Как определить все возможные валентности элемента. Постоянная и переменная валентность

На уроках химии вы уже познакомились с понятием валентности химических элементов. Мы собрали в одном месте всю полезную информацию по этому вопросу. Используйте ее, когда будете готовиться к ГИА и ЕГЭ.

Валентность и химический анализ

Валентность – способность атомов химических элементов вступать в химические соединения с атомами других элементов. Другими словами, это способность атома образовывать определенное число химических связей с другими атомами.

С латыни слово «валентность» переводится как «сила, способность». Очень верное название, правда?

Понятие «валентность» - одно из основных в химии. Было введено еще до того, как ученым стало известно строение атома (в далеком 1853 году). Поэтому по мере изучения строения атома пережило некоторые изменения.

Так, с точки зрения электронной теории валентность напрямую связана с числом внешних электронов атома элемента. Это значит, что под «валентностью» подразумевают число электронных пар, которыми атом связан с другими атомами.

Зная это, ученые смогли описать природу химической связи. Она заключается в том, что пара атомов вещества делит между собой пару валентных электронов.

Вы спросите, как же химики 19 века смогли описать валентность еще тогда, когда считали, что мельче атома частиц не бывает? Нельзя сказать, что это было так уж просто – они опирались на химический анализ.

Путем химического анализа ученые прошлого определяли состав химического соединения: сколько атомов различных элементов содержится в молекуле рассматриваемого вещества. Для этого нужно было определить, какова точная масса каждого элемента в образце чистого (без примесей) вещества.

Правда, метод этот не без изъянов. Потому что определить подобным образом валентность элемента можно только в его простом соединении со всегда одновалентным водородом (гидрид) или всегда двухвалентным кислородом (оксид). К примеру, валентность азота в NH 3 – III, поскольку один атом водорода связан с тремя атомами азота. А валентность углерода в метане (СН 4), по тому же принципу, – IV.

Этот метод для определения валентности годится только для простых веществ. А вот в кислотах таким образом мы можем только определить валентность соединений вроде кислотных остатков, но не всех элементов (кроме известной нам валентности водорода) по отдельности.

Как вы уже обратили внимание, обозначается валентность римскими цифрами.

Валентность и кислоты

Поскольку валентность водорода остается неизменной и хорошо вам известна, вы легко сможете определить и валентность кислотного остатка. Так, к примеру, в H 2 SO 3 валентность SO 3 – I, в HСlO 3 валентность СlO 3 – I.

Аналогчиным образом, если известна валентность кислотного остатка, несложно записать правильную формулу кислоты: NO 2 (I) – HNO 2 , S 4 O 6 (II) – H 2 S 4 O 6 .

Валентность и формулы

Понятие валентности имеет смысл только для веществ молекулярной природы и не слишком подходит для описания химических связей в соединениях кластерной, ионной, кристаллической природы и т.п.

Индексы в молекулярных формулах веществ отражают количество атомов элементов, которые входят в их состав. Правильно расставить индексы помогает знание валентности элементов. Таким же образом, глядя на молекулярную формулу и индексы, вы можете назвать валентности входящих в состав элементов.

Вы выполняете такие задания на уроках химии в школе. Например, имея химическую формулу вещества, в котором известна валентность одного из элементов, можно легко определить валентность другого элемента.

Для этого нужно только запомнить, что в веществе молекулярной природы число валентностей обоих элементов равны. Поэтому используйте наименьшее общее кратное (соответсвует числу свободных валентностей, необходимых для соединения), чтобы определить неизвестную вам валентность элемента.

Чтобы было понятно, возьмем формулу оксида железа Fe 2 O 3 . Здесь в образовании химической связи участвуют два атома железа с валентностью III и 3 атома кислорода с валентностью II. Наименьшим общим кратным для них является 6.

  • Пример: у вас есть формулы Mn 2 O 7 . Вам известна валентность кислорода, легко вычислить, что наименьше общее кратное – 14, откуда валентность Mn – VII.

Аналогичным образом можно поступить и наоборот: записать правильную химическую формулу вещества, зная валентности входящих в него элементов.

  • Пример: чтобы правильно записать формулу оксида фосфора, учтем валентность кислорода (II) и фосфора (V). Значит, наименьшее общее кратное для Р и О – 10. Следовательно, формула имеет следующий вид: Р 2 О 5 .

Хорошо зная свойства элементов, которые они проявляют в различных соединениях, можно определить их валентность даже по внешнему виду таких соединений.

Например: оксиды меди имеют красную (Cu 2 O) и черную (CuО) окраску. Гидроксиды меди окрашены в желтый (CuОН) и синий (Cu(ОН) 2) цвета.

А чтобы ковалентные связи в веществах стали для вас более наглядными и понятными, напишите их структурные формулы. Черточки между элементами изображают возникающие между их атомами связи (валентности):

Характеристики валентности

Сегодня определение валентности элементов базируется на знаниях о строении внешних электронных оболочек их атомов.

Валентность может быть:

  • постоянной (металлы главных подгрупп);
  • переменной (неметаллы и металлы побочных групп):
    • высшая валентность;
    • низшая валентность.

Постоянной в различных химических соединениях остается:

  • валентность водорода, натрия, калия, фтора (I);
  • валентность кислорода, магния, кальция, цинка (II);
  • валентность алюминия (III).

А вот валентность железа и меди, брома и хлора, а также многих других элементов изменяется, когда они образуют различные химические соедения.

Валентность и электронная теория

В рамках электронной теории валентность атома определеяется на основании числа непарных электронов, которые участвуют в образовании электронных пар с электронами других атомов.

В образовании химических связей участвуют только электроны, находящиеся на внешней оболочке атома. Поэтому максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома.

Понятие валентности тесно связано с Периодическим законом, открытым Д. И. Менделеевым. Если вы внимательно посмотрите на таблицу Менделеева, легко сможете заметить: положение элемента в перодической системе и его валентность неравзрывно связаны. Высшая валентность элементов, которые относятся к одной и тоже группе, соответсвует порядковому номеру группы в периодичнеской системе.

Низшую валентность вы узнаете, когда от числа групп в таблице Менделеева (их восемь) отнимете номер группы элемента, который вас интересует.

Например, валентность многих металлов совпадает с номерами групп в таблице периодических элементов, к которым они относятся.

Таблица валентности химических элементов

Порядковый номер

хим. элемента (атомный номер)

Наименование

Химический символ

Валентность

1 Водород / Hydrogen

Гелий / Helium

Литий / Lithium

Бериллий / Beryllium

Углерод / Carbon

Азот / Nitrogen

Кислород / Oxygen

Фтор / Fluorine

Неон / Neon

Натрий / Sodium

Магний / Magnesium

Алюминий / Aluminum

Кремний / Silicon

Фосфор / Phosphorus

Сера / Sulfur

Хлор / Chlorine

Аргон / Argon

Калий / Potassium

Кальций / Calcium

Скандий / Scandium

Титан / Titanium

Ванадий / Vanadium

Хром / Chromium

Марганец / Manganese

Железо / Iron

Кобальт / Cobalt

Никель / Nickel

Медь / Copper

Цинк / Zinc

Галлий / Gallium

Германий /Germanium

Мышьяк / Arsenic

Селен / Selenium

Бром / Bromine

Криптон / Krypton

Рубидий / Rubidium

Стронций / Strontium

Иттрий / Yttrium

Цирконий / Zirconium

Ниобий / Niobium

Молибден / Molybdenum

Технеций / Technetium

Рутений / Ruthenium

Родий / Rhodium

Палладий / Palladium

Серебро / Silver

Кадмий / Cadmium

Индий / Indium

Олово / Tin

Сурьма / Antimony

Теллур / Tellurium

Иод / Iodine

Ксенон / Xenon

Цезий / Cesium

Барий / Barium

Лантан / Lanthanum

Церий / Cerium

Празеодим / Praseodymium

Неодим / Neodymium

Прометий / Promethium

Самарий / Samarium

Европий / Europium

Гадолиний / Gadolinium

Тербий / Terbium

Диспрозий / Dysprosium

Гольмий / Holmium

Эрбий / Erbium

Тулий / Thulium

Иттербий / Ytterbium

Лютеций / Lutetium

Гафний / Hafnium

Тантал / Tantalum

Вольфрам / Tungsten

Рений / Rhenium

Осмий / Osmium

Иридий / Iridium

Платина / Platinum

Золото / Gold

Ртуть / Mercury

Талий / Thallium

Свинец / Lead

Висмут / Bismuth

Полоний / Polonium

Астат / Astatine

Радон / Radon

Франций / Francium

Радий / Radium

Актиний / Actinium

Торий / Thorium

Проактиний / Protactinium

Уран / Uranium

H I

(I), II, III, IV, V

I, (II), III, (IV), V, VII

II, (III), IV, VI, VII

II, III, (IV), VI

(I), II, (III), (IV)

I, (III), (IV), V

(II), (III), IV

(II), III, (IV), V

(II), III, (IV), (V), VI

(II), III, IV, (VI), (VII), VIII

(II), (III), IV, (VI)

I, (III), (IV), V, VII

(II), (III), (IV), (V), VI

(I), II, (III), IV, (V), VI, VII

(II), III, IV, VI, VIII

(I), (II), III, IV, VI

(I), II, (III), IV, VI

(II), III, (IV), (V)

Нет данных

Нет данных

(II), III, IV, (V), VI

В скобках даны те валентности, которые обладающие ими элементы проявляют редко.

Валентность и степень окисления

Так, говоря о степени окисления, подразумевают, что атом в веществе ионной (что важно) природы имеет некий условный заряд. И если валентность – это нейтральная характеристика, то степень окисления может быть отрицательной, положительной или равной нулю.

Интересно, что для атома одного и того же элемента, в зависимости от элементов, с которыми он образует химическое соединение, валентность и степень окисления могут совпадать (Н 2 О, СН 4 и др.) и различаться (Н 2 О 2 , HNO 3).

Заключение

Углубляя свои знания о строении атомов, вы глубже и подробнее узнаете и валентность. Эта характеристика химических элементов не является исчерпывающей. Но у нее большое прикладное значение. В чем вы сами не раз убедились, решая задачи и проводя химические опыты на уроках.

Эта статья создана, чтобы помочь вам систематизировать свои знания о валентности. А также напомнить, как можно ее определить и где валентность находит применение.

Надеемся, этот материал окажется для вас полезным при подготовке домашних заданий и самоподготовке к контрольным и экзаменам.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

ВАЛЕНТНОСТЬ (лат. valentia – сила) способность атома присоединять или замещать определенное число других атомов или групп атомов .

В течение многих десятилетий понятие валентности относилось к основным, фундаментальным понятиям в химии. С этим понятием обязательно сталкивались все изучающие химию. Вначале оно казалось им достаточно простым и однозначным: водород одновалентен, кислород двухвалентен и т.д. В одном из пособий для абитуриентов так и сказано: «Валентность – количество химических связей, образованных атомом в соединении». Но какова тогда, в соответствии с этим определением, валентность углерода в карбиде железа Fe 3 C, в карбониле железа Fe 2 (CO) 9 , в давно известных солях K 3 Fe(CN) 6 и K 4 Fe(CN) 6 ? И даже в хлориде натрия каждый атом в кристалле NaCl связан с шестью другими атомами! Так что многие определения, даже напечатанные в учебниках, нужно применять очень осмотрительно.

В современных изданиях можно встретить разные, часто не согласующимися друг с другом определения. Например, такое: «Валентность – это способность атомов образовывать определенное число ковалентных связей». Это определение четкое, однозначное, но оно применимо только для соединений с ковалентными связями. Определяют валентность атома и общим числом электронов, участвующих в образовании химической связи; и числом электронных пар, которыми данный атом связан с другими атомами; и числом его неспаренных электронов, участвующих в образовании общих электронных пар. Вызывает затруднения и другое часто встречавшееся определение валентности как числа химических связей, которыми данный атом соединен с другими атомами, так как не всегда можно четко определить, что такое химическая связь. Ведь далеко не во всех соединениях химические связи образованы парами электронов. Простейшим примером могут служить ионные кристаллы, например, хлорид натрия; в нем каждый атом натрия образует связь (ионную) с шестью атомами хлора, и наоборот. А надо ли считать химическими связями водородные связи (например, в молекулах воды)?

Встает вопрос, чему может быть равна валентность атома азота в соответствии с разными ее определениями. Если валентность определять общим числом электронов, участвующих в образовании химических связей с другими атомами, то максимальную валентность атома азота следует считать равной пяти, так как атом азота может использовать при образовании химических связей все свои пять внешних электронов – два s-электрона и три p-электронов. Если валентность определять числом электронных пар, которыми данный атом связан с другими, то в таком случае максимальная валентность атома азота равна четырем. При этом три p-электрона образуют с другими атомами три ковалентные связи и еще одна связь образуется за счет двух 2s-электронов азота. Примером может случить реакция аммиака с кислотами с образованием катиона аммония.Наконец, если определять валентность только числом неспаренных электронов в атоме, то валентность азота не может быть больше трех, так как в атоме N не может быть больше трех неспаренных электронов (возбуждение 2s-электрона может происходить только на уровень с n = 3, что энергетически крайне невыгодно). Так, в галогенидах азот образует только три ковалентные связи, и не существует таких соединений как NF 5 , NCl 5 или NBr 5 (в отличие от вполне стабильных PF 3 , PCl 3 и PBr 3). Но если атом азота передаст один из своих 2s-электронов другому атому, то в образовавшемся катионе N + останется четыре неспаренных электрона, и валентность этого катиона будет равна четырем. Так происходит, например, в молекуле азотной кислоты. Таким образом, разные определения валентности приводят к разным результатам даже в случае простых молекул.

Какое же из этих определений «правильное» и можно ли вообще дать для валентности однозначное определение. Чтобы ответить на эти вопросы, полезно сделать экскурс в прошлое и рассмотреть, как с развитием химии изменялось понятие «валентность».

Впервые идея валентности элементов (не получившая, впрочем, в то время признания) была высказана в середине 19 в. английским химиком Э.Франкландом: он говорил об определенной «емкости насыщения» металлов и кислорода. Впоследствии под валентностью стали понимать способность атома присоединять или замещать определенное число других атомов (или групп атомов) с образованием химической связи. Один из создателей теории химического строения Фридрих Август Кекуле писал: «Валентность – фундаментальное свойство атома, свойство такое же постоянное и неизменяемое, как и самый атомный вес». Кекуле считал валентность элемента постоянной величиной. К концу 1850-х большинство химиков считали, что валентность (тогда говорили «атомность») углерода равна 4, валентности кислорода и серы равны 2, а галогенов – 1. В 1868 немецкий химик К.Г.Вихельхауз вместо «атомность» предложил использовать термин «валентность» (на латыни valentia – сила). Однако в течение длительного времени он почти не употреблялся, во всяком случае, в России (вместо него говорили, например, о «единицах сродства», «числе эквивалентов», «числе паев» и т.п.). Показательно, что в Энциклопедическом словаре Брокгауза и Ефрона (практически все статьи по химии в этой энциклопедии просматривал, правил, а часто и писал Д.И.Менделеев) статьи «валентность» вообще нет. Нет его и в классическом труде Менделеева Основы химии (он лишь изредка упоминает понятие «атомность», не останавливаясь на нем детально и не давая ему однозначного определения).

Чтобы наглядно показать трудности, с самого начала сопровождавшие понятие «валентность», уместно процитировать популярный в начале 20 в. многих странах, ввиду большого педагогического таланта автора, учебник американского химика Александра Смита, изданный им в 1917 (в русском переводе – в 1911, 1916 и 1931): «Ни одно понятие в химии не получало такого количества неясных и неточных определений, как понятие валентности». И далее в разделе Некоторые странности во взглядах на валентность автор пишет:

«Когда впервые было построено понятие валентности, тогда считали – совершенно ошибочно, – что каждый элемент имеет одну валентность. Поэтому, рассматривая такие пары соединений, как CuCl и CuCl 2 , или... FeCl 2 и FeCl 3 , исходили из допущения, что медь всегда двухвалентна, а железо трехвалентно, и на этом основании искажали формулы так, чтобы подогнать их к этому допущению. Таким образом, формулу однохлористой меди писали (да и часто пишут и посейчас) так: Cu 2 Cl 2 . В таком случае формулы двух хлористых соединений меди в графическом изображении получают вид: Cl–Cu–Cu–Cl и Cl–Cu–Cl. В обоих случаях каждый атом меди удерживает (на бумаге) две единицы, а потому является двухвалентным (на бумаге). Подобным образом... удвоение формулы FeCl 2 дало Cl 2 >Fe–Fe 2, что позволило считать... железо трехвалентным.» И далее Смит делает очень важный и актуальный во все времена вывод: «Вполне противно научному методу – изобретать или искажать факты в целях поддержки представления, которое, не будучи основано на опыте, является результатом простого предположения. Однако история науки показывает, что подобные ошибки наблюдаются часто».

Обзор представлений начала века о валентности дал в 1912 русский химик Л.А.Чугаев, получивший мировое признание за работы по химии комплексных соединений. Чугаев четко показал трудности, связанные с определением и применением понятия валентность:

«Валентность – термин, употребляемый в химии в том же смысле, как «атомность», для обозначения максимального числа атомов водорода (или иных одноатомных атомов или одноатомных радикалов), с которыми атом данного элемента может находиться в непосредственной связи (или которые он способен замещать). Слово валентность часто также употребляется в смысле единицы валентности, или единицы сродства. Так, говорят, что кислород обладает двумя, азот тремя валентностями и т.д. Слова валентность и «атомность» прежде употреблялись без всякого различия, но по мере того, как самое понятия, выражаемые ими, теряло первоначальную простоту и осложнялось, для целого ряда случаев осталось в употреблении только слово валентность… Осложнение понятия о валентности началось с признания, что валентность есть величина переменная... причем по смыслу дела она выражается всегда целым числом».

Химикам было известно, что многие металлы имеют переменную валентность, и следовало говорить, например, о двухвалентном, трехвалентном и шестивалентном хроме. Чугаев говорил, что даже в случае углерода пришлось признать возможность того, что его валентность может быть отлична от 4, причем СО – не единственное исключение: «Двухвалентный углерод, весьма вероятно, содержится в карбиламинах СН 3 –N=C, в гремучей кислоте и ее солях C=NOH, C=NOMe и пр. Мы знаем, что существует также углерод трехатомный...» Обсуждая теорию немецкого химика И.Тиле о «парциальных» или частичных валентностях, Чугаев говорил о ней, как «одной из первых попыток расширить классическое понятие о валентности и распространить его на случаи, к объяснению которых оно, как таковое, является неприложимым. Если Тиле пришел к необходимости... допустить «дробление» единиц валентности, то существует целый ряд фактов, заставляющих еще и в ином смысле вывести понятие о валентности из тех узких рамок, в которых оно было первоначально заключено. Мы видели, что изучение простейших (по большей части бинарных...) соединений, образуемых химическими элементами, для каждого из этих последних заставляет допустить определенные, всегда небольшие и, конечно, целые значения их валентности. Таких значений, вообще говоря, очень немного (элементы, проявляющие более трех различных валентностей, редки)... Опыт показывает, однако, что когда уже все вышеупомянутые единицы валентности следует признать насыщенными, способность образующихся при этом молекул к дальнейшему присоединению вовсе еще не достигает предела. Так, соли металлов присоединяют воду, аммиак, амины.., образуя разнообразные гидраты, аммиакаты... и т.п. сложные соединения, которые... мы ныне относим к числу комплексных. Существование таких соединений, не укладывающихся в рамки простейшего представления о валентности, естественно потребовало его расширения и введения дополнительных гипотез. Одна из таких гипотез, предложенная А.Вернером, заключается в том, что наряду с главными, или основными, единицами валентности существуют еще другие, побочные. Последние обыкновенно обозначаются пунктиром.»

Действительно, какую валентность, например, следовало приписать атому кобальта в его хлориде, присоединившем шесть молекул аммиака с образованием соединения CoCl 3 ·6NH 3 (или, что то же, Co(NH 3) 6 Cl 3)? В нем атом кобальта соединен одновременно с девятью атомами хлора и азота! Д.И.Менделеев писал по этому поводу о малоисследованных «силах остаточного сродства». А швейцарский химик А.Вернер, создавший теорию комплексных соединений, ввел понятия главной (первичной) валентности и побочной (вторичной) валентности (в современной химии этим понятиям отвечают степень окисления и координационное число). Обе валентности могут быть переменными, причем различить их в ряде случаев очень трудно или даже невозможно.

Далее Чугаев затрагивает теорию Р.Абегга об электровалентности, которая может быть положительной (в высших кислородных соединениях) или отрицательной (в соединениях с водородом). При этом сумма высших валентностей элементов по кислороду и водороду для групп с IV по VII равна 8. На этой теории до сих пор основано изложение во многих учебниках химии. В заключение Чугаев упоминает химические соединения, для которых понятие валентности практически неприменимо – интерметаллические соединения, состав которых «часто выражается весьма своеобразными формулами, очень мало напоминающие обычные значения валентности. Таковы, например, следующие соединения: NaCd 5 , NaZn 12 , FeZn 7 и др.»

На некоторые трудности определения валентности указывал другой известный русский химик И.А.Каблуков в своем учебнике Основные начала неорганической химии , изданном в 1929. Что же касается координационного числа, процитируем (в русском переводе) изданный в Берлине в 1933 учебник одного из создателей современной теории растворов датского химика Нильса Бьеррума:

«Обычные числа валентностей не дают никакого представления о характерных свойствах, проявляемых многими атомами в многочисленных комплексных соединениях. Чтобы объяснить способность атомов или ионов образовывать комплексные соединения, ввели для атомов и ионов новый особый ряд чисел, отличающихся от обычных чисел валентностей. В комплексных ионах серебра... непосредственно с центральным атомом металла связаны большей частью два атома или две группы атомов, например, Ag(NH 3) 2 + , Ag(CN) 2 – , Ag(S 2 O 3) 2 – ... Для описания этой связи ввели понятие координационного числа и приписывают ионам Ag + координационное число 2. Как видно из приведенных примеров, группы, связанные с центральным атомом , могут быть и нейтральными молекулами (NH 3) и ионами (CN – , S 2 O 3 –). Двухвалентный ион меди Cu ++ и трехвалентный ион золота Au +++ имеют в большинстве случаев координационное число 4. Координационное число атома, конечно, еще не указывает, какого рода связь существует между центральным атомом и связанными с ним другими атомами или группами атомов; но оно оказалось превосходным средством для систематики комплексных соединений».

Очень наглядные примеры «особых свойств» комплексных соединений приводит в своем учебнике А.Смит:

«Рассмотрим следующие „молекулярные“ соединения платины: PtCl 4 ·2NH 3 , PtCl 4 ·4NH 3 , PtCl 4 ·6NH 3 и PtCl 4 ·2KCl. Ближайшее изучение этих соединений показывает ряд замечательных особенностей. Первое соединение в растворе практически не распадается на ионы; электропроводность растворов его чрезвычайно мала; азотнокислое серебро не дает с ним осадка AgCl. Вернер принял, что атомы хлора связаны с атомом платины обычными валентностями; их Вернер назвал главными, а молекулы аммиака связаны с атомом платины дополнительными, побочными валентностями. Это соединение, по Вернеру, имеет такое строение:

Большие скобки указывают на целостность группы атомов, на комплекс, не распадающийся при растворении соединения.

Второе соединение обладает отличными от первого свойствами; это – электролит, электропроводность его растворов того же порядка, что и электропроводность растворов солей, распадающихся на три иона (K 2 SO 4 , BaCl 2 , MgCl 2); азотнокислое серебро осаждает два атома из четырех. По Вернеру это соединение следующего строения: 2– + 2Cl – . Здесь мы имеем комплексный ион атомы хлора в нем не осаждаются азотнокислым серебром, и этот комплекс образует вокруг ядра – атома Pt – внутреннюю сферу атомов в соединении, отщепляющиеся же в виде ионов атомы хлора образуют внешнюю сферу атомов, почему мы и пишем их вне больших скобок. Если мы будем считать, что Pt имеет четыре главные валентности, то в этом комплексе использованы только две, две же другие удерживают два внешних атома хлора. В первом соединении в самом комплексе использованы все четыре валентности платины, вследствие чего это соединение не электролит.

В третьем соединении все четыре атома хлора осаждаются азотнокислым серебром; большая электропроводность этой соли показывает, что она дает пять ионов; очевидно, что ее строение следующее: 4– + 4Cl – ... В комплексном ионе все молекулы аммиака связаны с Pt побочными валентностями; соответственно четырем главным валентностям платины во внешней сфере есть четыре атома хлора.

В четвертом соединении азотнокислое серебро не осаждает вовсе хлора, электропроводность его растворов указывает на распадение на три иона, обменные реакции обнаруживают ионы калия. Этому соединению мы приписываем следующее строение 2– + 2K + . В комплексном ионе четыре главные валентности Pt использованы, но так как не использованы главные валентности двух атомов хлора, то во внешней сфере могут быть удержаны два положительных одновалентных иона (2K + , 2NH 4 + и т.д.).»

Приведенные примеры разительного отличия свойств внешне похожих комплексов платины дают представление о сложностях, с которыми сталкивались химики при попытках однозначного определения валентности.

После создания электронных представлений о строении атомов и молекул стали широко пользоваться понятием «электровалентность». Поскольку атомы могут как отдавать, так и принимать электроны, электровалентность могла быть как положительной, так и отрицательной (сейчас вместо электровалентности используют понятие степень окисления). Насколько новые электронные представления о валентности согласовывались с прежними? Н.Бьеррум в уже цитированном учебнике пишет по этому поводу: «Между обычными числами валентностей и введенными новыми числами – электровалентностью и координационным числом – имеется некоторая зависимость, но они ни в коем случае не идентичны. Старое понятие валентности распалось на два новых понятия». По этому поводу Бьеррум сделал важное примечание: «Координационное число углерода в большинстве случаев равно 4, а его электровалентность или +4 или –4. Так как для атома углерода оба числа обычно совпадают, то соединения углерода непригодны для того, чтобы изучать на них различие между этими двумя понятиями».

В рамках электронной теории химической связи, развитой в работах американского физикохимика Г.Льюиса и немецкого физика В.Косселя, появились такие понятия, такие как донорно-акцепторная (координационная) связь и ковалентность. В соответствии с этой теорией, валентность атома определяли числом его электронов, участвующих в образовании общих электронных пар с другими атомами. При этом максимальную валентность элемента считали равной числу электронов во внешней электронной оболочке атома (оно совпадает с номером группы периодической таблицы, которой принадлежит данный элемент). Согласно другим представлениям, основанным на квантово-химических законах (их развивали немецкие физики В.Гайтлер и Ф.Лондон), считать надо не все внешние электроны, а только неспаренные (в основном или возбужденном состоянии атома); именно это определение приведено в ряде химических энциклопедий.

Однако известны факты, не укладывающиеся в эту простую схему. Так, в ряде соединений (например, в озоне) пара электронов может удерживать не два, а три ядра; в других молекулах химическая связь может осуществляться единственным электроном. Описать подобные связи без привлечения аппарата квантовой химии невозможно. Как, например, определить валентность атомов в таких соединениях как пентаборан В 5 Н 9 и другие бораны с «мостиковыми» связями, в которых атом водорода связан сразу с двумя атомами бора; ферроцен Fe(C 5 H 5) 2 (атом железа со степенью окисления +2 связан сразу с 10 атомами углерода); пентакарбонил железа Fе(СО) 5 (атом железа в нулевой степени окисления связан с пятью атомами углерода); пентакарбонилхромат натрия Na 2 Cr(CO) 5 (степень окисления хрома-2)? Такие «неклассические» случаи вовсе не являются чем-то исключительным. Подобных «нарушителей валентности», соединений с различными «экзотическими валентностями» по мере развития химии становилось все больше.

Чтобы обойти некоторые трудности, было дано определение, согласно которому при определении валентности атома надо учитывать суммарное число неспаренных электронов, неподеленных электронных пар и вакантных орбиталей, участвующих в образовании химических связей. Вакантные орбитали принимают непосредственное участие в образовании донорно-акцепторных связей в разнообразных комплексных соединениях.

Один из выводов заключается в том, что развитие теории и получение новых экспериментальных данных привело к тому, что попытки добиться ясного понимания природы валентности разделили это понятие на ряд новых представлений, таких как главная и побочная валентность, ионная валентность и ковалентность, координационное число и степень окисления и т.д. То есть понятие «валентность» «расщепилось» на ряд самостоятельных понятий, каждое из которых действует в определенной области». По-видимому, традиционное понятие валентности имеет четкий и однозначный смысл только для соединений, в которых все химические связи являются двухцентровыми (т.е. соединяющими только два атома) и каждая связь осуществляется парой электронов, расположенной между двумя соседними атомами, проще говоря – для ковалентных соединений типа HCl, CO 2 , C 5 H 12 и т.п.

Второй вывод не совсем обычен: термин «валентность», хотя и употребляется в современной химии, имеет весьма ограниченное применение, попытки дать ему однозначное определение «на все случаи жизни» мало продуктивны и вряд ли нужны. Недаром авторы многих учебников, особенно выходящих за рубежом, обходятся вовсе без этого понятия или же ограничиваются указанием на то, что понятие «валентность» имеет в основном историческое значение, тогда как сейчас химики пользуются в основном более распространенным, хотя и несколько искусственным понятием «степень окисления».

Илья Леенсон

Для того чтобы научиться составлять химические формулы необходимо выяснить закономерности, согласно которым атомы химических элементов соединяются между собой в определенных соотношениях. Для этого сравним качествен-ный и количественный состав соединений, формулы кото-рых HCl, H 2 O, NH 3 , CH 4 (рис. 12.1)

По качественному составу эти вещества схожи:в состав каждой из молекул входят атомы водорода. Тем не менее их количественный состав неодинаков. Атомы хлора, кислорода, азота, углерода соединены соответственно с одним, двумя, тремя и четырьмя атомами водорода

Эту закономерность подметил еще в начале XI в. Дж. Дальтон. Со временем И. Я. Берцелиус обнаружил, что наиболь-шее количество атомов, соединенных с атомом химического элемента, не превышает определенной величины. В 1858 г. Э. Франкленд назвал «соединительной силой» способность атомов связывать или замещать определенное число других атомов Термин «валентность» (от лат. valentia — «сила») предложил в 1868 г. немецкий химик К. Г. Вихельхауз.

Валентность общее свойство атомов. Она характе-ризует способность атомов химически (валентными си-лами) взаимодействовать друг с другом.

Валентность многих химических элементов определили на основе экспериментальных данных о количественном и качественном составе веществ. За единицу валентности бы-ла принята валентностьатома водорода. Если атом хими-ческого элемента соединен с двумя одновалентными атома-ми, то его валентность равна двум. Если он соединен с тремя одновалентными атомами, то он — трехвалентен и т. д.

Наи-высшее значение валентности химических элементов — VIII .

Валентность обозначают римскими цифрами. Обозначим валентность в формулах рассмотренных соединений:

Также ученые обнаружили, что немало элементов в раз-ных соединениях проявляют разные значения валентности. То есть существуют химические элементы с постоянной и переменной валентностью.

Можно ли определить валентность по положению хими-ческого элемента в периодической системе? Максимальное значение валентности элемента совпадает с номером группы периодической системы, в которой он размещен. Тем не менее бывают и исключения — азот, кислород, фтор, медь и некото-рые другие элементы. Запомни : номер группы обозначен римской цифрой над соответствующим вертикальным столби-ком периодической системы.


Таблица. Химические элементы с постоянной валентностью

Элемент

Валентность

Элемент

Валентность

Водород (Н)

Кальций (Са)

Натрий (Na)

Барий (Ва)

Кислород(O)

Бериллий(Be)

Алюминий (Al)

Магний (Mg)

Таблица. Химические элементы с переменной валентностью

Элемент

Валентность

Элемент

Валентность

Железо (Fe)

Марганец (Mg)

II, III, VI Материал с сайта

Серебро (Ag)

Фосфор (P)

Золото (Au)

Мышьяк (As)

Углерод (C)

Свинец (Pb)

Кремний (Si)

На этой странице материал по темам:

Рассматривая формулы различных соединений, нетрудно заметить, что число атомов одного и того же элемента в молекулах различных веществ не одинаково. Например, HCl, NH 4 Cl, H 2 S, H 3 PO 4 и т.д. Число атомов водорода в этих соединениях изменяется от 1 до 4. Это характерно не только для водорода.

Как же угадать, какой индекс поставить рядом с обозначением химического элемента? Как составляются формулы вещества? Это легко сделать, когда знаешь валентность элементов, входящих в состав молекулы данного вещества.

это свойство атома данного элемента присоединять, удерживать или замещать в химических реакциях определённое количество атомов другого элемента. За единицу валентности принята валентность атома водорода. Поэтому иногда определение валентности формулируют так:валентность это свойство атома данного элемента присоединять или замещать определённое количество атомов водорода.

Если к одному атому данного элемента прикрепляется один атом водорода, то элемент одновалентен, если два двухвалентен и т.д. Водородные соединения известны не для всех элементов, но почти все элементы образуют соединения с кислородом О. Кислород считается постоянно двухвалентным.

Постоянная валентность:

I H, Na, Li, K, Rb, Cs
II O, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd
III B, Al, Ga, In

Но как поступить в том случае, если элемент не соединяется с водородом? Тогда валентность необходимого элемента определяют по валентности известного элемента. Чаще всего её находят, используя валентность кислорода, потому что в соединениях его валентность всегда равно 2.Например, не составит труда найти валентность элементов в следующих соединениях: Na 2 O (валентность Na 1, O 2), Al 2 O 3 (валентность Al 3, O 2).

Химическую формулу данного вещества можно составить, только зная валентность элементов. Например, составить формулы таких соединений, как CaO, BaO, CO, просто, потому что число атомов в молекулах одинаково, так как валентности элементов равны.

А если валентности разные? Когда мы действуем в таком случае? Необходимо запомнить следующее правило: в формуле любого химического соединения произведение валентности одного элемента на число его атомов в молекуле равно произведению валентности на число атомов другого элемента. Например, если известно, что валентность Mn в соединении равна 7, а O 2, тогда формула соединения будет выглядеть так Mn 2 O 7.

Как же мы получили формулу?

Рассмотрим алгоритм составления формул по валентности для состоящих из двух химических элементов.

Существует правило, что число валентностей у одного химического элемента равно числу валентностей у другого . Рассмотрим на примере образования молекулы, состоящей из марганца и кислорода.
Будем составлять в соответствии с алгоритмом:

1. Записываем рядом символы химических элементов:

Mn O

2. Ставим над химическими элементами цифрами их валентности (валентность химического элемента можно найти в таблице периодической системы Менделева, у марганца 7, у кислорода 2.

3. Находим наименьшее общее кратное (наименьшее число, которое делится без остатка на 7 и на 2). Это число 14. Делим его на валентности элементов 14: 7 = 2, 14: 2 = 7, 2 и 7 будут индексами, соответственно у фосфора и кислорода. Подставляем индексы.

Зная валентность одного химического элемента, следуя правилу: валентность одного элемента × число его атомов в молекуле = валентность другого элемента × число атомов этого (другого) элемента, можно определить валентность другого.

Mn 2 O 7 (7 · 2 = 2 · 7).

2х = 14,

х = 7.

Понятие о валентности было введено в химию до того, как стало известно строение атома. Сейчас установлено, что это свойство элемента связано с числом внешних электронов. Для многих элементов максимальная валентность вытекает из положения этих элементов в периодической системе.

Существует несколько определений понятия «валентность». Чаще всего этим термином называют способность атомов одного элемента присоединять определённое число атомов других элементов. Часто у тех, кто только начинает изучать химию, возникает вопрос: Как определить валентность элемента?. Сделать это несложно, зная несколько правил.

Валентности постоянные и переменные

Рассмотрим соединения HF, H2S и CaH2. В каждом из этих примеров один атом водорода присоединяет к себе только один атом другого химического элемента, значит его валентность равна одному. Значение валентности записывают над символом химического элемента римскими цифрами.

В приведённом примере атом фтора связан только с одним одновалентным атомом H, значит валентность его тоже равна 1. Атом серы в H2S присоединяет к себе уже два атома H, поэтому она в данном соединении двухвалентна. С двумя водородными атомами связан и кальций в его гидриде CaH2, а значит, и его валентность равна двум.

Кислород в подавляющем большинстве своих соединений двухвалентен, то есть образует две химические связи с другими атомами.

Атом серы в первом случае присоединяет к себе два кислородных атома, то есть всего образует 4 химические связи (один кислород образует две связи, значит сера — два раза по 2), то есть валентность ее равна 4.

В соединении SO3 сера присоединяет уже три атома O, поэтому и валентность ее равна 6 (три раза образует по две связи с каждым атомом кислорода). Атом кальция же присоединяет только один атом кислорода, образуя с ним две связи, значит, его валентность такая же, как и у O, то есть равна 2.

Обратите внимание на то, что атом H одновалентен в любом соединении. Всегда (кроме иона гидроксония H3O(+)) равна 2 валентность кислорода. По две химические связи как с водородом, так и с кислородом образует кальций. Это элементы с постоянной валентностью. Кроме уже указанных, постоянную валентность имеют:

  • Li, Na, K, F — одновалентны;
  • Be, Mg, Ca, Zn, Cd — обладают валентностью, равной II;
  • B, Al и Ga — трехвалентны.

Атом серы, в отличие от рассмотренных случаев, в соединении с водородом имеет валентность, равную II, а с кислородом может быть и четырех- и шестивалентна. Про атомы таких элементов говорят, что они имеют переменную валентность. При этом максимальное ее значение в большинстве случаев совпадает с номером группы, в которой находится элемент в Периодической системе (правило 1).

Из этого правила есть много исключений. Так, элемент 1 группы медь, проявляет валентности и I, и II. Железо, кобальт, никель, азот, фтор, напротив, имеют максимальную валентность, меньшую, чем номер группы. Так, для Fe, Co, Ni это II и III, для N — IV, а для фтора — I.

Минимальное значение валентности всегда соответствует разнице между числом 8 и номером группы (правило 2).

Однозначно определить, какова же валентность элементов, у которых она переменная, можно только по формуле определенного вещества.

Определение валентности в бинарном соединении

Рассмотрим, как определить валентность элемента в бинарном (из двух элементов) соединении. Здесь возможны два варианта: в соединении валентность атомов одного элемента известна точно или же обе частицы с переменной валентностью.

Случай первый:

Случай второй:

Определение валентности по формуле трехэлементной частицы.

Далеко не все химические вещества состоят из двухатомных молекул. Как определить валентность элемента в трёхэлементной частице? Рассмотрим этот вопрос на примере формул двух соединения K2Cr2O7.

Если же вместо калия в формуле будет присутствовать железо, или другой элемент с переменной валентностью, нам потребуется знать, какова же валентность кислотного остатка. Например, нужно вычислить валентности атомов всех элементов в соединении с формулой FeSO4.

Следует отметить, что термин «валентность» чаще использую в органической химии. При составлении формул неорганических соединений чаще используют понятие «степень окисления».

error: Content is protected !!