Абиотические факторы среды кратко. Влажность, свет и температура — основные абиотические факторы

Абиотические факторы – компоненты неживой природы. К ним относят: климатические (свет, температура, вода, ветер, атмосфера и др.), действующие на все среды обитания живых организмов: водную, воздушную, почвенную, тело другого организма. Их действие всегда бывает совокупным.

Свет – один из важнейших биотических факторов, это источник жизни для всего живого на земле. В жизни организмов важны не только видимые лучи, но и другие, достигающие земной поверхности: ультрафиолетовые, инфракрасные, электромагнитные. Важнейший процесс, протекающий у растений на Земле с участием солнечной энергии: фотосинтез. В среднем 1-5% падающего на растение света используется для фотосинтеза и в виде накопленной энергии передается дальше по пищевой цепочке.

Фотопериодизм – приспособление растений и животных к определенной длине дня.

У растений: различают светолюбивые и теневыносливые виды. Одни виды растут на освещенной местности (злаки, береза, подсолнечник), другие при недостатке света (лесные травы, папоротники), теневыносливые виды могут расти в различных условиях, но при этом меняют свой внешний вид. Сосна, одиноко выросшая, имеет густую широкую крону, в древостое – крона формируется в верхней части, а ствол голый. Существуют растения короткого и длинного дня.

Среди животных свет является средством ориентации в пространстве. Одни приспособлены жить при солнечном свете, другие ведут ночной или сумеречный образ жизни. Есть животные, такие, как кроты, которым солнечный свет не требуется.

Температура Диапазон температур при которых возможна жизнь очень небольшой. Для большинства организмов он определяется от 0 до +50С.

Температурный фактор имеет ярко выраженные сезонные и суточные колебания. Температура определяет скорость биохимических процессов в клетке. Она определяет внешний вид организма и широту географического распространения. Организмы, способные выдерживать широкий диапазон температур называют эвритермными. Стенотермные организмы живут при узком диапазоне температур.

Одни организмы лучше приспособились переносить неблагоприятную (высокую или низкую) температуру воздуха, другие температуру почвы. Имеется большая группа теплокровных организмов, которые способны

поддерживать температуру тела на стабильном уровне. Способность организмов приостанавливать свою жизнедеятельность при неблагоприятных температурах называют анабиозом.

Вода Живых организмов, не содержащих воду в своих тканях на земле не существует. Содержание воды в организме может достигать 60-98%. Количество воды, необходимое для нормального развития меняется в зависимости от возраста. Особенно чувствительны организмы к дефициту воды в период размножения.

По отношению к водному режиму растения делятся на 3 больших групп:

Гигрофиты – растения влажных мест. Они не переносят дефицита воды.

Мезофиты – растения умеренно увлажненных местообитаний. Они способны переносить почвенную и воздушную засуху короткий период. Это большинство сельскохозяйственных культур, луговых трав.

Ксерофиты – растения сухих местообитаний. Они приспособлены длительное время переносить недостаток воды за счет специальных приспособлений. Листья превращаются в колючки или как, например, у суккулентов – клетки разрастаются до громадных размеров, запасая в себе воду. Для животных также существует аналогичная классификация. Только меняется окончание фиты на филы: гигрофилы, мезофиллы, ксерофилы.

Атмосфера Покрывающий землю слоистая атмосфера и озоновый слой, находящийся на высоте 10-15 км, защищают от мощного ультрафиолетового излучения и космической радиации все живое. Газовый состав современной атмосферы – 78% азота, 21% кислорода, 0,3-3% водяные пары, 1% приходится на другие химические элементы.

Почвенные или эдафические факторы . Почва – это биокосное природное тело, сформировавшиеся под воздействием живой и неживой природы. Она обладает плодородием. Из почв растения потребляют азот, фосфор, калий, кальций, магний, бор и др. микроэлементы. От наличия питательных веществ в почве зависит рост, развитие и биологическая продуктивность растений. Как недостаток, так и избыток питательных веществ может стать лимитирующим фактором. Некоторые виды растений приспособились к избытку какого-либо элемента, например к кальцию и получили название кальциефиллов.

Почва характеризуется определенной структурой, которая зависит от гумуса - продукта жизнедеятельности микроорганизмов, грибов. Почва в своем составе имеет воздух и воду, которые взаимодействуют с другими элементами биосферы.

При ветровой, водной или иной эрозии происходит разрушение почвенного покрова, что ведет к потери почвенного плодородия.

Орографические факторы – рельеф местности. Рельеф местности не является прямодействующим фактором, но имеет большое экологическое значение как косвенного фактора, перераспределяющего климатические и другие абиотические факторы. Самым ярким примером влияния рельефа является вертикальная зональность, свойственная горным районам.

Различают:

    нанорельеф – это кучки около нор животных, кочки на болотах и т.д.;

    микрорельеф – небольшие воронки, барханчики;

    мезорельеф – овраги, балки, долины рек, возвышенности, понижения;

    макрорельеф – плоскогорья, равнины, горные хребты, т.е. значительные географические рубежи, оказывающие существенное влияние на перемещение воздушных масс.

Биотические факторы. На живые организмы оказывают влияние не только абиотические факторы, но и сами живые организмы. В группу данных факторов входят: фитогенные, зоогенные и антропогенные.

Влияние биотических факторов на окружающую среду очень многообразно. В одном случае при влиянии разных видов друг на друга они не оказывают никакого действия (0), в другом случае воздействия благоприятные (+) или неблагоприятные (-).

Типы взаимоотношений видов

    Нейтрализм (0,0) – виды не оказывают влияния друг на друга;

    Конкуренция (-,-) – каждый вид оказывает неблагоприятное воздействие, подавляя другой и вытесняя более слабый;

    Мутуализм (+,+) – один из видов может нормально развиваться только в присутствии другого вида (симбиоз растений и грибов);

    Протокооперация (+,+) – сотрудничество, взаимовыгодное влияние, не такое жесткое как при мутуализме;

    Комменсализм (+, 0) один вид извлекает пользу от совместного существования;

    Аменсализм (0,-) – один вид испытывает угнетение, другой вид не угнетается;

Антропогенное влияние вписывается в данную классификацию видовых взаимоотношений. Среди биотических факторов это самый мощный. Он может быть прямого действия или косвенного, положительной или отрицательной направленности. Антропогенное влияние на абиотическую и биотическую среду в пособии рассматривается далее с точки зрения охраны природы.


Введение

Основные абиотические факторы и их характеристика

Литература


Введение


Абиотические факторы среды - это компоненты и явления неживой, неорганической природы, прямо или косвенно воздействующие на живые организмы. Естественно, что эти факторы действуют одновременно и значит, что все живые организмы попадают под их влияние. Степень присутствия или отсутствия каждого из них существенно отражается на жизнеспособности организмов, причем на разные их виды неодинаково. Надо отметить, что это очень сильно влияет на всю экосистему в целом, на ее устойчивость.

Факторы среды как по отдельности, так и в комплексе при воздействии на живые организмы заставляют их изменяться, адаптироваться к этим факторам. Эта способность носит название экологической валентности или пластичности. Пластичность, или экологическая валентность, каждого вида различна и по-разному сказывается на способности живых организмов выживать в условиях меняющихся факторов среды. Если к биотическим факторам организмы не только приспосабливаются, но и могут на них воздействовать, изменяя другие живые организмы, то с абиотическими факторами среды это невозможно: организм может к ним приспособиться, но не в состоянии оказать на них сколько-нибудь значимое обратное влияние.

Абиотическими факторами среды называются условия, напрямую не связанные с жизнедеятельностью организмов. К числу наиболее важных абиотических факторов можно отнести температуру, свет, воду, состав атмосферных газов, структуру почвы, состав биогенных элементов в ней, рельеф местности и т.п. Эти факторы могут воздействовать на организмы как непосредственно, например свет или тепло, так и косвенно, например рельеф местности, обусловливающий действие прямых факторов, света, ветра, влаги и пр. Совсем недавно было открыто влияние изменений солнечной активности на биосферные процессы.

1. Основные абиотические факторы и их характеристика


Среди абиотических факторов выделяют:

Климатические (влияние температуры, света и влажности);

Геологические (землетрясение, извержение вулканов, движение ледников, сход селей и лавин и др.);

Орографические (особенности рельефа местности, где обитают изучаемые организмы).

Рассмотрим действие основных прямодействующих абиотических факторов: света, температуры и наличия воды. Температура, свет и влажность являются наиболее важными факторами внешней среды. Эти факторы закономерно изменяются как в течение года и суток, так и в связи с географической зональностью. К этим факторам организмы обнаруживают зональный и сезонный характер приспособления.

Свет как экологический фактор

Солнечное излучение является основным источником энергии для всех процессов, происходящих на Земле. В спектре солнечного излучения можно выделить три области, различные по биологическому действию: ультрафиолетовую, видимую и инфракрасную. Ультрафиолетовые лучи с длиной волны менее 0,290 мкм губительны для всего живого, но они задерживаются озоновым слоем атмосферы. До поверхности Земли доходит лишь небольшая часть более длинных ультрафиолетовых лучей (0,300 - 0,400 мкм). Они составляют около 10% лучистой энергии. Эти лучи обладают высокой химической активностью - при большой дозе могут повреждать живые организмы. В небольших количествах, однако, они необходимы, например, человеку: под влиянием этих лучей в организме человека образуется витамин Д, а насекомые зрительно различают эти лучи, т.е. видят в ультрафиолетовом свете. Они могут ориентироваться по поляризованному свету.

Видимые лучи с длиной волны от 0,400 до 0,750 мкм (на их долю приходится большая часть энергии - 45% - солнечного излучения), достигающие поверхности Земли, имеют особенно большое значение для организмов. Зеленые растения за счет этого излучения синтезируют органическое вещество (осуществляют фотосинтез), которое используют в пищу все остальные организмы. Для большинства растений и животных видимый свет является одним из важных факторов среды, хотя есть и такие, для которых свет не является обязательным условием существования (почвенные, пещерные и глубоководные виды приспособления к жизни в темноте). Большинство животных способны различать спектральный состав света - обладать цветовым зрением, а у растений цветки имеют яркую окраску для привлечения насекомых-опылителей.

Инфракрасные лучи с длиной волны более 0,750 мкм глаз человека не воспринимает, но они являются источником тепловой энергии (45% лучистой энергии). Эти лучи поглощаются тканями животных и растений, вследствие чего ткани нагреваются. Многие хладнокровные животные (ящерицы, змеи, насекомые) используют солнечный свет для повышения температуры тела (некоторые змеи и ящерицы являются экологически теплокровными животными). Световые условия, связанные с вращением Земли, имеют отчетливую суточную и сезонную периодичность. Почти все физиологические процессы у растений и животных имеют суточный ритм с максимумом и минимумом в определенные часы: например, в определенные часы суток цветок у растений открывается и закрывается, а у животных возникли приспособления к ночной и дневной жизни. Длина дня (или фотопериод), имеет огромное значение в жизни растений и животных.

Растения, в зависимости от условий обитания, адаптируются к тени - теневыносливые растения или, напротив, к солнцу - светолюбивые растения (к примеру, хлебные злаки). Однако сильное яркое солнце (яркость выше оптимальной) подавляет фотосинтез, поэтому в тропиках трудно получить высокий урожай культур, богатый белком. В умеренных зонах (выше и ниже экватора) цикл развития растений и животных приурочен к сезонам года: подготовка к изменению температурных условий осуществляется на основе сигнала - изменения длины дня, которая в определенное время года в данном месте всегда одинакова. В результате этого сигнала включаются физиологические процессы, приводящие к росту, цветению растений весной, плодоношения летом и сбрасывания листьев осенью; у животных - к линьке, накоплению жира, миграции, размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых. Изменение длины дня животные воспринимают с помощью органов зрения. А растения - с помощью специальных пигментов, расположенных в листьях растений. Раздражения воспринимаются с помощью рецепторов, вследствие чего происходит ряд биохимических реакций (активация ферментов или выделение гормонов), а затем проявляются физиологические или поведенческие реакции.

Изучение фотопериодизма растений и животных показало, что реакция организмов на свет основана не просто на количестве получаемого света, а на чередовании в течение суток периодов света и темноты определенной длительности. Организмы способны измерять время, т.е. обладают биологическими часами - от одноклеточных до человека. Биологические часы - также управляются сезонными циклами и другими биологическими явлениями. Биологические часы определяют суточный ритм активности как целых организмов, так и процессов, происходящих даже на уровне клеток, в частности клеточных делений.

Температура как экологический фактор

Все химические процессы, протекающие в организме, зависят от температуры. Изменения тепловых условий, часто наблюдаемые в природе, глубоко отражаются на росте, развитии и других проявлениях жизнедеятельности животных и растений. Различают организмы с непостоянной температурой тела - пойкилотермные и организмы с постоянной температурой тела - гомойтермные. Пойкилотермные животные целиком зависят от температуры окружающей среды, тогда как гомойтермные способны поддерживать постоянную температуру тела независимо от изменений температуры окружающей среды. Подавляющее большинство наземных растений и животных в состоянии активной жизнедеятельности не переносит отрицательной температуры и погибает. Верхний температурный предел жизни неодинаков для разных видов - редко выше 40-45 оС. Некоторые цианобактерии и бактерии обитают при температурах 70-90 оС, в горячих источниках могут жить и некоторые моллюски (до 53 оС). Для большинства наземных животных и растений оптимум температурных условий колеблется в довольно узких пределах (15-30 оС). Верхний порог температуры жизни определяется температурой свертывания белков, поскольку необратимое свертывание белков (нарушение структуры белков) возникает при температуре около 60 oС.

Пойкилотермные организмы в процессе эволюции выработали различные приспособления к изменяющимся температурным условиям среды. Главным источником поступления тепловой энергии у пойкилотермных животных - внешнее тепло. У пойкилотермных организмов выработались различные приспособления к низкой температуре. Некоторые животные, например, арктические рыбы, обитающие постоянно при температуре -1,8 oС, содержат в тканевой жидкости вещества (гликопротеиды), препятствующие образованию кристаллов льда в организме; у насекомых накапливается для этих целей глицерин. Другие животные, наоборот, увеличивают теплопродукцию организма за счет активного сокращения мускулатуры - так они повышают температуру тела на несколько градусов. Третьи регулируют свой теплообмен за счет обмена тепла между сосудами кровеносной системы: сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи и несущими охлажденную кровь (такое явление свойственно холодноводным рыбам). Адаптивное поведение проявляется в том, что многие насекомые, рептилии и амфибии выбирают места на солнце для обогрева или меняют различные позы для увеличения поверхности обогрева.

У ряда холоднокровных животных температура тела может меняться в зависимости от физиологического состояния: к примеру, у летающих насекомых внутренняя температура тела может подниматься на 10-12 oС и более вследствие усиленной работы мышц. У общественных насекомых, особенно у пчел, развился эффективный способ поддержания температуры путем коллективной терморегуляции (в улье может поддерживаться температура 34-35 oС, необходимая для развития личинок).

Пойкилотермные животные способны приспосабливаться и к высоким температурам. Это происходит также разными способами: теплоотдача может происходить за счет испарения влаги с поверхности тела или со слизистой верхних дыхательных путей, а также за счет подкожной сосудистой регуляции (например, у ящериц скорость тока крови по сосудам кожи увеличивается при повышении температуры).

Наиболее совершенная терморегуляция наблюдается у птиц и млекопитающих - гомойтермных животных. В процессе эволюции они приобрели способность поддерживать постоянную температуру тела благодаря наличию четырехкамерного сердца и одной дуги аорты, что обеспечило полное разделение артериального и венозного кровотока; высокого обмена веществ; перьевого или волосяного покрова; регуляции теплоотдачи; хорошо развитой нервной системы приобрели способность к активной жизни при разной температуре. У большинства птиц температура тела несколько выше 40 oС, а у млекопитающих - несколько ниже. Весьма важное значение для животных имеет не только способность к терморегуляции, но и адаптивное поведение, постройка специальных убежищ и гнезд, выбор места с более благоприятной температурой и т.п. Они также способны приспосабливаться к низким температурам несколькими путями: кроме перьевого или волосяного покрова, теплокровные животные с помощью дрожи (микросокращения внешне неподвижных мышц) уменьшают теплопотери; при окислении бурой жировой ткани у млекопитающих образуется дополнительная энергия, поддерживающая обмен веществ.

Приспособление теплокровных к высоким температурам во многом сходно с аналогичными приспособлениями холоднокровных - потоотделение и испарение воды со слизистой рта и верхних дыхательных путей, у птиц - только последний способ, так как у них нет потовых желез; расширение кровеносных сосудов, расположенных близко к поверхности кожи, что усиливает теплоотдачу (у птиц этот процесс протекает в неоперенных участках тела, например через гребень). Температура, как и световой режим, от которого она зависит, закономерно меняется в течение года и в связи с географической широтой. Поэтому все приспособления более важны для обитания при отрицательных температурах.

Вода как экологический фактор

Вода играет исключительную роль в жизни любого организма, поскольку она является структурным компонентом клетки (на долю воды приходится 60-80% массы клетки). Значение воды в жизни клетки определяется ее физико-химическими свойствами. Вследствие полярности молекула воды способна притягиваться к любым другим молекулам, образуя гидраты, т.е. является растворителем. Многие химические реакции могут протекать происходить только в присутствии воды. Вода является в живых системах тепловым буфером, поглощая тепло при переходе из жидкого состояния в газообразное, тем самым предохраняя неустойчивые структуры клетки от повреждения при кратковременном освобождении тепловой энергии. В связи с этим она производит охлаждающий эффект при испарении с поверхности и регулирует температуру тела. Теплопроводные свойства воды определяют ее ведущую роль терморегулятора климата в природе. Вода медленно нагревается и медленно охлаждается: летом и днем вода морей океанов и озер нагревается, а ночью и зимой также медленно охлаждается. Между водой и воздухом происходит постоянный обмен углекислым газом. Кроме того, вода выполняет транспортную функцию, перемещая вещества почвы сверху вниз и обратно. Роль влажности для наземных организмов обусловлена тем, что осадки распределяются на земной поверхности в течение года неравномерно. В засушливых районах (степи, пустыни) растения добывают себе воду с помощью сильно развитой корневой системы, иногда очень длинных корней (у верблюжьей колючки - до 16 м), достигающих влажного слоя. Высокое осмотическое давление клеточного сока (до 60-80 атм), увеличивающее сосущую силу корней, способствует удержанию воды в тканях. В сухую погоду растения снижают испарение воды: у пустынных растений утолщаются покровные ткани листа, либо на поверхности листьев развивается восковой слой или густое опушение. Ряд растений достигает снижения влаги уменьшением листовой пластинки (листья превращаются в колючки, часто растения полностью теряют листья - саксаул, тамариск и др.).

В зависимости от требований, предъявляемых к водному режиму, среди растений различают следующие экологические группы:

Гидратофиты - растения постоянно живущие в воде;

Гидрофиты - растения лишь частично погружаемые в воду;

Гелофиты - болотные растения;

Гигрофиты - наземные растения, обитающие в чрезмерно увлажненных местах;

Мезофиты - предпочитают умеренное увлажнение;

Ксерофиты - растения, приспособленные к постоянном недостатку влаги; среди ксерофитов различают:

Суккуленты - накапливающие воду в тканях своего тела (сочные);

Склерофиты - теряющие значительное количество воды.

Многие животные пустынь способны обходиться без питьевой воды; некоторые быстро и долго могут бегать, совершая длинные миграции на водопой (сайгаки, антилопы, верблюды и др.); часть животных добывает воду из пищи (насекомые, пресмыкающиеся, грызуны). Жировые отложения пустынных животных могут служить своеобразным резервом воды в организме: при окислении жиров образуется вода (отложения жира в горбе верблюдов или подкожные отложения жира у грызунов). Малопроницаемые покровы кожи (например, у пресмыкающихся) защищают животных от потери влаги. Многие животные перешли к ночному образу жизни или скрываются в норах, избегая иссушающего действия низкой влажности и перегрева. В условиях периодической сухости ряд растений и животных переходят в состояние физиологического покоя - растения приостанавливают рост и сбрасывают листья, животные впадают в спячку. Эти процессы сопровождаются пониженным обменом веществ в период сухости.

абиотический природа биосферный солнечный

Литература


1. http://burenina.narod.ru/3-2.htm

Http://ru-ecology.info/term/76524/

Http://www.ecology-education.ru/index.php?action=full&id=257

Http://bibliofond.ru/view.aspx?id=484744


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Важнейшие абиотические факторы и адаптация к ним живых организмов

    Дайте характеристику света как абиотического фактора. Приведите классификацию экологических классов растений по отношению к свету.

    Охарактеризуйте температуру как абиотический фактор. Объясните экологический смысл правил Бергмана и Аллена (приведите примеры).

    В чем состоит различие между пойкилотермными и гомойотермными организмами?

    Как формулируется биоклиматический закон А. Хопкинса? Дайте ему экологическое объяснение.

    Охарактеризуйте влажность как абиотический фактор. Приведите примеры влаго- и сухолюбивых растений и животных, а также предпочитающих умеренную влажность.

Среди основных абиотических факторов рассмотрим свет , температуру и влажность .

Свет.
В свое время французский астроном Камиль Фламмарион (1842-1925) написал: "Мы об этом не думаем, но все, что ходит, двигается, живет на нашей планете, есть дитя Солнца" .

Действительно, только под влиянием света осуществляется важнейший в биосфере процесс фотосинтеза, который в общем виде может быть представлен следующим образом:

Где А - донор электронов.

У зеленых растений (высших растений и водорослей) донором электронов является вода (кислород), поэтому в результате фотосинтеза образуется кислород:

У бактерий роль донора электронов могут выполнять, например, сероводород (сера), органические вещества. Так, у зеленых и пурпурных серобактерий идет следующий процесс:

В отношении света организмы стоят перед дилеммой: с одной стороны, прямое воздействие света на клетку может быть смертельно для организма, с другой - свет служит первичным источником энергии, без которого невозможна жизнь.

Видимый свет оказывает на организмы смешанное действие: красные лучи - тепловое воздействие; синие и фиолетовые лучи - изменяют скорость и направление биохимических реакций. В целом свет влияет на скорость роста и развития растений, на интенсивность фотосинтеза, на активность животных, вызывает изменение влажности и температуры среды, является важным фактором, обеспечивающим суточные и сезонные биологические циклы. Каждое местообитание характеризуется определенным световым режимом, определяемым интенсивностью (силой), количеством и качеством света.

Интенсивность (сила) света измеряется энергией, приходящейся на единицу площади в единицу времени: Дж/м2Чс; Дж/см2Чс. На этот фактор сильно влияют особенности рельефа. Самым интенсивным является прямой свет, однако более полно растениями используется рассеянный свет.

Количество света определяется суммарной радиацией. От полюсов к экватору количество света увеличивается. Для определения светового режима необходимо учитывать и количество отраженного света, так называемое альбедо. Альбедо (от лат. albus - белый) - отражающая способность поверхностей различных тел - выражается в процентах от общей радиации и зависит от угла падения лучей и свойств отражающей поверхности. Например, альбедо чистого снега - 85%, загрязненного - 40-50%, черноземной почвы - 5-14%, светлого песка - 35-45%, полога леса - 10-18%, зеленых листьев клена - 10%, осенних пожелтевших листьев - 28%.

По отношению к свету как экологическому фактору различают следующие группы растений: гелиофиты (от греч. helios - солнце, phyton - растение), сциофиты (от греч. skia - тень) и теневыносливые растения (факультативные гелиофиты).

    Световые растения (гелиофиты) - обитают на открытых местах с хорошей освещенностью и в лесной зоне встречаются редко. Процесс фотосинтеза начинает преобладать над процессом дыхания только при высокой освещенности (пшеница, сосна, лиственница). Цветки таких светолюбивых растений, как подсолнечник, козлобородник, череда, поворачиваются за солнцем.

    Теневые растения (сциофиты) - не выносят сильного освещения и живут под пологом леса в постоянной тени (это в основном лесные травы, папоротники, мхи, кислица). На вырубках при сильном освещении они проявляют явные признаки угнетения и часто погибают.

    Теневыносливые растения (факультативные гелиофиты) - могут жить при хорошем освещении, но легко переносят и затемненные места (большинство растений лесов, луговые растения, лесные травы и кустарники).

Теневыносливые древесные породы и теневые травянистые растения отличаются мозаичным расположением листьев. У эвкалиптов листья обращены к свету ребром. У деревьев световые и теневые листья (располагаются соответственно по поверхности и внутри кроны) - хорошо освещаемые и затененные - имеют анатомические различия. Световые листья толще и грубее, иногда они блестящие, что способствует отражению света. Теневые листья обычно матовые, неопушенные, тонкие, с очень нежной кутикулой или вовсе без нее (кутикула - наружная пленка, покрывающая эпидермис).

В лесу теневыносливые деревья образуют густо сомкнутые насаждения. Под их пологом растут еще более теневыносливые деревья и кустарники, а ниже - теневые кустарнички и травы. На рисунке показаны две сосны: одна из них росла на открытом пространстве при хорошем освещении (1), а другая в густом лесу (2).

Наибольшее значение свет как средство ориентации имеет в жизни животных. Уже у простейших появляются светочувствительные органеллы. Так, эвглена зеленая с помощью светочувствительного "глазка" реагирует на степень освещенности среды. Начиная с кишечнополостных, практически у всех животных развиваются светочувствительные органы - глаза, имеющие то или иное строение.

Биолюминесценцией называется способность живых организмов светиться. Происходит это в результате окисления сложных органических соединений при участии катализаторов обычно в ответ на раздражения, поступающие из внешней среды. Световые сигналы, испускаемые рыбами, головоногими моллюсками и другими гидробионтами, а также некоторыми организмами наземно-воздушной среды (например, жуками семейства светляков), служат для привлечения особей противоположного пола, приманивания добычи или отпугивания хищников, ориентации в стае и др.

Важным экологическим фактором является температура.

Температура.
Одним из наиболее важных факторов, определяющих существование, развитие и распространение организмов по земному шару, является температура. Важно не только абсолютное количество тепла, но и его временнoе распределение, т. е. тепловой режим.
Растения не обладают собственной температурой тела: их анатомо-морфологические и физиологические механизмы термо-
регуляции направлены на защиту организма от вредного воздействия неблагоприятных температур.

В зоне высоких температур при пониженной влажности (тропические и субтропические пустыни) исторически сформировался своеобразный морфологический тип растений с незначительной листовой поверхностью или с полным отсутствием листьев. У многих пустынных растений образуется беловатое опушение, способствующее отражению солнечных лучей и предохраняющее их от перегрева (акация песчаная, лох узколистный).

К физиологическим приспособлениям растений, сглаживающим вредное влияние высоких температур, могут быть отнесены: интенсивность испарения - транспирация (от лат. trans - через, spiro - дышу, выдыхаю), накопление в клетках солей, изменяющих температуру свертывания плазмы, свойство хлорофилла препятствовать проникновению солнечных лучей.

В мире животных наблюдаются определенные морфологические адаптации, направленные на защиту организмов от неблагоприятного действия температур. Свидетельством этого может служить известное правило Бергмана (1847 г.), согласно которому в пределах вида или достаточно однородной группы близких видов теплокровные организмы с более крупными размерами тела распространены в более холодных областях.

Попытаемся объяснить это правило с позиций термодинамики: потеря тепла пропорциональна поверхности тела организма, а не его массе. Чем крупнее животное и компактнее его тело, тем легче поддерживать постоянную температуру (меньше удельный расход энергии), и наоборот, чем мельче животное, тем больше его относительная поверхность и теплопотери и выше удельный уровень его основного обмена, т. е. количества энергии, расходуемого организмом животного (или человека) при полном мышечном покое при такой температуре окружающей среды, при которой терморегуляция наиболее выражена.

У животных с постоянной температурой тела в холодных климатических зонах наблюдается тенденция к уменьшению площади выступающих частей тела (правило Аллена, 1877 г.).

Правило Аллена наглядно проявляется, например, при сравнении размеров ушей экологически близких видов: песца - обитателя тундры; лисицы обыкновенной - типичной для умеренных широт; фенека - обитателя пустынь Африки.
Реакция животных на тепловой режим проявляется и в изменениях пропорций отдельных органов и тела (у горностая из северных районов увеличено сердце, почки, печень и надпочечники по сравнению с такими же зверьками в местностях с более высокой температурой). Из правил Бергмана и Аллена бывают исключения.

Фенек

В зависимости от вида теплообмена различают два экологических типа животных: пойкилотермные и гомойотермные.

Пойкилотермные организмы (от греч. poikilos - разнообразный) - животные с неустойчивым уровнем обмена веществ, непостоянной температурой тела и почти полным отсутствием механизмов теплорегуляции (холоднокровные). К ним относятся беспозвоночные, рыбы, пресмыкающиеся, земноводные, т. е. большинство животных, за исключением птиц и млекопитающих.

Температура тела у них изменяется с изменением температуры окружающей среды.

Гомойотермные организмы (от греч. homoios - одинаковый) - животные с более высоким и устойчивым уровнем обмена веществ, в процессе которого осуществляется терморегуляция и обеспечивается относительно постоянная температура тела (теплокровные). К ним относятся птицы и млекопитающие. Температура тела поддерживается на относительно постоянном уровне.

В свою очередь, пойкилотермных животных можно разделить на эвритермных, ведущих активный образ жизни в сравнительно широком температурном диапазоне, и стенотермных, не переносящих значительных колебаний температур.

Механизмы терморегуляции бывают химические и физические.

Химический механизм обусловлен интенсивностью реакций в организме и осуществляется рефлекторным путем:

Физический механизм терморегуляции обеспечивают теплоизолирующие покровы (мех, перья, жировой слой), деятельность потовых желез, испарение влаги при дыхании, сосудистая регуляция кровообращения.

У пойкилотермных животных интенсивность обмена веществ прямо пропорциональна внешней температуре, у гомойотермных - наоборот, при ее понижении возрастают потери тепла и в ответ активизируются обменные процессы, повышается теплопродукция. Интенсивность метаболизма (обменных процессов) при гомойотермии обратно пропорциональна внешним температурам. Однако такая закономерность прослеживается лишь в определенных пределах. Повышение или понижение температуры относительно порогового значения вызывает перегрев или переохлаждение животного и в итоге его гибель.

Промежуточное положение между пойкилотермными и гомойотермными занимают гетеротермные животные. У них в активном состоянии поддерживается относительно высокая и постоянная температура тела, а в неактивном - температура тела мало отличается от внешней. У этих животных во время спячки или глубокого сна уровень обмена веществ падает, и температура тела лишь незначительно превышает температуру среды. Типичными представителями гетеротермных животных являются суслики, ежи, летучие мыши, медведи, стрижи, утконосы, ехидны, кенгуру.

Рассмотрим пример с насекомыми, представителями пойкилотермных животных (см. рисунок).

Кривая П. И. Бахметьева

При t° +10°C у насекомых наступает оцепенение, при t° 0°C - переохлаждение. Оно продолжается до момента кристаллизации воды, которая сопровождается скачком температуры. После резкого ее повышения начинаются процессы, ведущие к ухудшению физиологического состояния организма. Физиологическое состояние насекомого в процессе охлаждения зависит от скорости понижения температуры. При медленном охлаждении в клетках образуются кристаллы льда, которые разрывают их оболочку. При очень быстром охлаждении центры кристаллизации не успевают образоваться, и формируется стекловидная структура. В результате цитоплазма не повреждается. Таким образом, глубокое, но очень быстрое охлаждение вызывает временную, обратимую приостановку всех жизненных процессов организма. Подобное состояние, получившее название анабиоз, наблюдается у вирусов, бактерий, беспозвоночных, земноводных, пресмыкающихся, лишайников, мхов. Явление анабиоза впервые было обнаружено и описано А. Левенгуком (1701 г.).

Изучение анабиоза послужило толчком к развитию различных криотехнологий (от греч. kryos - холод, мороз), например, криоконсервации. Этот метод широко используется в биологии, медицине, сельском хозяйстве, в практике длительного хранения консервированной крови, спермы для искусственного осеменения сельскохозяйственных животных, различных тканей и органов для трансплантации (от лат. transplantatio - пересаживание), культур, бактерий, вирусов.

Температурный фактор имеет важное значение в распределении живых организмов на Земле и тем самым обусловливает заселенность ими разных природных зон. В 1918 г. А. Хопкинс сформ улировал биоклиматический закон. Он установил, что существует закономерная, тесная связь развития фенологических (сезонных) явлений с широтой, долготой и высотой местности над уровнем моря.
Он подсчитал, что
по мере продвижения на север, восток и в горы время наступления периодических явлений в жизнедеятельности организмов запаздывает на 4 дня на каждый градус широты, 5 градусов долготы и примерно на 100 м высоты.

Одной из важных закономерностей в распределении современных организмов служит их биполярность - географическое распределение наземной и морской флоры и фауны, при котором один и тот же вид обитает в холодных и умеренных широтах обоих полушарий, но отсутствует в тропическом поясе (беззубые киты, ушастые тюлени и др.).

Не менее важным фактором окружающей среды является влажность.

Влажность.
Вода является важнейшим экологическим фактором в жизни живых организмов и их постоянной составной частью. Все живое Земли включает воду, например, медузы содержат 95-99% воды, кукуруза 70%, зерновые злаки 87%. Даже в амбарном долгоносике, питающемся сухим зерном, содержится 46% воды. В эмбрионе человека 97% воды, после его рождения - 64-77%. У мужчин в возрасте от 18 до 50 лет в организме содержится ~ 61% воды, у женщин 54%.

За свою жизнь человек выпивает до 50-77 м3 воды (за сутки ~ 2,5-3 л). В целом за сутки человек теряет 2-2,5 л воды: 800-

1300 мл с мочой, около 200 мл - с испражнениями и 600 мл с поверхности тела и при дыхании. С потерей 1-1,5 л воды у человека появляется жажда, при расходовании 6-8% влаги от веса тела он впадает в полуобморочное состояние, при дефиците 10-12% наступает смерть.

В различные периоды развития потребность растений в воде неодинакова, особенно у разных видов; меняется она и в зависимости от климата и типа почвы. Например, злакам в период прорастания семян и их созревания нужно меньше влаги, чем во время их интенсивного роста. Для каждой фазы роста и стадии развития любого вида растений можно выделить критический период, когда недостаток воды особенно отрицательно сказывается на его жизнедеятельности. Влажность среды часто является фактором, лимитирующим численность и распространение организмов по земному шару. Например, бук может жить на сравнительно сухой почве, но ему необходима достаточно высокая влажность воздуха. У животных весьма важную роль играют проницаемость покровов и механизмы, регулирующие водный обмен.

Различают абсолютную влажность воздуха, представляющую собой количество газообразной воды (пара) в граммах в 1 м3 воздуха, и относительную. Относительная влажность характеризует степень насыщения воздуха парами воды при определенной температуре и выражается в процентах как отношение абсолютной влажности к максимальной влажности (массе водяных паров в граммах, способных создать полное насыщение в 1 м3 воздуха)

где: r - относительная влажность, %;
m - масса пара, фактически содержащегося в 1 м3 воздуха (абсолютная влажность), г;
mнас - масса 1 м3 насыщенного пара при данной температуре, г.

Важное значение для организмов имеет дефицит насыщения воздуха водяными парами, т. е. разность между максимальной и абсолютной влажностью при данной температуре:

d = mнас - m.

При разных температурах дефицит насыщения воздуха водяными парами неодинаков при одной и той же влажности. Чем выше температура, тем воздух суше, и тем интенсивнее в нем происходит транспирация (испарение воды листьями и другими частями растений).

Сезонное распределение влаги в течение года, а также ее суточное колебание тоже исключительно важно для жизнедеятельности организмов.

По отношению к водному режиму выделяют следующие экологические группы растений и животных: влаголюбивые, сухолюбивые и предпочитающие умеренную влажность . Среди растений различают:

Среди наземных животных различают:

    Гидрофилы - влаголюбивые животные (мокрицы, ногохвостки, комары, наземные планарии, наземные моллюски и амфибии).

    Мезофилы - обитают в районах с умеренной влажностью (озимая совка, многие насекомые, птицы, млекопитающие).

    Ксерофилы - это сухолюбивые животные, не переносящие высокой влажности (верблюды, пустынные грызуны и пресмыкающиеся).

Например, слоновая черепаха запасает воду в мочевом пузыре, некоторые млекопитающие избегают дефицита влаги путем отложения жиров, при окислении которых образуется метаболическая вода. За счет метаболической воды живут многие насекомые, верблюды, курдючные овцы, жирнохвостые тушканчики и др.

Введение

1. Свет как экологический фактор. Роль света в жизни организмов

2. Температура как экологический фактор

3. Влажность как экологический фактор

4. Эдафические факторы

5. Различные среды жизни

Заключение

Список использованной литературы

Введение

На Земле существует огромное разнообразие условий сред жизни, что обеспечивает разнообразие экологических ниш и их «заселение». Однако, не смотря это разнообразие, различают четыре качественно различные среды жизни, обладающие специфическим набором экологических факторов, а следовательно - требующих и специфического набора адаптаций . Вот эти среды жизни: наземно-воздушная (суша); вода; почва; другие организмы.

Каждый вид адаптирован к специфическому для него комплексу условий среды – экологической нише.

Каждый вид приспособлен к своей специфической среде, к определенной пище, хищникам, температуре, солености воды и другим элементам внешнего мира, без которых он не может существовать.

Для существования организмов требуется комплекс факторов. Потребность организма в них различна, но каждый в определенной степени лимитирует его существование.

Отсутствие (недостаток) некоторых экологических факторов может быть компенсировано другими близкими (аналогичным) факторами. Организмы не являются «рабами» условий среды – они в определенной степени сами и приспосабливаются, и изменяют условия среды так, чтобы ослабить недостаток тех или иных факторов.

Отсутствие в среде физиологически необходимых факторов (света, воды, углекислого газа, питательных веществ) не может быть компенсировано (заменено) другими.

1. Свет как экологический фактор. Роль света в жизни организмов

Свет, есть одна из форм энергии. По первому закону термодинамики, или закону сохранения энергии, энергия может переходить из одной формы в другую. По этому закону, организмы являются термодинамической системой постоянно обменивающейся с окружающей средой энергией и веществом. Организмы, на поверхности Земли подвергаются воздействию потока энергии, в основном солнечной энергий, а также и длинноволного теплового излучения космических тел. Оба эти фактора определяют климатические условия среды (температура, скорость испарения воды, движение воздуха и воды). На биосферу из космоса падает солнечный свет с энергией 2 кал. на 1см 2 в 1 мин. Эта так называемая солнечная постоянная. Этот свет, проходя через атмосферу, ослабляется и до поверхности Земли в ясный полдень может дойти не более 67% его энергии, т.е. 1,34 кал. на см 2 в 1мин. Проходя через облачный покров, воду и растительность, солнечный свет еще больше ослабляется, и в нем значительно изменяется распределение энергии по разным участкам спектра.

Степень ослабления солнечного света и космического излучения зависит от длины волны (частоты) света. Ультрафиолетовое излучение с длиной волны менее 0,3 мкм почти не проходит через озоновый слой (на высоте около 25 км). Такое излучение опасно для живого организма в частности для протоплазмы.

В живой природе свет единственный источник энергии, все растения, кроме бактерий фотосинтезируют, т.е. синтезируют органические вещества из неорганических веществ (т.е. из воды, минеральных солей и СО 2 - при помощи лучистой энергии в процессе ассимиляции). Все организмы зависят в питании от земных фотосинтезирующих т.е. хлорофиллоносных растений.

Свет как экологический фактор делится на ультрафиолетовый с длиной волны - 0,40 - 0,75 мкм и инфракрасный с длиной волны больше этих величии.

Действие этих факторов зависит от свойства организмов. Каждый вид организма адаптирован к тому или иному спектру длиной волны света. Одни виды организмов адаптировались к ультрафиолетовым, а другие к инфракрасным.

Некоторые организмы способны различить длину волны. Они обладают специальными световоспринимаемыми системами и имеют цветное зрение, которые имеют огромное значение в их жизнедеятельности. Многие насекомые чувствительны к коротковолновому излучение, которое человек не воспринимает. Ночные бабочки хорошо воспринимают ультрафиолетовые лучи. Пчелы и птицы точно определяют свое местонахождение и ориентируются на местности даже ночью.

Организмы сильно реагируют и на интенсивность света. По этим признакам растения делятся на три экологические группы:

1. Светолюбивые, солнцелюбивые или гелиофиты - которые способны нормально развиваться только под солнечными лучами.

2. Тенелюбивые, или сциофиты - это растения нижних ярусов лесов и глубоководные растения, например, ландыши и другие.

При снижении интенсивности света замедляется и фотосинтез. У всех живых организмов существуют пороговые чувствительности интенсивности света, а также к другим экологическим факторам. У различных организмов пороговая чувствительность к экологическим факторам неодинакова. Например, интенсивный свет тормозит развитие мух дрозофилл, даже вызывает их гибель. Не любят свет и тараканы и другие насекомые. У большинства фотосинтетических растений при слабой интенсивности света идет торможение синтеза белков, а у животных тормозятся процессы биосинтеза.

3. Теневыносливые или факультативные гелиофиты. Растения которые хорошо растут и в тени и на свету. У животных эти свойства организмов называются светолюбивые (фотофилы), тенелюбивые (фотофобы), эврифобные - стенофобные.

2. Температура как экологический фактор

Температура является важнейшим экологическим фактором. Температура оказывает огромное влияние на многие стороны жизнедеятельности организмов их географии распространения, размножения и другие биологические свойства организмов зависящие в основном от температуры. Диапазон, т.е. пределы температур в которых может существовать жизнь, колеблется примерно от -200°С до +100°С, иногда обнаруживается существование бактерии в горячих источниках при температуре 250°С. В действительности, большинство организмов могут существовать при еще более узком диапазоне температур.

Некоторые виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться в горячих источниках при температуре, близкой к точке кипения. Верхний температурный предел для бактерии горячих источников лежит около 90°С. Изменчивость температуры очень важна с экологической точки зрения.

Любой вид способен жить только в пределах определенного интервала температур, так называемые максимальной и минимальной летальной температурами. За пределами этих критических крайних температур, холод или жара, наступает смерть организма. Где-то между ними находится оптимальная температура, при которой жизнедеятельность всех организмов, живого вещества в целом идет активно.

По толерантности организмов к температурному режиму они делятся на эвритермные и стенотермные, т.е. способные переносить колебание температуры в широких пределах или узких пределах. Например, лишайники и многие бактерии могу жить при различной температуре, или орхидеи и другие теплолюбивые растения тропических поясов - являются стенотермными.

Некоторые животные способны поддерживать постоянную температуру тела, не зависимо от температуры окружающей среды. Такие организмы называются гомойтермными. У других животных температура тела меняется в зависимости от температуры окружающей среды. Их называют пойкилотермными. В зависимости от способа адаптации организмов к температурному режиму они делятся на две экологические группы: криофиллы - организмы приспособленные к холоду, к низким темпера турам; термофилы - или теплолюбивые.

3. Влажность как экологический фактор

Первоначально все организмы были водными. Завоевав сушу, не утратили зависимости от воды. Составной частью всех живых организмов является вода. Влажность - это количество водяного пара в воздухе. Без влажности или воды нет жизни.

Влажность - это параметр характеризующий содержание водяного пара в воздухе. Абсолютная влажность - это количество водяного пара в воздухе и зависит от температуры и давления. Это количество называется относительной влажностью (т.е. соотношение количества водяного пара в воздухе к насыщенному количеству пара при определенных условиях температуры и давления.)

В природе существует суточный ритм влажности. Влажность колеблется по вертикали и горизонтали. Этот фактор наряду со светом и температурой играет большую роль в регулировании активности организмов и их распространении. Влажность изменяет и эффект температуры.

Важным экологическим фактором является иссушение воздуха. Особенно для наземных организмов, имеет огромное значение иссушающие действие воздуха. Животные приспосабливаются, передвигаясь в защищенные места и активный образ жизни ведут ночью.

Растения поглощают воду из почвы и почти полностью (97-99%) испаряется через листья. Этот процесс называется транспирацией. Испарение охлаждает листья. Благодаря испарению идет транспорт ионов, через почву к корням, транспорт ионов между клетками и т.д.

Определенное количество влажности совершенно необходима для наземных организмов. Многие из них для нормальной жизнедеятельности нуждаются в относительной влажности 100%, и наоборот организм находящийся в нормальном состоянии, не может жить долгое время в абсолютно сухом воздухе, ибо он постоянно теряет воду. Вода есть необходимая часть живого вещества. Поэтому потеря воды в известном количестве приводит к гибели.

Растения сухого климата приспосабливается морфологическими изменениями, редукцией вегетативных органов, особенно листьев.

Наземные животные также приспосабливаются. Многие из них пьют воду, другие всасывают ее через покровы тела в жидком или парообразном состоянии. Например, большинство амфибий, некоторые насекомые и клещи. Большая часть животных пустынь никогда не пьет, они удовлетворяют свои потребности за счет воды, поступившей с пищей. Другие животные получает воду в процессе окисления жиров.

Вода для живых организмов совершенно необходима. Поэтому организмы распространяются по местообитанию в зависимости от своих потребностей: водные организмы в воде живут постоянно; гидрофиты могут жить только в очень влажных средах.

С точки зрения экологической валентности гидрофиты и гигрофиты относятся к группе стеногигров. Влажность сильно влияет на жизненные функции организмов, например, 70% относительная влажность была очень благоприятным для полевого созревания и плодовитости самок перелетной саранчи. При благоприятном размножении они причиняют огромный экономический урон посевам многих стран.

Для экологической оценки распространения организмов пользуются показателем сухости климата. Сухость служит селективным фактором для экологической классификации организмов.

Таким образом, в зависимости от особенностей влажности местного климата виды организмов распределяются по экологическим группам:

1. Гидатофиты - это водные растения.

2. Гидрофиты - это растения наземно-водные.

3. Гигрофиты - наземные растения живущие в условиях повышенной влажности.

4. Мезофиты - это растения, произрастающие при среднем увлажнении

5. Ксерофиты - это растения произрастающие с недостаточным увлажнением. Они в свою очередь делятся на: суккуленты - сочные растения (кактусы); склерофиты - это растения с узкими и мелкими листьями, и свернутыми в трубочки. Они также делятся на эуксерофиты и стипаксерофиты. Эуксерофиты - это степные растения. Стипаксерофиты - это группа узколистных дерновинных злаков (ковыль, типчак, тонконог и др.). В свою очередь мезофиты также делятся на мезогигрофиты, мезоксерофиты и т.д.

Уступая по своему значению температуре, влажность относится тем не менее к основным экологическим факторам. На протяжении большей части истории живой природы органический мир был представлен исключительно водными нормами организмов. Составной частью огромного большинства живых существ является вода, и для осуществления размножения или слияния гамет почти все они нуждаются в водной среде. Сухопутные животные вынуждены создавать в своем теле искусственную водную среду для оплодотворения, а это приводят к тому, что последнее становится внутренним.

Влажность - это количество водяного пара в воздухе. Его можно выразить в граммах на кубический метр.

4. Эдафические факторы

К эдафическим факторам относится вся совокупность физических и химических свойств почвы, способных оказывать экологическое воздействие на живые организмы. Они играют важную роль в жизни тех организмов, которые тесно связаны с почвой. Особенно зависят от эдафических факторов растения.

К основным свойствам почвы, сказывающимся на жизни организмов, относятся ее физическая структура, т.е. наклон, глубина и гранулометрия, химический состав самой почвы и циркулирующих в ней веществ - газов (при этом необходимо выяснить условия ее аэрации), воды, органических и минеральных веществ, находящихся в форме ионов.

Основной характеристикой почвы, имеющий большое значение как для растений, так и для роющих животных, является размер ее частиц.

Наземные почвенные условия определяются климатическими факторами. Даже на незначительной глубине в почве царит полная темнота, и это свойство – характерная черта местообитания тех видов, которые избегают света. По мере погружения в почву колебания температуры становятся все менее значительными: за суточные изменения быстро затухают, а начиная с известной глубины сглаживаются и ее сезоны различия. Суточные температурные различия исчезают уже на глубине 50 см. По мере погружения в почву содержание кислорода в ней уменьшается, а СО 2 увеличивается. На значительной глубине условия приближаются к анаэробным, где и обитают некоторые анаэробные бактерии. Уже дождевые черви предпочитают среду с более высоким, чем в атмосфере, содержанием СО 2 .

Влажность почвы чрезвычайно важная характеристика, особенно для произрастающих на ней растений. Она зависит от многочисленных факторов: режима дождей, глубины залегания слоя, а также физических и химических свойств почвы, частицы которой в зависимости от их размера, содержания органического вещества и т.п. Флора сухих и влажных почв неодинакова и на этих почвах нельзя разводить одни и те же культуры. Фауна почвы также весьма чувствительная к ее влажности и, как правило не переносит слишком большой сухости. Общеизвестным примером служат дождевые черви и термиты. Последние иногда вынуждены снабжать водой свои колонии, проделывая подземные галереи на большой глубине. Однако слишком высокое содержание воды в почве убивает личинки насекомых в больших количествах.

Минеральные вещества, необходимые для питания растений, находятся в почве в виде растворенных в воде ионов. В почве можно обнаружить по крайней мере следы свыше 60 химических элементов. С0 2 и азот содержатся в большом количестве; содержание других, например никеля или кобальта, крайне незначительно. Некоторые ионы являются для растений ядом, другие, наоборот жизненно необходимым. Концентрация в почве ионов водорода - рН - в среднем близка к нейтральному значению. Флора таких почв особенно богата видами. Известковые и засоленные почвы имеют щелочной рН порядка 8-9; на сфагнумных торфяниках кислый рН может падать до 4.

Некоторые ионы имеют большое экологическое значение. Они могут вызвать элиминацию многих видов и, наоборот, способствовать развитию весьма своеобразных форм. Почвы, залегающие на известняках, очень богаты ионом Са +2 ; на них развивается специфическая растительность, называемая кальцефитной (в горах эдельвейс; многие виды орхидей). В отличие от этой растительности существует кальцефобная растительность. К ней относятся каштан, папоротник орляк, большинство вересковых. Такую растительность называют иногда кремневой, поскольку земли, бедные кальцием, содержат соответственно больше кремния. Фактически эта растительность не отдает предпочтение непосредственно кремнию, а просто избегает кальция. Некоторые животные испытывают органическую потребность в кальции. Известно, что куры перестают нести яйца в твердой скорлупе, если курятник расположен в местности, почва которой бедна кальцием. Зона известняков обильно заселена раковинными брюхоногими моллюсками (улитками), которые широко представлены здесь в видовом отношении, но они почти полностью исчезают на гранитных массивах.

На почвах, богатых ионом 0 3 , также развивается специфическая флора, называемая нитрофильной. Часто встречающиеся на них органические остатки, содержащие азот, разлагаются бактериями сначала до аммонийных солей, затем до нитратов и, наконец до нитратов. Растения этого типа образуют, например, густые заросли в горах возле выгонов для скота.

В почве содержатся также органические вещества, образующиеся при разложении мертвых растений и животных. Содержание этих веществ с увеличением глубины падает. В лесу, например, важным источником их поступления является подстилка из опавших листьев, причем подстилка от лиственных пород в этом отношении богаче хвойной. Ею питаются организмы деструкторы – растения сапрофиты и животные сапрофаги. Сапрофиты представлены в основном бактериями и грибами, но среди них можно встретить и высшие растения, утратившие хлорофилл в качестве вторичного приспособления. Таковы, например, орхидеи.

5. Различные среды жизни

По мнению большинства авторов, изучающих возникновение жизни на Земле, эволюционно первичной средой жизни была именно водная среда. Этому положению мы находим не мало косвенных подтверждений. Прежде всего, большинство организмов не способны к активной жизнедеятельности без поступления воды в организм или, по крайней мере, без сохранения определенного содержания жидкости внутри организма.

Пожалуй, главной отличительной особенностью водной среды является ее относительная консервативность. Скажем, амплитуда сезонных или суточных колебаний температуры в водной среде намного меньше, чем в наземно-воздушной. Рельеф дна, различие условий на различных глубинах, наличие коралловых рифов и проч. создают разнообразие условий в водной среде.

Особенности водной среды проистекают из физико-химических свойств воды. Так, большое экологическое значение имеют высокая плотность и вязкость воды. Удельная масса воды соизмерима с таковой тела живых организмов. Плотность воды примерно в 1000 раз выше плотности воздуха. Поэтому водные организмы (особенно, активно движущиеся) сталкиваются с большой силой гидродинамического сопротивления. Эволюция многих групп водных животных по этой причине шла в направлении формирования формы тела и типов движения, снижающих лобовое сопротивления, что приводит к снижению энергозатрат на плавание. Так, обтекаемая форма тела встречается у представителей различных групп организмов, обитающих в воде, - дельфинов (млекопитающих), костистых и хрящевых рыб.

Высокая плотность воды является также причиной того, что механические колебания (вибрации) хорошо распространяются в водной среде. Это имело важное значение в эволюции органов чувств, ориентации в пространстве и коммуникации между водными обитателями. Вчетверо большая, чем в воздухе, скорость звука в водной среде определяет более высокую частоту эхолокационных сигналов.

В связи с высокой плотностью водной среды ее обитатели лишены обязательной связи с субстратом, которая характерна для наземных форм и связана с силами гравитации. Поэтому есть целая группа водных организмов (как растений, так и животных), существующих без обязательной связи с дном или другим субстратом, "парящих" в водной толще.

Наземно-воздушная среда характеризуется огромным разнообразием условий существования, экологических ниш и заселяющих их организмов.

Основными особенностями назмено-воздушной среды является большая амплитуда изменения экологических факторов, неоднородность среды, действие сил земного тяготения, низкая плотность воздуха. Комплекс физико-географических и климатических факторов, свойственных определенной природной зоне, приводит к эволюционному становлению морфофизиологических адаптаций организмов к жизни в этих условиях, многообразию форм жизни.

Атмосферный воздух отличается низкой и изменчивой влажностью. Это обстоятельство во многом лимитировало (ограничивало) возможности освоения наземно-воздушной среды, а также направляло эволюцию водно-солевого обмена и структуры органов дыхания.

Почва является результатом деятельности живых организмов.

Важной особенностью почвы является также наличие определенного количества органического вещества. Оно образуется в результате отмирания организмов и входит в состав их экскретов (выделений).

Условия почвенной среды обитания определяют такие свойства почвы как ее аэрация (то есть насыщенность воздухом), влажность (присутствие влаги), теплоемкость и термический режим (суточный, сезоный, разногодичный ход температур). Термический режим, по сравнению с наземно-воздушной средой, более консервативный, особенно на большой глубине. В целом, почва отличается довольно устойчивыми условиями жизни.

Вертикальные различия характерны и для других свойств почвы, например, проникновение света, естетсвенно, зависит от глубины.

Для почвенных организмов характерны специфические органы и типы движения (роющие конечности у млекопитающих; способность к изменению толщины тела; наличие специализированных головных капсул у некоторых видов); формы тела (округлая, вольковатая, червеобразная); прочные и гибкие покровы; редукция глаз и исчезновение пигментов. Среди почвенных обитателей широко развита сапрофагия - поедание трупов других животных, гниющих остатков и т.д.

Заключение

Выход одного из экологических факторов за пределы минимальных (пороговых) или максимальных (экстремальных) значений (свойственной виду зоны толерантности) грозит гибелью организма даже при оптимальном сочетании других факторов. Примерами могут служить: появление кислородной атмосферы, ледниковый период, засуха, изменение давления при подъеме водолазов и пр.

Каждый экологический фактор неодинаково влияет на разные виды организмов: оптимум для одних может быть пессимумом для других.

Организмы, на поверхности Земли подвергаются воздействию потока энергии, в основном солнечной энергий, а также и длинноволного теплового излучения космических тел. Оба эти фактора определяют климатические условия среды (температура, скорость испарения воды, движение воздуха и воды).

Температура является важнейшим экологическим фактором. Температура оказывает огромное влияние на многие стороны жизнедеятельности организмов их географии распространения, размножения и другие биологические свойства организмов зависящие в основном от температуры.

Важным экологическим фактором является иссушение воздуха. Особенно для наземных организмов, имеет огромное значение иссушающие действие воздуха.

Уступая по своему значению температуре, влажность относится тем не менее к основным экологическим факторам. На протяжении большей части истории живой природы органический мир был представлен исключительно водными нормами организмов.

К эдафическим факторам относится вся совокупность физических и химических свойств почвы, способных оказывать экологическое воздействие на живые организмы. Они играют важную роль в жизни тех организмов, которые тесно связаны с почвой. Особенно зависят от эдафических факторов растения.

Список использованной литературы

1. Дедю И.И. Экологический энциклопедический словарь. - Кишинев: Изд-во МСЭ, 1990. - 406 с.

2. Новиков Г.А. Основы общей экологии и охраны природы. - Л.: Изд-во Ленингр. ун-та, 1979. - 352 с.

3. Радкевич В.А. Экология. - Минск: Вышейшая школа, 1983. - 320 с.

4. Реймерс Н.Ф. Экология: теория, законы, правила, принципы и гипотезы. -М.: Россия молодая, 1994. - 367 с.

5. Риклефс Р. Основы общей экологии. - М.: Мир, 1979. - 424 с.

6. Степановских А.С. Экология. - Курган: ГИПП «Зауралье», 1997. - 616 с.

7. Христофорова Н.К. Основы экологии. - Владивосток: Дальнаука, 1999. -517 с.

Напомним еще раз, что абиотические факторы - это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На Слайде 3 приведена классификация абиотических факторов.

Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение . Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов (эвритермных и стенотермных ) эти интервалы различны, для большинства из них зона оптимальных температур, при которых жизненные функции осуществляются наиболее активно и эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300 С: от -200 до +100 С. Но большинство видов и большая часть их активности приурочены к еще более узкому диапазону температур. Некоторые организмы, особенно в стадии покоя, могут существовать по крайней мере некоторое время, при очень низких температурах. Отдельные виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88 С, для сине-зеленых водорослей - 80 С, а для самых устойчивых рыб и насекомых - около 50 С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние, хотя многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно.

У водных животных диапазон толерантности к температуре обычно более узок по сравнению с наземными животными, так как диапазон колебаний температуры в воде меньше, чем на суше.

С точки зрения воздействия на живые организмы крайне важна изменчивость температуры. Температура, колеблющаяся от 10 до 20 С (в среднем составляющая 15 С), не обязательно действует на организм так же, как постоянная температура 15 С. Жизнедеятельность организмов, которые в природе обычно подвергаются воздействию переменных температур, подавляется полностью или частично или замедляется под действием постоянной температуры. С помощью переменной температуры удалось ускорить развитие яиц кузнечика в среднем на 38,6 % по сравнению с их развитием при постоянной температуре. Пока не ясно, обусловлен ли ускоряющий эффект самими колебаниями температуры или усиленным ростом, вызываемым кратковременным повышением температуры и не компенсирующимся замедлением роста при ее понижении.

Таким образом, температура является важным и очень часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных. Температура часто создает зональность и стратификацию в водных и наземных местообитаниях.

Вода физиологически необходима для любой протоплазмы. С экологической точки зрения она служит лимитирующим фактором как в наземных местообитаниях, так и в водных, где ее количество подвержено сильным колебаниям, или там, где высокая соленость способствует потере воды организмом через осмос. Все живые организмы в зависимости от потребности их в воде, а следовательно, и от различий местообитания, подразделяются на ряд экологических групп: водные или гидрофильные - постоянно живущие в воде; гигрофильные - живущие в очень влажных местообитаниях; мезофильные - отличающиеся умеренной потребностью в воде и ксерофильные - живущие в сухих местообитаниях.

Количество осадков и влажность - основные величины, измеряемые при изучении этого фактора. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается "дождевая тень", способствующая формированию пустыни. Двигаясь в глубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Нами в Юго-Западной Африке. Распределение осадков по временам года - крайне важный лимитирующий фактор для организмов. Условия, создающиеся в результате равномерного распределения осадков, совершенно иные, чем при выпадении осадков в течение одного сезона. В этом случае животным и растениям приходится переносить периоды длительной засухи. Как правило, неравномерное распределение осадков по временам года встречается в тропиках и субтропиках, где нередко хорошо выражены влажный и сухой сезоны. В тропическом поясе сезонный ритм влажности регулирует сезонную активность организмов аналогично сезонному ритму тепла и света в условиях умеренного пояса. Роса может представлять собой значительный, а в местах с малым выпадением дождей и очень важный вклад в общее количество осадков.

Влажность - параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в единице объема воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности - это отношение пара, содержащегося в воздухе, к насыщающему пару при данных температуре и давлении. Так как в природе существуют суточный ритм влажности - повышение ночью и снижение днем, и колебание ее по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Влажность изменяет эффекты высоты температуры. Например, при условиях влажности, близких к критическим, температура оказывает более важное лимитирующее влияние. Аналогично влажность играет более критическую роль, если температура близка к предельным значениям. Крупные водоемы значительно смягчают климат суши, так как для воды характерна большая скрытая теплота парообразования и таяния. Фактически существуют два основных типа климата: континентальный с крайними значениями температуры и влажности и морской, которому свойственны менее резкие колебания, что объясняется смягчающим влиянием крупных водоемов.

Доступный живым организмам запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем от поступления ее с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов.

Излучение Солнца представляет собой электромагнитные волны различной длины. Оно совершенно необходимо живой природе, так как является основным внешним источником энергии. Спектр распределения энергии излучения Солнца за пределами земной атмосферы (рис.6) показывает, что около половины солнечной энергии излучается в инфракрасной области, 40 % - в видимой и 10 % - в ультрафиолетовой и рентгеновской областях.

Надо иметь в виду то, что спектр электромагнитного излучения Солнца весьма широк (рис. 7) и его частотные диапазоны различным образом воздействуют на живое вещество. Земная атмосфера, включая озоновый слой, селективно, то есть избирательно по частотным диапазонам, поглощает энергию электромагнитного излучения Солнца и до поверхности Земли доходит в основном излучение с длиной волны от 0,3 до 3 мкм. Более длинно и коротковолновое излучение поглощается атмосферой.

С увеличением зенитного расстояния Солнца возрастает относительное содержание инфракрасного излучения (от 50 до 72 %).

Для живого вещества важны качественные признаки света - длина волны, интенсивность и продолжительность воздействия.

Известно, что животные и растения реагируют на изменение длины волны света. Цветовое зрение распространено в разных группах животных пятнисто: оно хорошо развито у некоторых видов членистоногих, рыб, птиц и млекопитающих, но у других видов тех же групп оно может отсутствовать.

Интенсивность фотосинтеза варьируется с изменением длины волны света. Например, при прохождении света через воду красная и синяя части спектра отфильтровываются и получающийся зеленоватый свет слабо поглощается хлорофиллом. Однако красные водоросли имеют дополнительные пигменты (фикоэритрины), позволяющие им использовать эту энергию и жить на большей глубине, чем зеленые водоросли.

И у наземных, и у водных растений фотосинтез связан с интенсивностью света линейной зависимостью до оптимального уровня светового насыщения, за которым во многих случаях следует снижение интенсивности фотосинтеза при высоких интенсивностях прямого солнечного света. У некоторых растений, например у эвкалипта, фотосинтез не ингибируется прямым солнечным светом. В данном случае имеет место компенсация факторов, так как отдельные растения и целые сообщества приспосабливаются к различным интенсивностям света, становясь адаптированными к тени (диатомовые, фитопланктон) или к прямому солнечному свету.

Продолжительность светового дня, или фотопериод, является "реле времени" или пусковым механизмом, включающим последовательность физиологических процессов, приводящих к росту, цветению многих растений, линьке и накоплению жира, миграции и размножению у птиц и млекопитающих и к наступлению диапаузы у насекомых. Некоторые высшие растения цветут при увеличении длины дня (растения длинного дня), другие зацветают при сокращении дня (растения короткого дня). У многих организмов, чувствительных к фотопериоду, настройку биологических часов можно изменить экспериментальным изменением фотопериода.

Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса.

Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Например, доза 2 Зв (зивера) – вызывает гибель зародышей некоторых насекомых на стадии дробления, доза 5 Зв приводит к стерильности некоторых видов насекомых, доза 10 Зв абсолютно смертельна для млекопитающих. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки.

Воздействие малых доз радиации оценить сложнее, так как они могут вызвать отдаленные генетические и соматические последствия. Например, облучение сосны дозой 0,01 Зв в сутки на протяжении 10 лет вызвало замедление скорости роста, аналогичное однократной дозе 0,6 Зв. Повышение уровня излучения в среде над фоновым приводит к повышению частоты вредных мутаций.

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК.

У высших животных не обнаружено такой простой зависимости между чувствительностью и строением клеток; для них более важное значение имеет чувствительность отдельных систем органов. Так, млекопитающие очень чувствительны даже к низким дозам радиации вследствие легкой повреждаемости облучением быстро делящейся кроветворной ткани костного мозга. Даже очень низкие уровни хронически действующего ионизирующего излучения могут вызвать в костях и в других чувствительных тканях рост опухолевых клеток, что может проявиться лишь через много лет после облучения.

Газовый состав атмосферы также является важным климатическим фактором (рис. 8). Примерно 3-3,5 млрд лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Из-за отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя. Примерно в середине палеозоя потребление кислорода сравнялось с его образованием, в этот период содержание О2 в атмосфере было близко к современному - около 20 % . Далее, с середины девона, наблюдаются колебания в содержании кислорода. В конце палеозоя произошло заметное, примерно до 5 % современного уровня, снижение содержания кислорода и повышение содержания углекислого газа, приведшие к изменению климата и, по-видимому, послужившие толчком к обильному "автотрофному" цветению, создавшему запасы ископаемого углеводородного топлива. Затем последовало постепенное возвращение к атмосфере с низким содержанием углекислого газа и высоким содержанием кислорода, после чего отношение О2/СО2 остается в состоянии так называемого колебательного стационарного равновесия.

В настоящее время атмосфера Земли имеет следующий состав: кислород ~21 %, азот ~78 %, углекислый газ ~0,03 %, инертные газы и примеси ~0,97 % . Интересно, что концентрации кислорода и углекислого газа являются лимитирующими для многих высших растений. У многих растений удается повысить эффективность фотосинтеза, повысив концентрацию углекислого газа, однако малоизвестно, что снижение концентрации кислорода также может приводить к увеличению фотосинтеза. В опытах на бобовых и многих других растениях было показано, что понижение содержания кислорода в воздухе до 5 % повышает интенсивность фотосинтеза на 50 % . Крайне важную роль играет также азот. Это важнейший биогенный элемент, участвующий в образовании белковых структур организмов. Ветер оказывает лимитирующее воздействие на активность и распространение организмов.

Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

Атмосферное давление , по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Водные условия создают своеобразную среду обитания организмов, отличающуюся от наземной прежде всего плотностью и вязкостью. Плотность воды примерно в 800 раз, а вязкость примерно в 55 раз выше, чем у воздуха. Вместе с плотностью и вязкостью важнейшими физико-химическими свойствами водной среды являются: температурная стратификация, то есть изменение температуры по глубине водного объекта и периодические изменения температуры во времени, а также прозрачность воды, определяющая световой режим под ее поверхностью: от прозрачности зависит фотосинтез зеленых и пурпурных водорослей, фитопланктона, высших растений.

Как и в атмосфере, важную роль играет газовый состав водной среды. В водных местообитаниях количество кислорода, углекислого газа и других газов, растворенных в воде и потому доступных организмам, сильно варьируется во времени. В водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности. Несмотря на лучшую растворимость кислорода в воде по сравнению с азотом, даже в самом благоприятном случае в воде содержится меньше кислорода, чем в воздухе, примерно 1 % по объему. На растворимость влияют температура воды и количество растворенных солей: при понижении температуры растворимость кислорода растет, при повышении солености - снижается. Запас кислорода в воде пополняется благодаря диффузии из воздуха и фотосинтезу водных растений. Кислород диффундирует в воду очень медленно, диффузии способствует ветер и движение воды. Как уже упоминалось, важнейшим фактором, обеспечивающим фотосинтетическую продукцию кислорода, является свет, проникающий в толщу воды. Таким образом, содержание кислорода меняется в воде в зависимости от времени суток, времени года и местоположения.

Содержание углекислого газа в воде также может сильно варьироваться, но по своему поведению углекислый газ отличается от кислорода, а его экологическая роль мало изучена. Углекислый газ хорошо растворяется в воде, кроме того, в воду поступает СО2, образующийся при дыхании и разложении, а также из почвы или подземных источников. В отличие от кислорода углекислый газ вступает в реакцию с водой:

с образованием угольной кислоты, которая реагирует с известью, образуя карбонаты СО22- и гидрокарбонаты НСО3-. Эти соединения поддерживают концентрацию водородных ионов на уровне, близком к нейтральному значению. Небольшое количество углекислого газа в воде повышает интенсивность фотосинтеза и стимулирует процессы развития многих организмов. Высокая же концентрация углекислого газа является лимитирующим фактором для животных, так как она сопровождается низким содержанием кислорода. Например, при слишком высоком содержании свободного углекислого газа в воде погибают многие рыбы.

Кислотность - концентрация водородных ионов (рН) - тесно связана с карбонатной системой. Значение рН изменяется в диапазоне 0 ? рН? 14: при рН=7 среда нейтральная, при рН<7 - кислая, при рН>7 - щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора - толерантность сообщества к диапазону рН весьма значительна. Кислотность может служить индикатором скорости общего метаболизма сообщества. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала.

Соленость - содержание карбонатов, сульфатов, хлоридов и т.д. - является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, из них около 80 % приходится на карбонаты. Содержание минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией.

Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атм (105 Па) . В самой глубокой части океана давление достигает 1000 атм (108 Па) . Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Почвой называют слой вещества, лежащий поверх горных пород земной коры. Русский ученый - естествоиспытатель Василий Васильевич Докучаев в 1870 году первым рассмотрел почву как динамическую, а не инертную среду. Он доказал, что почва постоянно изменяется и развивается, а в ее активной зоне идут химические, физические и биологические процессы. Почва формируется в результате сложного взаимодействия климата, растений, животных и микроорганизмов. Советский академик почвовед Василий Робертович Вильямс дал еще одно определение почвы - это рыхлый поверхностный горизонт суши, способный производить урожай растений. Рост растений зависит от содержания необходимых питательных веществ в почве и от ее структуры.

В состав почвы входят четыре основных структурных компонента: минеральная основа (обычно 50-60 % общего состава почвы), органическое вещество (до 10 %), воздух (15-25 %) и вода (25-30 %).

Минеральный скелет почвы - это неорганический компонент, который образовался из материнской породы в результате ее выветривания.

Свыше 50 % минерального состава почвы занимает кремнезем SiO2, от 1 до 25 % приходится на глинозем Al2О3, от 1 до 10 % - на оксиды железа Fe2О3, от 0,1 до 5 % - на оксиды магния, калия, фосфора, кальция. Минеральные элементы, образующие вещество почвенного скелета, различны по размерам: от валунов и камней до песчаных крупинок - частиц диаметром 0,02-2 мм, ила - частиц диаметром 0,002-0,02 мм и мельчайших частиц глины размером менее 0,002 мм в диаметре. Их соотношение определяет механическую структуру почвы . Она имеет большое значение для сельского хозяйства. Глины и суглинки, содержащие примерно равное количество глины и песка, обычно пригодны для роста растений, так как содержат достаточно питательных веществ и способны удерживать влагу. Песчаные почвы быстрее дренируются и теряют питательные вещества из-за выщелачивания, но их выгоднее использовать для получения ранних урожаев, так как их поверхность высыхает весной быстрее, чем у глинистых почв, что приводит к лучшему прогреванию. С увеличением каменистости почвы уменьшается ее способность удерживать воду.

Органическое вещество почвы образуется при разложении мертвых организмов, их частей и экскрементов. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения - аморфное вещество, в котором уже невозможно распознать первоначальный материал, - называется гумусом. Благодаря своим физическим и химическим свойствам гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества.

Одновременно с процессом гумификации жизненно важные элементы переходят их органических соединений в неорганические, например: азот - в ионы аммония NH4+, фосфор - в ортофосфатионы H2PO4-, сера - в сульфатионы SO42-. Этот процесс называется минерализацией.

Почвенный воздух так же как и почвенная вода, находится в порах между частицами почвы. Порозность возрастает от глин к суглинкам и пескам. Между почвой и атмосферой происходит свободный газообмен, в результате чего газовый состав обеих сред имеет сходный состав. Обычно в воздухе почвы из-за дыхания населяющих ее организмов несколько меньше кислорода и больше углекислого газа, чем в атмосферном воздухе. Кислород необходим для корней растений, почвенных животных и организмов-редуцентов, разлагающих органическое вещество на неорганические составляющие. Если идет процесс заболачивания, то почвенный воздух вытесняется водой и условия становятся анаэробными. Почва постепенно становится кислой, так как анаэробные организмы продолжают вырабатывать углекислый газ. Почва, если она небогата основаниями, может стать чрезвычайно кислой, а это наряду с истощением запасов кислорода неблагоприятно воздействует на почвенные микроорганизмы. Длительные анаэробные условия ведут к отмиранию растений.

Почвенные частицы удерживают вокруг себя некоторое количество воды, определяющей влажность почвы. Часть ее, называемая гравитационной водой, может свободно просачиваться в глубь почвы. Это ведет к вымыванию из почвы различных минеральных веществ, в том числе азота. Вода может также удерживаться вокруг отдельных коллоидных частиц в виде тонкой прочной связанной пленки. Эту воду называют гигроскопической. Она адсорбируется на поверхности частиц за счет водородных связей. Эта вода наименее доступна для корней растений и именно она последней удерживается в очень сухих почвах. Количество гигроскопической воды зависит от содержания в почве коллоидных частиц, поэтому в глинистых почвах ее намного больше - примерно 15 % массы почвы, чем в песчанистых - примерно 0,5 % . По мере того, как накапливаются слои воды вокруг почвенных частиц, она начинает заполнять сначала узкие поры между этими частицами, а затем распространяется во все более широкие поры. Гигроскопическая вода постепенно переходит в капиллярную, которая удерживается вокруг почвенных частиц силами поверхностного натяжения. Капиллярная вода может подниматься по узким порам и канальцам от уровня грунтовых вод. Растения легко поглощают капиллярную воду, которая играет наибольшую роль в регулярном снабжении их водой. В отличие от гигроскопической влаги эта вода легко испаряется. Тонкоструктурные почвы, например глины, удерживают больше капиллярной воды, чем грубоструктурные, такие, как пески.

Вода необходима всем почвенным организмам. Она поступает в живые клетки путем осмоса.

Вода также важна как растворитель для питательных веществ и газов, поглощаемых из водного раствора корнями растений. Она принимает участие в разрушении материнской породы, подстилающей почву, и в процессе почвообразовния.

Химические свойства почвы зависят от содержания минеральных веществ, которые находятся в ней в виде растворенных ионов. Некоторые ионы являются для растений ядом, другие - жизненно не-обходимы. Концентрация в почве ионов водорода (кислотность) рН>7, то есть в среднем близка к нейтральному значению. Флора таких почв особенно богата видами. Известковые и засоленные почвы имеют рН = 8...9, а торфяные - до 4. На этих почвах развивается специфическая растительность.

В почве обитает множество видов растительных и животных организмов, влияющих на ее физико-химические характеристики: бактерии, водоросли, грибы или простейшие одноклеточные, черви и членистоногие. Биомасса их в различных почвах равна (кг/га): бактерий 1000-7000, микроскопических грибов - 100-1000, водорослей 100-300, членистоногих - 1000, червей 350-1000.

В почве осуществляются процессы синтеза, биосинтеза, протекают различные химические реакции преобразования веществ, связанные с жизнедеятельностью бактерий. При отсутствии в почве специализированных групп бактерий их роль выполняют почвенные животные, которые переводят крупные растительные остатки в микроскопические частицы и таким образом делают органические вещества доступными для микроорганизмов.

Органические вещества вырабатываются растениями при использовании минеральных солей, солнечной энергии и воды. Таким образом, почва теряет минеральные вещества, которые растения взяли из нее. В лесах часть питательных веществ вновь возвращается в почву через листопад. Культурные растения за какой-то период времени изымают из почвы значительно больше биогенных веществ, чем возвращают в нее. Обычно потери питательных веществ восполняются внесением минеральных удобрений, которые в основном прямо не мо-гут быть использованы растениями и должны быть трансформированы микроорганизмами в биологически доступную форму. При отсутствии таких микроорганизмов почва теряет плодородие.

Основные биохимические процессы протекают в верхнем слое почвы толщиной до 40 см, так как в нем обитает наибольшее количество микроорганизмов. Одни бактерии участвуют в цикле превращения только одного элемента, другие - в циклах превращения многих элементов. Если бактерии минерализуют органическое вещество - разлагают органическое вещество на неорганические соединения, то простейшие уничтожают избыточное количество бактерий. Дождевые черви, личинки жуков, клещи разрыхляют почву и этим способствуют ее аэрации. Кроме того, они перерабатывают трудно расщепляемые органические вещества.

К абиотическим факторам среды обитания живых организмов относятся также факторы рельефа (топография) . Влияние топографии тесно связано с другими абиотическими факторами, так как она может сильно сказываться на местном климате и развитии почвы.

Главным топографическим фактором является высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность.

Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.

Еще один топографический фактор - экспозиция склона . В северном полушарии склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. В южном полушарии имеет место обратная ситуация.

Важным фактором рельефа является также крутизна склона . Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому здесь почвы маломощные и более сухие. Если уклон превышает 35Ь, почва и растительность обычно не образуются, а создаются осыпи из рыхлого материала.

Среди абиотических факторов особого внимания заслуживает огонь или пожар . В настоящее время экологи пришли к однозначному мнению, что пожар надо рассматривать как один из естественных абиотических факторов наряду с климатическими, эдафическими и другими факторами.

Пожары как экологический фактор бывают различных типов и оставляют после себя различные последствия. Верховые или дикие пожары, то есть очень интенсивные и не поддающиеся сдерживанию, разрушают всю растительность и всю органику почвы, последствия же низовых пожаров совершенно иные. Верховые пожары оказывают лимитирующее действие на большинство организмов - биотическому сообществу приходится начинать все сначала, с того немногого, что осталось, и должно пройти много лет, пока участок снова станет продуктивным. Низовые пожары, напротив, обладают избирательным действием: для одних организмов они оказываются более лимитирующим, для других - менее лимитирующим фактором и таким образом способствуют развитию организмов с высокой толерантностью к пожарам. Кроме того, небольшие низовые пожары дополняют действие бактерий, разлагая умершие растения и ускоряя превращение минеральных элементов питания в форму, пригодную для использования новыми поколениями растений.

Если низовые пожары случаются регулярно раз в несколько лет, на земле остается мало валежника, это снижает вероятность возгорания крон. В лесах, не горевших более 60 лет, накапливается столько горючей подстилки и отмершей древесины, что при ее воспламенении верховой пожар почти неизбежен.

Растения выработали специальные адаптации к пожару, так же, как они сделали по отношению к другим абиотическим факторам. В частности, почки злаков и сосен скрыты от огня в глубине пучков листьев или хвоинок. В периодически выгорающих местообитаниях эти виды растений получают преимущества, так как огонь способствует их сохранению, избирательно содействуя их процветанию. Широколиственные же породы лишены защитных приспособлений от огня, он для них губителен.

Таким образом, пожары поддерживают устойчивость лишь некоторых экосистем. Листопадным и влажным тропическим лесам, равновесие которых складывалось без влияния огня, даже низовой пожар может причинить большой ущерб, разрушив богатый гумусом верхний горизонт почвы, приведя к эрозии и вымыванию из нее биогенных веществ.

Вопрос "жечь или не жечь" непривычен для нас. Последствия выжигания могут быть очень разными в зависимости от времени и интенсивности. По своей неосторожности человек нередко бывает причиной увеличения частоты диких пожаров, поэтому необходимо активно бороться за пожарную безопасность в лесах и зонах отдыха. Частное лицо ни в коем случае не имеет права намеренно или случайно вызывать пожар в природе. Вместе с тем необходимо знать, что использование огня специально обученными людьми является частью правильного землепользования.

Для абиотических условий справедливы все рассмотренные законы воздействия экологических факторов на живые организмы. Знание этих законов позволяет ответить на вопрос: почему в разных регионах планеты сформировались разные экосистемы? Основная причина - своеобразие абиотических условий каждого региона.

Популяции концентрируются на определенной территории и не могут быть распространены повсюду с одинаковой плотностью, поскольку имеют ограниченный диапазон толерантности по отношению к факторам окружающей среды. Следовательно, для каждого сочетания абиотических факторов характерны свои виды живых организмов. Множество вариантов сочетаний абиотических факторов и приспособленных к ним видов живых организмов обуславливают разнообразие экосистем на планете.

  • Наземно – воздушная среда жизни и ее особенности. Адаптации организмов к обитанию в наземно-воздушной среде
  • Водная среда жизни. Адаптации организмов к водной среде
  • error: Content is protected !!