Статистическая физика. Статистическая физика и термодинамика

Методы Образование Об этом сайте Библиотека Мат. форумы

Библиотека > Книги по физике > Статистическая физика

Поиск в библиотеке по авторам и ключевым словам из названия книги:

Статистическая физика

  • Айзеншиц Р. Статистическая теория необратимых процессов. М.: Изд. Иностр. лит., 1963 (djvu)
  • Ансельм А.И. Основы статистической физики и термодинамики. М.: Наука, 1973 (djvu)
  • Ахиезер А.И., Пелетминский С.В. Методы статистической физики. М.: Наука, 1977 (djvu)
  • Базаров И.П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. Избранные труды по статистической физике. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. (мл.), Садовников Б.И. Некоторые вопросы статистической механики. М.: Высш. шк., 1975 (djvu)
  • Бонч-Бруевич В.Л., Тябликов С.В. Метод функций Грина в статистической механике. М.: Физматлит, 1961 (djvu, 2.61Mb)
  • Васильев А.М. Введение в статистическую физику. М.: Высш. школа, 1980 (djvu)
  • Власов А.А. Нелокальная статистическая механика. М.: Наука, 1978 (djvu)
  • Гиббс Дж.В. Основные принципы статистической механики (излагаемые со специальным применением к рациональному обоснованию термодинамики). М.-Л.: ОГИЗ, 1946 (djvu)
  • Гуров К.П. Основания кинетической теории. Метод Н.Н. Боголюбова. М.: Наука, 1966 (djvu)
  • Заславский Г.М. Статистическая необратимость в нелинейных системах. М.: Наука, 1970 (djvu)
  • Захаров А.Ю. Решёточные модели статистической физики. Великий Новгород: НовГУ, 2006 (pdf)
  • Захаров А.Ю. Функциональные методы в классической статистической физике. Великий Новгород: НовГУ, 2006 (pdf)
  • Иос Г. Курс теоретической физики. Часть 2. Термодинамика. Статистическая физика. Квантовая теория. Ядерная физика. М.: Просвещение, 1964 (djvu)
  • Исихара А. Статистическая физика. М.: Мир, 1973 (djvu)
  • Каданов Л., Бейм Г. Квантовая статистическая механика. Методы функций Грина в теории равновесных и неравновесных процессов. М.: Мир, 1964 (djvu)
  • Кац М. Вероятность и смежные вопросы в физике. М.: Мир, 1965 (djvu)
  • Кац М. Несколько вероятностных задач физики и математики. М.: Наука, 1967 (djvu)
  • Киттелъ Ч. Элементарная статистическая физика. М.: ИЛ, 1960 (djvu)
  • Киттель Ч. Статистическая термодинамика. М: Наука, 1977 (djvu)
  • Козлов В.В. Тепловое равновесие по Гиббсу и Пуанкаре. Москва-Ижевск: Институт компьютерных исследований, 2002 (djvu)
  • Компанеец А.С. Законы физической статистики. Ударные волны. Сверхплотное вещество. М.: Наука, 1976 (djvu)
  • Компанеец А.С. Курс теоретической физики. Том 2. Статистические законы. М.: Просвещение, 1975 (djvu)
  • Коткин Г.Л. Лекции по статистической физике, НГУ (pdf)
  • Крылов Н.С. Работы по обоснованию статистической физики. М.-Л.: Из-во АН СССР, 1950 (djvu)
  • Кубо Р. Статистическая механика. М.: Мир, 1967 (djvu)
  • Ландсберг П. (ред.) Задачи по термодинамике и статистической физике. М.: Мир, 1974 (djvu)
  • Левич В.Г. Введение в статистическую физику (2-е изд.) М.: ГИТТЛ, 1954 (djvu)
  • Либов Р. Введение в теорию кинетических уравнений. М.: Мир, 1974 (djvu)
  • Майер Дж., Гепперт-Майер М. Статистическая механика. М.: Мир, 1980 (djvu)
  • Минлос Р.А. (ред.) Математика. Новое в зарубежной науке-11. Гиббсовсиие состояния в статистической физике. Сборник статей. М.: Мир, 1978 (djvu)
  • Ноздрев В.Ф., Сенкевич А.А. Курс статистической физики. М.: Высш. школа, 1965 (djvu)
  • Пригожин И. Неравновесная статистическая механика. М.: Мир, 1964 (djvu)
  • Радушкевич Л.В. Курс статистической физики (2-е изд.) М.: Просвещение, 1966 (djvu)
  • Рейф Ф. Берклеевский курс физики. Том 5. Статистическая физика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика, статистическая физика и кинетика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика статистическая физика и кинетика (2-е изд.). М.: Наука, 1977 (djvu)
  • Рюэль Д. Статистическая механика. М.: Мир, 1971 (djvu)
  • Савуков В.В. Уточнение аксиоматических принципов статистической физики. СПб.: Балт. гос. техн. унив. "Военмех", 2006

В результате изучения материала главы 9 студент должен: знать основные постулаты статистической термодинамики; уметь рассчитывать суммы по состояниям и знать их свойства; пользоваться терминами и определениями, приведенными в главе;

владеть специальной терминологией; навыками расчета термодинамических функций идеальных газов статистическими методами.

Основные постулаты статистической термодинамики

Термодинамический метод не применим к системам, состоящих из малого числа молекул, так как в таких системах исчезает различие между теплотой и работой. Одновременно исчезает однозначность направления процесса:

Для очень малого числа молекул оба направления процесса становятся равноценными. Для изолированной системы - приращение энтропии или равно приведенной теплоте (для равновесно-обратимых процессов), или больше ее (для неравновесных). Такая дуалистичность энтропии может быть объяснена с точки зрения упорядоченности - неупорядоченности движения или состояния составляющих систему частиц; следовательно, качественно энтропию можно рассматривать как меру неупорядоченности молекулярного состояния системы. Эти качественные представления количественно развиваются статистической термодинамикой. Статистическая термодинамика является частью более общего раздела науки - статистической механики.

Основные принципы статистической механики были развиты в конце XIX в. в трудах Л. Больцмана и Дж. Гиббса.

При описании систем, состоящих из большого числа частиц, можно использовать два подхода: микроскопический и макроскопический. Макроскопический подход используется классической термодинамикой, где состояния систем, содержащих единственное чистое вещество, определяется в общем случае тремя независимыми переменными: Т (температура), V (объем), N (число частиц). Однако, с микроскопической точки зрения, система, содержащая 1 моль вещества, включает 6,02 10 23 молекул. Кроме того, в первом подходе подробно характеризуется микросостояние системы,

например координаты и импульсы каждой частицы в каждый момент времени. Микроскопическое описание требует решения классических или квантовых уравнений движения для огромного числа переменных. Так, каждое микросостояние идеального газа в классической механике описывается 6N переменными (N - число частиц): ЗN координат и ЗN проекций импульса.

Если система находится в равновесном состоянии, то ее макроскопические параметры постоянны, тогда как микроскопические параметры изменяются со временем. Это означает, что каждому макросостоянию соответствует несколько (на самом деле - бесконечно много) микросостояний (рис. 9.1).

Рис. 9.1.

Статистическая термодинамика устанавливает связь между этими двумя подходами. Основная идея заключается в следующем: если каждому макросостоянию соответствует много микросостояиий, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее но всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. Ансамбль - это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, соответствующих одному макросостоянию. Каждая система ансамбля - это одно микросостояние. Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам р(р, q , t), которая определяется следующим образом: р(p, q, t)dpdq - это вероятность того, что система ансамбля находится в элементе объема dpdq вблизи точки (р , q) в момент времени t.

Смысл функции распределения состоит в том, что она определяет статистический вес каждого микросостояния в макросостояпии.

Из определения следуют элементарные свойства функции распределения:

Многие макроскопические свойства системы можно определить как среднее значение функций координат и импульсов f(p, q) по ансамблю:

Например, внутренняя энергия - это среднее значение функции Гамильтона Н(р, q):

(9.4)

Существование функции распределения составляет суть основного постулата классической статистической механики: макроскопическое состояние системы полностью задается некоторой функцией распределения , которая удовлетворяет условиям (9.1) и (9.2).

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени: р = р(p, q). Явный вид функции распределения зависит от типа ансамбля. Различают три основных тина ансамблей:

где k = 1,38 10 -23 Дж/К - постоянная Больцмана. Значение константы в выражении (9.6) определяется условием нормировки.

Частным случаем канонического распределения (9.6) является распределение Максвелла по скоростям ь которое справедливо для газов:

(9.7)

где m - масса молекулы газа. Выражение р(v)dv описывает вероятность того, что молекула имеет абсолютное значение скорости в интервале от v до v + d&. Максимум функции (9.7) дает наиболее вероятную скорость молекул, а интеграл

среднюю скорость молекул.

Если система имеет дискретные уровни энергии и описывается квантовомеханически, то вместо функции Гамильтона Н(р, q) используют оператор Гамильтона Н, а вместо функции распределения - оператор матрицы плотности р:

(9.9)

Диагональные элементы матрицы плотности дают вероятность того, что система находится в і-м энергетическом состоянии и имеет энергию Е{.

(9.10)

Значение константы определяется условием нормировки:

(9.11)

Знаменатель этого выражения называют суммой по состояниям. Он имеет ключевое значение для статистической оценки термодинамических свойств системы. Из выражений (9.10) и (9.11) можно найти число частиц N jf имеющих энергию

(9.12)

где N - общее число частиц. Распределение частиц (9.12) по уровням энергии называют распределением Больцмана, а числитель этого распределения - больцмановским фактором (множителем). Иногда это распределение записывают в другом виде: если существует несколько уровней с одинаковой энергией £, то их объединяют в одну группу путем суммирования больцмановских множителей:

(9.13)

где gj - число уровней с энергией Ej , или статистический вес.

Многие макроскопические параметры термодинамической системы можно вычислить с помощью распределения Больцмана. Например, средняя энергия определяется как среднее по уровням энергии с учетом их статистических весов:

(9.14)

3) большой канонический ансамбль описывает открытые системы, находящиеся в тепловом равновесии и способные обмениваться веществом с окружающей средой. Тепловое равновесие характеризуется температурой Т, а равновесие по числу частиц - химическим потенциалом р. Поэтому функция распределения зависит от температуры и химического потенциала. Явное выражение для функции распределения большого канонического ансамбля мы здесь использовать не будем.

В статистической теории доказывается, что для систем с большим числом частиц (~10 23) все три типа ансамблей эквивалентны друг другу. Использование любого ансамбля приводит к одним и тем же термодинамическим свойствам, поэтому выбор того или иного ансамбля описания термодинамической системы диктуется только удобством математической обработки функций распределения.

10. Основные постулаты статистической термодинамики

При описании систем, состоящих из большого числа частиц, можно использовать два подхода: микроскопический и макроскопический. В первом подходе, основанном на классической или квантовой механике, подробно характеризуется микросостояние системы, например, координаты и импульсы каждой частицы в каждый момент времени. Микроскопическое описание требует решения классических или квантовых уравнений движения для огромного числа переменных. Так, каждое микросостояние идеального газа в классической механике описывается 6N переменными (N - число частиц): 3N координат и 3N проекций импульса.

Макроскопический подход, который использует классическая термодинамика, характеризует только макросостояния системы и использует для этого небольшое число переменных, например, три: температуру, объем и число частиц. Если система находится в равновесном состоянии, то ее макроскопические параметры постоянны, тогда как микроскопические параметры изменяются со временем. Это означает, что каждому макросостоянию соответствует несколько (на самом деле, бесконечно много) микросостояний.

Статистическая термодинамика устанавливает связь между этими двумя подходами. Основная идея заключается в следующем: если каждому макросостоянию соответствует много микросостояний, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее по всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. Ансамбль - это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, соответствующих одному макросостоянию. Каждая система ансамбля - это одно микросостояние. Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам (p , q , t ), которая определяется следующим образом:

(p , q , t ) dp dq - это вероятность того, что система ансамбля находится в элементе объема dp dq вблизи точки (p , q ) в момент времени t .

Смысл функции распределения состоит в том, что она определяет статистический вес каждого микросостояния в макросостоянии.

Из определения следуют элементарные свойства функции распределения:

1. Нормировка

. (10.1)

2. Положительная определенность

(p , q , t ) і 0 (10.2)

Многие макроскопические свойства системы можно определить как среднее значение функций координат и импульсов f (p , q ) по ансамблю :

Например, внутренняя энергия - это среднее значение функции Гамильтона H (p ,q ):

Существование функции распределения составляет суть основного постулата классической статистической механики :

Макроскопическое состояние системы полностью задается некоторой функцией распределения, которая удовлетворяет условиям (10.1) и (10.2).

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени: = (p ,q ). Явный вид функции распределения зависит от типа ансамбля. Различают три основных типа ансамблей:

1) Микроканонический ансамбль описывает изолированные системы и характеризуется переменными: E (энергия), V (объем), N (число частиц). В изолированной системе все микросостояния равновероятны (постулат равной априорной вероятности ):

2) Канонический ансамбль описывает системы, находящиеся в тепловом равновесии с окружающей средой. Тепловое равновесие характеризуется температурой T . Поэтому функция распределения также зависит от температуры:

(10.6)

(k = 1.38 10 -23 Дж/К - постоянная Больцмана). Значение константы в (10.6) определяется условием нормировки (см. (11.2)).

Частным случаем канонического распределения (10.6) является распределение Максвелла по скоростям v, которое справедливо для газов:

(10.7)

(m - масса молекулы газа). Выражение (v)d v описывает вероятность того, что молекула имеет абсолютное значение скорости в интервале от v до v + d v. Максимум функции (10.7) дает наиболее вероятную скорость молекул, а интеграл

Среднюю скорость молекул.

Если система имеет дискретные уровни энергии и описывается квантовомеханически, то вместо функции Гамильтона H (p ,q ) используют оператор Гамильтона H , а вместо функции распределения - оператор матрицы плотности :

(10.9)

Диагональные элементы матрицы плотности дают вероятность того, что система находится в i -ом энергетическом состоянии и имеет энергию E i :

(10.10)

Значение константы определяется условием нормировки: S i = 1:

(10.11)

Знаменатель этого выражения называют суммой по состояниям (см. гл. 11). Он имеет ключевое значение для статистической оценки термодинамических свойств системы Из (10.10) и (10.11) можно найти число частиц N i , имеющих энергию E i :

(10.12)

(N - общее число частиц). Распределение частиц (10.12) по уровням энергии называют распределением Больцмана , а числитель этого распределения - больцмановским фактором (множителем). Иногда это распределение записывают в другом виде: если существует несколько уровней с одинаковой энергией E i , то их объединяют в одну группу путем суммирования больцмановских множителей:

(10.13)

(g i - число уровней с энергией E i , или статистический вес).

Многие макроскопические параметры термодинамической системы можно вычислить с помощью распределения Больцмана. Например, средняя энергия определяется как среднее по уровням энергии с учетом их статистических весов:

, (10.14)

3) Большой канонический ансамбль описывает открытые системы, находящиеся в тепловом равновесии и способные обмениваться веществом с окружающей средой. Тепловое равновесие характеризуется температурой T , а равновесие по числу частиц - химическим потенциалом . Поэтому функция распределения зависит от температуры и химического потенциала. Явное выражение для функции распределения большого канонического ансамбля мы здесь использовать не будем.

В статистической теории доказывается, что для систем с большим числом частиц (~ 10 23) все три типа ансамблей эквивалентны друг другу. Использование любого ансамбля приводит к одним и тем же термодинамическим свойствам, поэтому выбор того или иного ансамбля описания термодинамической системы диктуется только удобством математической обработки функций распределения.

ПРИМЕРЫ

Пример 10-1. Молекула может находиться на двух уровнях с энергиями 0 и 300 см -1 . Какова вероятность того, что молекула будет находиться на верхнем уровне при 250 о С?

Решение . Надо применить распределение Больцмана, причем для перевода спектроскопической единицы энергии см -1 в джоули используют множитель hc (h = 6.63 10 -34 Дж. c, c = 3 10 10 см/с): 300 см -1 = 300 6.63 10 -34 3 10 10 = 5.97 10 -21 Дж.

Ответ . 0.304.

Пример 10-2. Молекула может находиться на уровне с энергией 0 или на одном из трех уровней с энергией E . При какой температуре а) все молекулы будут находиться на нижнем уровне, б) число молекул на нижнем уровне будет равно числу молекул на верхних уровнях, в) число молекул на нижнем уровне будет в три раза меньше, чем число молекул на верхних уровнях?

Решение . Воспользуемся распределением Больцмана (10.13):

а) N 0 / N = 1; exp(-E /kT ) = 0; T = 0. При понижении температуры молекулы накапливаются на нижних уровнях.

б) N 0 / N = 1/2; exp(-E /kT ) = 1/3; T = E / [k ln(3)].

в) N 0 / N = 1/4; exp(-E /kT ) = 1; T = . При высоких температурах молекулы равномерно распределены по уровням энергии, т.к. все больцмановские множители почти одинаковы и равны 1.

Ответ . а) T = 0; б) T = E / [k ln(3)]; в) T = .

Пример 10-3. При нагревании любой термодинамической системы заселенность одних уровней увеличивается, а других уменьшается. Используя закон распределения Больцмана, определите, какова должна быть энергия уровня для того, чтобы его заселенность увеличивалась с ростом температуры.

Решение . Заселенность - доля молекул, находящихся на определенном энергетическом уровне. По условию, производная от этой величины по температуре должна быть положительна:

Во второй строчке мы использовали определение средней энергии (10.14). Таким образом, заселенность возрастает с ростом температуры для всех уровней, превышающих среднюю энергию системы.

Ответ . .

ЗАДАЧИ

10-1. Молекула может находиться на двух уровнях с энергиями 0 и 100 см -1 . Какова вероятность того, что молекула будет находиться на низшем уровне при 25 о С?

10-2. Молекула может находиться на двух уровнях с энергиями 0 и 600 см -1 . При какой температуре на верхнем уровне будет в два раза меньше молекул, чем на нижнем?

10-3. Молекула может находиться на уровне с энергией 0 или на одном из трех уровней с энергией E . Найдите среднюю энергию молекул: а) при очень низких температурах, б) при очень высоких температурах.

10-4. При охлаждении любой термодинамической системы заселенность одних уровней увеличивается, а других уменьшается. Используя закон распределения Больцмана, определите, какова должна быть энергия уровня для того, чтобы его заселенность увеличивалась с уменьшением температуры.

10-5. Рассчитайте наиболее вероятную скорость молекул углекислого газа при температуре 300 К.

10-6. Рассчитайте среднюю скорость атомов гелия при нормальных условиях.

10-7. Рассчитайте наиболее вероятную скорость молекул озона при температуре -30 о С.

10-8. При какой температуре средняя скорость молекул кислорода равна 500 м/с?

10-9. При некоторых условиях средняя скорость молекул кислорода равна 400 м/с. Чему равна средняя скорость молекул водорода при этих же условиях?

10-10. Какова доля молекул массой m , имеющих скорость выше средней при температуре T ? Зависит ли эта доля от массы молекул и температуры?

10-11. Пользуясь распределением Максвелла, рассчитайте среднюю кинетическую энергию движения молекул массой m при температуре T . Равна ли эта энергия кинетической энергии при средней скорости?

Термодинамика и статистическая физика

Методические указания и контрольные задания для студентов заочного обучения

Шелкунова З.В., Санеев Э.Л.

Методическое указания и контрольные задания для студентов заочного обучения инженерно-технических и технологических специальностей. Содержат разделы программ ”Статистическая физика”, ”Термодинамика”, примеры решения типовых задач и варианты контрольных заданий.

Ключевые слова: Внутренняя энергия, теплота, работа; изопроцессы, энтропия: функции распределения: Максвелла, Больцмана, Бозе – Эйнштейна; Ферми – Дирака; Энергия Ферми, теплоемкость, характеристическая температура Эйнштейна и Дебая.

Редактор Т.Ю.Артюнина

Подготовлено в печать г. Формат 6080 1/16

Усл.п.л. ; уч.-изд.л. 3,0; Тираж ____ экз. Заказ № .

___________________________________________________

РИО ВСГТУ, Улан-Удэ, Ключевская, 40а

Отпечатано на ротапринте ВСГТУ, Улан-Удэ,

Ключевская, 42.

Федеральное агентство по образованию

Восточно-Сибирский государственный

технологический университет

ФИЗИКА №4

(Термодинамика и статистическая физика)

Методические указания и контрольные задания

для студентов заочного обучения

Составитель: Шелкунова З.В.

Санеев Э.Л.

Издательство ВСГТУ

Улан-Удэ, 2009

Статистическая физика и термодинамика

Тема 1

Динамические и статистические закономерности в физике. Термодинамический и статистический методы. Элементы молекулярно-кинетической теории. Макроскопическое состояние. Физические величины и состояния физических систем. Макроскопические параметры как средние значения. Тепловое равновесие. Модель идеального газа. Уравнение состояния идеального газа. Понятие о температуре.

Тема 2

Явления переноса. Диффузия. Теплопроводность. Коэффициент диффузии. Коэффициент теплопроводности. Температуропроводность. Диффузия в газах, жидкостях и твердых телах. Вязкость. Коэффициент вязкости газов и жидкостей.

Тема 3

Элементы термодинамики. Первое начало термодинамики. Внутренняя энергия. Интенсивные и экстенсивные параметры.

Тема 4

Обратимые и необратимые процессы. Энтропия. Второе начало термодинамики. Термодинамические потенциалы и условия равновесия. Химический потенциал. Условия химического равновесия. Цикл Карно.

Тема 5

Функции распределения. Микроскопические параметры. Вероятность и флуктуации. Распределение Максвелла. Средняя кинетическая энергия частицы. Распределение Больцмана. Теплоемкость многоатомных газов. Ограниченность классической теории теплоемкости.

Тема 6

Распределение Гиббса. Модель системы в термостате. Каноническое распределение Гиббса. Статистический смысл термодинамических потенциалов и температуры. Роль свободной энергии.

Тема 7

Распределение Гиббса для системы с переменным числом частиц. Энтропия и вероятность. Определение энтропии равновесной системы через статистический вес микросостояния.

Тема 8

Функции распределения Бозе и Ферми. Формула Планка для разновесного теплового излучения. Порядок и беспорядок в природе. Энтропия как количественная мера хаотичности. Принцип возрастания энтропии. Переход от порядка к беспорядку о состоянии теплового равновесия.

Тема 9

Экспериментальные методы исследования колебательного спектра кристаллов. Понятие о фононах. Законы дисперсии для акустических и оптических фононов. Теплоемкость кристаллов при низких и высоких температурах. Электронные теплоемкость и теплопроводность.

Тема 10

Электроны в кристаллах. Приближение сильной и слабой связи. Модель свободных электронов. Уровень Ферми. Элементы зонной теории кристаллов. Функция Блоха. Зонная структура энергетического спектра электронов.

Тема 11

Поверхность Ферми. Число и плотность числа электронных состояний в зоне. Заполнения зон: металлы, диэлектрики и полупроводники. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n переходе. Транзистор.

Тема 12

Электропроводность металлов. Носители тока в металлах. Недостаточность классической электронной теории. Электронный ферми-газ в металле. Носители тока как квазичастицы. Явление сверхпроводимости. Куперовское спаривание электронов. Туннельный контакт. Эффект Джозефсона и его применение. Захват и квантование магнитного потока. Понятие о высокотемпературной проводимости.

СТАТИСТИЧЕСКАЯ ФИЗИКА. ТЕРМОДИНАМИКА

Основные формулы

1. Количество вещества однородного газа (в молях):

где N -число молекул газа; N A - число Авогадро; m -масса газа; -молярная масса газа.

Если система представляет смесь нескольких газов, то количество вещества системы

,

,

где i , N i , m i , i - соответственно количество вещества, число молекул, масса, молярная масса i -й компоненты смеси.

2. Уравнение Клапейрона-Менделеева (уравнение состояния идеального газа):

где m - масса газа; - молярная масса; R - универсальная газовая постоянная; = m/ - количество вещества; T -термодинамическая температура Кельвина.

3. Опытные газовые законы, являющиеся частными случаями уравнения Клапейрона-Менделеева для изопроцессов:

    закон Бойля-Мариотта

(изотермический процесс - Т =const; m=const):

или для двух состояний газа:

где p 1 и V 1 - давление и объем газа в начальном состоянии; p 2 и V 2

    закон Гей-Люссака (изобарический процесс - p=const, m=const ):

или для двух состояний:

где V 1 и Т 1 - объем и температура газа в начальном состоянии; V 2 и Т 2 - те же величины в конечном состоянии;

    закон Шарля (изохорический процесс - V=const, m=const ):

или для двух состояний:

где р 1 и Т 1 - давление и температура газа в начальном состоянии; р 2 и Т 2 - те же величины в конечном состоянии;

    объединенный газовый закон (m=const ):

где р 1 , V 1 , Т 1 - давление, объем и температура газа в начальном состоянии; р 2 , V 2 , Т 2 - те же величины в конечном состоянии.

4. Закон Дальтона, определяющий давление смеси газов:

р = р 1 + р 2 + ... +р n

где p i - парциальные давления компонент смеси; n - число компонентов смеси.

5. Молярная масса смеси газов:

где m i - масса i -го компонента смеси; i = m i / i - количество вещества i -го компонента смеси; n - число компонентов смеси.

6. Массовая доля  i i -го компонента смеси газа (в долях единицы или процентах):

где m - масса смеси.

7. Концентрация молекул (число молекул в единице объема):

где N -число молекул, содержащихся в данной системе;  - плотность вещества. Формула справедлива не только для газов, но и для любого агрегатного состояния вещества.

8. Основное уравнение кинетической теории газов:

,

где <> - средняя кинетическая энергия поступательного движения молекулы.

9. Средняя кинетическая энергия поступательного движения молекулы:

,

где k - постоянная Больцмана.

10. Средняя полная кинетическая энергия молекулы:

где i - число степеней свободы молекулы.

11. Зависимость давления газа от концентрации молекул и температуры:

p = nkT.

12. Скорости молекул:

средняя квадратичная ;

средняя арифметическая ;

наиболее вероятная ,

Классическая и квантовая статистическая физика. Вывод соотношения Гиббса. Термодинамические принципы. Теорема Лиувилля и кинетические уравнения Больцмана и Циглера. Методы статистической физики в гетерогенных средах.

1. Вывод соотношения Гиббса

Вводные замечания . Центральное место в механике гетерогенных сред занимает вывод определяющих уравнений. Именно определяющие уравнения содержат в себе спецификацию, позволяющую различать среды с разными механическими свойствами. Существуют различные способы вывода определяющих уравнений – как строгие на основе методов осреднения, так и эвристические. Наиболее распространенным методом является сочетание мысленных экспериментом с учетом термодинамических принципов. Оба эти подхода являются феноменологическими, хотя термодинамический метод глубоко проработан и основан на фундаментальных физических законах. Очевидно, что феноменологический вывод определяющих соотношений нуждается в обосновании, исходя из общих физических принципов, в частности, с использованием статистических методов.

Статистическая физика изучает системы, состоящие из огромного числа одинаковых или близких по составу элементов (атомов, молекул, ионов, субмолекулярных структур и т.п.). В механике гетерогенных сред такими элементами являются микронеоднородности (поры, трещины, зерна и т.п.). Исследование их детерминированными методами практически невозможно. В то же самое время огромное количество этих элементов допускает проявление статистических закономерностей и исследование этой системы статистическими методами.

В основе статистических методов лежат понятия основной системы и подсистемы. Основная система (термостат) значительно больше подсистемы, но обе они находятся в состоянии термодинамического равновесия. Объектом исследования в статистической физике является именно подсистема, которая в механике сплошной среды отождествляется с элементарным объемом, а в в механике гетерогенной среде с объемом фаз в элементарном объеме.

В основе метода Гиббса в статистической физике лежит понятия фазового пространства и траектории в фазовом пространстве. Фазовое пространство представляет собой топологическое произведение координатного и импульсного пространств каждой частицы составляющей подсистему. Траектории в фазовом пространстве содержит много лишней информации, например, начальные значения и сведения о граничных условиях, когда траектория выходит на границу. При описании одной единственной траектории в фазовом пространстве обычно используется эргодическая гипотеза (или некоторый ее суррогат, который несколько видоизменяет ее, но зато поддается строгому доказательству). Тонкости доказательства эргодической гипотезы не имеют значения, и поэтому мы на них не останавливаемся. Она позволяет одну траекторию заменить целым ансамблем состояний. Эквивалентное описание с помощью ансамбля состояний позволяет избавиться от указанной излишней информации. Ансамбль состояний допускает простую и прозрачную интерпретацию. Его можно представить себе как некоторый фиктивный газ в фазовом пространстве, который описывается с помощью уравнения переноса.

Статистический подход включает в себя два уровня исследования – квантовый и классический. Каждая микроскопическая неоднородность гетерогенной среды описывается механикой сплошной среды как некоторое однородное гомогенное тело. Предполагается, что при исследовании механических и термодинамических свойств этих неоднородностей уже была использована теория квантовой статистической физики. Когда мы производим осреднение по случайным неоднородностям в гетерогенной среде, то указанные неоднородности мы рассматриваем уже как классические случайные объекты. Ход рассуждений в квантовой и классической статистической физике очень схож, хотя он и имеет некоторые различия. В квантовой статистике фазовый объем принимает дискретные значения. Однако это не единственное различие. В квантовой статистике фиктивный газ несжимаем и подвергается только переносу. В классической статистике в уравнении переноса фигурирует член, описывающий диссипативные процессы на молекулярном уровне. Формально он выглядит как источник. Дивергентный вид этого источника позволяет сохранить полную массу фиктивного газа, но допускает его локальное исчезновение и появление. Этот процесс напоминает диффузию в фиктивном фазовом пространстве.

Далее на основе классической статистики в дальнейшем излагается собственно термодинамика, в том числе и термодинамика необратимых процессов. Вводятся понятия термодинамических функций, с помощью которых выводятся определяющие уравнения. Пороупругие среды включают в себя консервативные и диссипативные процессы. В скелете происходят обратимые упругие деформации, которые представляют собой консервативную термодинамическую систему, а диссипативные процессы происходят во флюиде. В поровязкой среде обе фазы (скелетная и флюидная) являются диссипативными.

Микропроцессы и макропроцессы . В гетерогенных средах подсистемой является элементарный объем, который удовлетворяет постулатам гетерогенных сред. В частности он удовлетворяет условию локальной статистической однородности и локального термодинамического равновесия. Соответственно все объекты и процессы различаются по своим масштабам на микропроцессы и макропроцессы. Будем описывать макропроцессы с помощью обобщенных координати обобщенных сил. Здесь нижние индексы означают не только векторные и тензорные индексы, но и различные величины (в том числе и величины с разной тензорной размерностью). При рассмотрении микропроцессов будем пользоватьсяобобщенными координатами иобобщенными скоростями . Эти координаты описывают движение больших молекул, их ассоциаций и неоднородностей, которые рассматриваются как классические объекты. Фазовое пространство подсистемы образовано координатамии скоростямивсех частиц слагающих данный элементарный объем.

Следует отметить, что в квантовой механике природа частиц строго установлена. Число частиц конечно, а законы их движения известны и единообразны для каждого сорта частиц. Совсем другая ситуация возникает в механике гетерогенных сред. Как правило, мы имеем выведенные феноменологическими методами определяющие соотношения для каждой из фаз. Общие определяющие соотношения для всего элементарного объема на макроуровне обычно являются предметом исследования. По этой причине взаимодействие элементов на микроуровне в гетерогенных средах не поддается стандартным методам исследования.

В этой связи требуются новые методы и подходы, которые еще до конца не разработаны. Одним из таких подходов является обобщение теории Гиббса, сделанное Циглером. Суть его состоит в некотором видоизменении уравнения Лиувилля. Более детально этот подход будет изложен ниже. Вначале мы даем стандартное изложение теории Гиббса, а затем излагаем идеи, которые позволяют обобщить ее.

Энергия системы меняется за счет работы
на макроуровне, которая выражается соотношением

. Она также меняется за счет притока тепла
, связанного с движением молекул. Выпишем первое начало термодинамики в дифференциальной форме

. (1.1)

Будем описывать микропроцессы с помощью уравнений Лагранжа

, (1.2) где
функция Лагранжа ,– кинетическая, а– потенциальная энергия.

В теории Гиббса накладываются следующие ограничения. Предполагается, что потенциальная энергия зависит микрокоординат и макрокоординат, а кинетическая энергия – только от микрокоординат и их скоростей. При таких условиях функция Лагранжа не зависит от времени и от макроскоростей.

.

Подход, основанный на уравнениях движения в форме Лагранжа (1.2) можно заменить эквивалентным гамильтоновым формализмом, вводя обобщенные импульсы для микрокоординат

,
, ифункцию Гамильтона
, которая имеет смысл полной энергии частицы. Выпишем приращение функции Гамильтона

В силу определения импульсов и уравнений движения Лагранжа это выражение преобразуется

, (1.2) откуда следуютуравнения движения Гамильтона

,
. (1.3a) где
имеет смысл энергии системы, а также дополнительное тождество рас

. (1.3b)

Здесь следует заметить, что функции Лагранжа и Гамильтона выражены через разные аргументы. Поэтому последнее тождество имеет не совсем тривиальный смысл. Выпишем дифференциальное выражение (1.2) для одной частицы вдоль ее траектории

.

С помощью (1.3) преобразуем это выражение

.

Следовательно, энергия частицы зависит только от обобщенных макрокоординат. Если они со временем не меняются, то энергия сохраняется.

Статистический метод описания системы . Недостаток информации о начальных условиях для системы (1.3) и об ее поведении на границе тела можно преодолеть, если воспользоваться статистическим подходом к исследованию этой системы. Пусть данная механическая система имеетстепеней свободы, связанных с микроскопическими переменными. Другими словами, положение всех точек в обычном трехмерном пространстве характеризуетсяобобщенными координатами (
). Рассмотрим фазовое пространство большего числа переменных
. Фазовое состояние характеризуется точкой с координатами
в
-мерном евклидовом пространстве. На практике мы всегда исследуем какой-то конкретный объект, который является частью некоторой большой (по сравнению с данным объектом) системы (внешней средой ). Этот объект обычно взаимодействует с внешней средой. Поэтому в дальнейшем мы будем говорить оподсистеме (которая занимает часть фазового пространства), взаимодействующей с системой (занимающей все фазовое пространство).

При движение в
-мерном пространстве единственная траектория постепенно заполняет все это фазовое пространство. Положим
и обозначим посредством
ту часть объема фазового пространства, в котором данная подсистема проводит "почти все время". Здесь имеется в виду то время, в течение которого подсистема находится в квазиравновесном состоянии. За достаточно длительный промежутка времени фазовая траектория много раз пройдет через этот участок фазового пространства. Примем эргодическую гипотезу, согласно которой вместо одной движущейся точки в фазовом пространстве можно рассматривать множество точек, образующих статистический ансамбль. Переходя к бесконечно малому элементарному фазовому объему

, введем непрерывную функцию распределенияс помощью соотношения

. Здесь– число точек в элементе фазового объема
,
полное число точек во всем фазовом пространстве,– некоторый нормировочный коэффициент, который имеет размерность действия. Он характеризует статистический вес выбранного элемента объема фазового пространства. Функция распределения удовлетворяет условию нормировки

или
. (1.4)

Пусть
суммарное время, которое система проводит в пределах элементарного объема
, аполное время движения материальной точки по своей траектории. В соответствии с эргодической гипотезой положим, что

. (1.5)

Рассуждая чисто формально, можно считать, что в фазовом пространстве находится некоторый фиктивный газ, плотность которого равна плотности числа точек фазового пространства. Сохранение числа фиктивных молекул газа выражается уравнением переноса в фазовом пространстве, аналогичным закону сохранения массы в обычном трехмерном пространстве. Этот закон сохранения называется теоремой Лиувилля

. (1.6)

В силу уравнений Гамильтона вытекает условие несжимаемости фазовой жидкости

(1.7)

Введем конвективную производную

.

Комбинируя (1.6) и (1.7), получаем уравнение переноса фазовой жидкости

или
. (1.8)

В силу эргодической гипотезы плотность числа частиц в фазовом пространстве пропорциональна плотности вероятности в ансамбле состояний. Поэтому уравнение (1.8) можно представить в виде

. (1.9)

В состоянии равновесия при неизменных внешних параметрах энергия микросистемы, представленная гамильтонианом, сохраняется вдоль траектории в фазовом пространстве. Точно также в силу (1.9) сохраняется и плотность вероятности. Отсюда следует, что плотность вероятности является функцией энергии.

. (1.10)

Зависимость отлегко получить, если заметить, что энергии подсистем складываются, а вероятности – перемножаются. Этому условию удовлетворяет единственная форма функциональной зависимости

. (1.11) Это распределение называется каноническим. Здесь– постоянная Больцмана, величины
и
имеют размерность энергии. Величины
иназываются свободной энергией и температурой.

Определим внутреннюю энергию как среднее значение истинной энергии

. (1.12)

Подставляя сюда (1.11), получаем

.

Энтропия определяется как

Соотношение (1.13) вводит новое понятие – энтропию. Второй закон термодинамики гласит, что в неравновесном состоянии системы ее энтропия стремится к возрастанию, а в состоянии термодинамического равновесия энтропия остается постоянной. Комбинируя (1.12) и (1.13), получаем

. (1.14) Соотношение (1.14) является основой для вывода других термодинамических функций, описывающих равновесное состояние подсистемы.

Предположим, что внутри фазового объема
данной подсистемы плотность вероятности почти постоянна. Другими словами, данная подсистема слабо связана с окружающей средой и находится в состоянии равновесия. Для нее справедливо соотношение

. (1.15) Здесь
– дельта функция.

Такое распределение называется микроканоническим в отличие от канонического распределения (1.11). На первый взгляд кажется, что оба распределения сильно отличаются и даже противоречат друг другу. На самом деле, между ними нет никакого противоречия. Введем радиус в многомерном фазовом пространстве очень большого числа измерений. В тонком эквидистантном (по энергии) сферическом слое число точек значительно превышает число точек внутри этой сферы. Именно по этой причине распределения (1.11) и (1.15) мало отличаются друг от друга.

Для того, чтобы удовлетворить последнему соотношению (1.4) необходимо, чтобы эта плотность вероятности была равна

. (1.16)

Подставим распределение (1.11) в последнее соотношение (1.4)

и продифференцируем его. Считая, что
является функцией макрокоординат, имеем

,
.

С помощью (1.14) преобразуем это выражение

. (1.17a) Здесь
– поток тепла,
– работа внешних сил. Это соотношение впервые вывел Гиббс, и оно носит его имя. Для газа оно имеет особенно простой вид

. (1.17b) Здесь– давление,– объем.

На феноменологическом уровне дается также и определение температуры. Заметим, что тепловой поток не является дифференциалом термодинамической функции, в то же время энтропия таковой является по определению. По этой причине в выражении (1.17) существует интегрирующий множитель , который и называется температурой. Можно взять некоторое рабочее тело (воду или ртуть) и ввести шкалу изменения температуры. Такое тело называетсятермометром . Запишем (1.17) в форме

. Температура в этом соотношении является некоторой интенсивной величиной.

Обобщенные силы и смещения являются термодинамически сопряженными величинами. Точно также температура и энтропия являются сопряженными величинами, из которых одна является обобщенной силой, а другая – обобщенным смещением. Из (1.17) следует

. (1.18)

В силу (1.14) для свободной энергии имеем аналогичное дифференциальное выражение

. (1.19) В этом соотношении температура и энтропия как сопряженные величины меняются местами, а выражение (1.18) видоизменяется

. (1.20)

Для того, чтобы использовать эти соотношения, необходимо задать независимые определяющие параметры и выражения для термодинамических функций.

Для температуры можно дать и более строгое определение. Рассмотрим, например, замкнутую (изолированную) систему, состоящую и из двух тел и находящуюся в состоянии термодинамического равновесия. Энергия и энтропия являются аддитивными величинами
,
. Заметим, что энтропия является функцией энергии, поэтому
. В равновесном состоянии энтропия является стационарной точкой относительно перераспределения энергии между двумя подсистемами, т.е.

.

Отсюда непосредственно следует

. (1.21)

Производная энтропии по энергии называется абсолютной температурой (или просто температурой ). Этот факт вытекает также непосредственно из (1.17). Соотношение (1.21) означает нечто большее: в состоянии термодинамического равновесия температуры тел равны

. (1.22)

error: Content is protected !!