определить вид возможной специфичности:

а. абсолютная + г. групповая, стереоспецифичность

б. группова я (относительная) д. абсолютная, стероспецифичность

в.стереоспецифичность

13. Теория « индуцированного изменения пространственной конфигурации фермента и субстрата» в процессе их взаимодействия выдвинута ученым

+ а . Кошландом г. Ментен

б. Лоури д. Фишером

в. Михаэлисом

14. Характеризуя белок, применили термин «холофермент». Что имели ввиду: это

+ а. сложный белок-фермент г. белковую часть фермента

б. простой белок-фермент д. инактивированный белок-фермент

в. небелковую часть фермента

15. Деление ферментов на классы основано на:

а. строении субстрата г. природе кофермента

б. строении продукта реакции д. типе реакции и природе кофермента

+в. типе катализируемой реакции

16. Ферменты, содержащие в активном центре ионы железа, дезактивируются под влиянием иона цианида. Определите тип ингибирования:

а. конкурентный в. неспецифический

б. неконкурентный +г. специфический



17. Вещество «эффектор, модулятор» действует на участок фермента:

а. субстратный г. субстратный и аллостерический

б. каталитический д. субстратный и каталитический

+ в. аллостерический

error: Content is protected !!