Доказательство как средство математического мышления. Представления о доказательности и эволюция понятия доказательства

Лекция 10. Способы математического доказательства

1. Способы математического доказательства

2. Прямые и косвенные доказательства. Доказательство методом от противного.

3. Основные выводы

В обыденной жизни часто, когда говорят о доказательстве, имеют в виду просто проверку высказанного утверждения. В математике проверка и доказательство – это разные вещи, хотя и связанные между собой. Пусть, например, требуется доказать, что если в четырехугольнике три угла прямые, то он – прямоугольник.

Если мы возьмем какой-либо четырехугольник, у которого три угла прямые, и, измерив четвертый, убедимся в том, что он действительно прямой, то эта проверка сделает данное утверждение более правдоподобным, но еще не доказанным.

Чтобы доказать данное утверждение, рассмотрим произвольный четырехугольник, в котором три угла прямые. Так как в любом выпуклом четырехугольнике сумма углов 360⁰, то и в данном она составляет 360⁰. Сумма трех прямых углов равна 270⁰ (90⁰ 3 = 270⁰), и, значит, четвертый имеет величину 90⁰ (360⁰ - 270⁰). Если все углы четырехугольника прямые, то он – прямоугольник Следовательно, данный четырехугольник будет прямоугольником. Что и требовалось доказать.

Заметим, что сущность проведенного доказательства состоит в построении такой последовательности истинных утверждений (теорем, аксиом, определений), из которых логически следует утверждение, которое нужно доказать.

Вообще доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений .

В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обоснованно и также истинно, как и последние.

Таким образом, основой математического доказательства является дедуктивный вывод. А само доказательство – это цепочка умозаключений, причем заключение каждого из них (кроме последнего) является посылкой в одном из последующих умозаключений.

Например, в приведенном выше доказательстве можно выделить следующие умозаключения:

1. В любом выпуклом четырехугольнике сумма углов равна 360⁰; данная фигура – выпуклый четырехугольник, следовательно, сумма углов в нем 360⁰.

2. Если известна сумма всех углов четырехугольника и сумма трех из них, то вычитанием можно найти величину четвертого; сумма всех углов данного четырехугольника равна 360⁰, сумма трех 270⁰ (90⁰ 3 = 270⁰), то величина четвертого 360⁰ - 270⁰ = 90⁰.

3. Если в четырехугольнике все углы прямые, то этот четырехугольник – прямоугольник; в данном четырехугольнике все углы прямые, следовательно, он прямоугольник.



Все приведенные умозаключения выполнены по правилу заключения и, следовательно, являются дедуктивными.

Самое простое доказательство состоит из одного умозаключения. Таким, например, является доказательство утверждения о том, что 6 < 8.

Итак, говоря о структуре математического доказательства, мы должны понимать, что она, прежде всего, включает в себя утверждение, которое доказывается, и систему истинных утверждений, с помощью которых ведут доказательство.

Следует еще заметить, что математическое доказательство – это не просто набор умозаключений, это умозаключения, расположенные в определенном порядке.

По способу ведения (по форме) различают прямые и косвенные доказательства. Рассмотренное ранее доказательство было прямым – в нем, основываясь на некотором истинном предложении и с учетом условия теоремы, строилась цепочка дедуктивных умозаключений, которая приводила к истинному заключению.

Примером косвенного доказательства является доказательство методом от противного . Сущность его состоит в следующем. Пусть требуется доказать теорему

А ⇒ В. При доказательстве методом от противного допускают, что заключение теоремы (В) ложно, а, следовательно, его отрицание истинно. Присоединив предложение «не В» к совокупности истинных посылок, используемых в процессе доказательства (среди которых находится и условие А), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок и, в частности, условию А. Как только такое противоречие устанавливают, процесс доказательства заканчивают и говорят, что полученное противоречие доказывает истинность теоремы

Задача 1. Доказать, что если а + 3 > 10, то а ≠ 7. Метод от противного.

Задача 2. Доказать, что если х² - четное число, то х – четно. Метод от противного.

Задача 3. Даны четыре последовательных натуральных числа. Верно ли, что произведение средних чисел этой последовательности больше произведения крайних на 2? Метод неполной индукции.

Полная индукция – это такой метод доказательства, при котором истинность утверждения следует из истинности его во всех частных случаях.

Задача 4. Доказать, что каждое составное натуральное число, большее 4, но меньшее 20, представимо в виде суммы двух простых чисел.

Задача 5. Верно ли, что если натуральное число n не кратно 3, то значение выражения n² + 2 кратно 3? Метод полной индукции.

Доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений.

Доказательство – это логическая операция, в процессе которой обосновывается истинность какого-либо утверждения с помощью других истинных и связанных с ним утверждений. Для этого строится конечная цепочка умозаключений, причем заключение каждого из них (кроме последнего) является посылкой в одном из последующих умозаключений.

Основные законы логики :

1. Закон тождества. Каждая мысль, повторяясь в рассуждении, должна быть тождественной самой себе.

Закон тождества означает, что в процессе рассуждения нельзя подменять одну мысль другой, одно понятие другим. Нельзя тождественные мысли выдавать за различные, а различные – за тождественные.

2. Закон непротиворечия. Высказывание и его отрицание не могут быть одновременно истинными; по крайней мере одно из них обязательно ложно.

Если в мышлении (и речи) человека обнаружено формально-логическое противоречие, то такое мышление считается неправильным, а суждение, из которого вытекает противоречие, считается ложным.

3. Закон исключенного третьего. Из двух противоречивых высказываний об одном и том же предмете одно – истинно, а другое – ложно, третьего не дано.

4. Закон достаточного основания. Всякое истинное утверждение должно быть обосновано с помощью других утверждений, истинность которых доказана.

Когда речь идет о математическ4ом доказательстве, надо:

¾ иметь то утверждение, истинность которого нужно доказывать;

¾ понимать, что доказательство – это цепочка дедуктивных умозаключений; оно выполняется по правилам и законам логики;

¾ понимать, какие другие истинные утверждения можно использовать в процессе доказательства.

По способу ведения различают прямые и косвенные доказательства.

Прямое доказательство утверждения А В - это построение цепочки дедуктивных умозаключений, выполняемых последовательно от А к В с соблюдением правил и законов логики и с помощью системы утверждений, истинность которых доказана.

(Если в четырехугольники три угла прямые, то он прямоугольник)

Примером косвенного доказательства является доказательство методом от противного. Сущность его состоит в следующем. Пусть требуется доказать теорему А В. При доказательстве методом от противного допускают, что заключение теоремы (В) ложно, а, следовательно, его отрицание истинно. Присоединив предложение В к совокупности истинных посылок, используемых в процессе доказательства (среди которых находится и условие А), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок и, в частности, условию А.

(а+3> 10, то а ¹7)

Билет 15 Понятие соответствия между множествами. Способы задания соответствий. Взаимно - однозначные соответствия. Равномощные множества. Примеры соответствий (в том числе и взаимно - однозначных).

По способу связи аргументов от условия к заключению доказательства подразделяются на прямые и косвенные .

Прямое доказательство основано на каком-нибудь несомненном начале, из которого непосредственно устанавливается истинность теоремы.

Методы прямого доказательства:

– синтетический,

– аналитический,

– метод математической индукции.

Синтетический метод : при построении цепочки силлогизмов мысль движется от условия теоремы к ее заключению.

В учебниках приводятся преимущественно синтетические доказательства. Их преимущества – полнота, сжатость, краткость. Недостатки – отсутствие мотивации шагов, обоснования дополнительных построений; они носят значительно более формальный характер, чем аналитические доказательства.

Пример

Теорема. Если две хорды окружности пересекаются, то произведения отрезков одной хорды равно произведению отрезков другой хорды.


Дано: АВ и СД – хорды окружности, Е – точка их пересечения.

Доказать: АЕ×ВЕ = СЕ×ДЕ. (1)

Доказательство (синтетическое)

Рассмотрим треугольники АДЕ и СВЕ. В этих треугольниках углы 1 и 2 равны, так как они вписанные и опираются на одну и ту же дугу ВМД, а углы 3 и 4 равны как вертикальные. По первому признаку подобия треугольников DАДЕ ~ DСВЕ. Отсюда следует, что , или АЕ×ВЕ = СЕ×ДЕ. Теорема доказана .

Аналитический метод : при поиске доказательства мысль движется от заключения теоремы к ее условию. Преимущества этого метода – есть отправное звено доказательства, дополнительные построения мотивированы, увеличивается творческая активность учащихся. Недостатки – большие потери времени, искусственные дополнительные построения трудно обосновать.

Пример . Теорема о хордах окружности.

Доказательство (аналитическое)

Чтобы доказать равенство (1), достаточно показать, что (2).

Для того, чтобы найти пропорцию (2), достаточно доказать подобие треугольников, стороны которых являются членами этой пропорции. Для получения таких треугольников соединяем точки С и В, А и Д.

Чтобы обосновать верность пропорции (2), достаточно доказать, что DАДЕ ~ DСВЕ. Эти треугольники подобны по первому признаку подобия треугольников: Ð1 = Ð2 как вписанные углы, опирающиеся на одну и ту же дугу ВМД, а Ð3 = Ð4 как вертикальные. Следовательно, теорема верна .

Любое аналитическое доказательство обратимо в синтетическое и наоборот. Это широко используется в учебном процессе. Технологии могут быть таковы:

1) синтетическое доказательство предваряется аналитическими поисками его плана;

2) синтетическое доказательство заменяется аналитическим, в качестве домашнего задания – изучение синтетического доказательства по учебнику;

3) при использовании лекционного метода (преимущественно за пределами курса основной школы) часто используется чисто синтетический метод доказательства.

Метод математической индукции не имеет распространения в геометрии, так как основан на свойствах множества натуральных чисел, выходит за рамки основной школы, поэтому мы не будет подвергать его специальному изучению.

Косвенное доказательство : истинность теоремы устанавливается посредством опровержения некоторых суждений, содержащихся в теореме.

Наиболее распространенный и единственно применимый в курсе планиметрии метод косвенного доказательства – доказательство от противного .

Логико-математическая сущность метода от противного: вместо прямой (р Þ q) доказывается обратная противоположной теорема ().

Поэтому доказательство методом от противного строится по следующей схеме:

1) пусть неверно q, то есть истинно ;

2) докажем, что ложно р, то есть истинно ;

3) убедились, что из ;

4) следовательно, р Þ q (в силу равносильности импликаций р Þ q и ), что и требовалось доказать.

Курс геометрии основной школы широко применяет доказательства от противного, начиная буквально с первых уроков в седьмом классе. При этом необходимо использовать алгоритмический подход.

Алгоритм доказательства от противного .

1. Допускаем, что заключение теоремы ложно. Тогда будет верно противоречащее ему утверждение.

2. Вычленяем возможные случаи.

3. Убеждаемся, что в каждом случае приходим к следствию, которое противоречит:

– условию теоремы,

– ранее установленным математическим фактам.

4. Наличие противоречия заставляет отказаться от принятого заключения.

5. Признаем справедливость заключения доказываемой теоремы.

Мы охарактеризовали основные логические методы доказательства теорем: прямые и косвенные, которые в свою очередь могут быть аналитическими и синтетическими, доказательствами от противного.

Можно говорить об основных математических методах доказательства теорем. В геометрии к ним можно отнести следующие базовые методы:

1) метод геометрических преобразований : эффективен, соответствует современной концепции обучения геометрии в школе, но требует развитого абстрактного и пространственного мышления; методика его использования в школе недостаточно отработана;

2) метод равенства и подобия треугольников – соответствует классической концепции обучения геометрии в школе, известен со времен Евклида, поэтому методика его хорошо разработана; навыки его применения формируются постепенно, в процессе решения задач и доказательства теорем.

Кроме указанных базовых математических методов доказательства теорем планиметрии можно говорить о более частных методах: метод симметрии, метод поворота, векторный метод, алгебраический метод, метод подобия, координатный метод и др.

Методы доказательства, используемые в курсе геометрии основной школы, можно обобщить в виде схемы I.

Нахождение математического доказательства может оказаться непростой задачей, но вам поможет знание математики и умение оформить доказательство. К сожалению, не существует быстрых и простых методов научиться решать математические задачи. Необходимо как следует изучить предмет и запомнить основные теоремы и определения, которые пригодятся вам при доказательстве того или иного математического постулата. Изучайте примеры математических доказательств и тренируйтесь сами - это поможет вам усовершенствовать свое мастерство.

Шаги

Поймите условие задачи

    Определите, что требуется найти. Первым делом необходимо выяснить, что именно следует доказать. Помимо прочего, этим будет определяться последнее утверждение в вашем доказательстве. На данном этапе следует также сделать определенные допущения, в рамках которых вы будете работать. Чтобы лучше понять задачу и приступить к ее решению, выясните, что требуется доказать, и сделайте необходимые предположения.

    Сделайте рисунок. При решении математических задач иногда полезно изобразить их в виде рисунка или схемы. Это особенно важно в случае геометрических задач - рисунок помогает наглядно представить условие и значительно облегчает поиск решения.

    • При создании рисунка или схемы используйте приведенные в условии данные. Отметьте на рисунке известные и неизвестные величины.
    • Рисунок облегчит вам поиск доказательства.
  1. Изучите доказательства схожих теорем. Если вам не удается сходу найти решение, найдите подобные теоремы и посмотрите, как они доказываются.

    Задавайте вопросы. Ничего страшного, если вам не удастся сразу же найти доказательство. Если вам что-то неясно, спросите об этом учителя или одноклассников. Возможно, у ваших товарищей возникли те же вопросы, и вы сможете разобраться с ними вместе. Лучше задать несколько вопросов, чем вновь и вновь безуспешно пытаться найти доказательство.

    • Подойдите к учителю после уроков и выясните все неясные вопросы.

    Сформулируйте доказательство

    1. Сформулируйте математическое доказательство. Математическим доказательством называют подкрепленную теоремами и определениями последовательность утверждений, которая доказывает какой-либо математический постулат. Доказательства являются единственным способом определить, что то или иное утверждение верно в математическом смысле.

      • Умение записать математическое доказательство свидетельствует о глубоком понимании задачи и владении необходимыми инструментами (леммами, теоремами и определениями).
      • Строгие доказательства помогут вам по-новому взглянуть на математику и почувствовать ее притягательную силу. Просто попробуйте доказать какое-либо утверждение, чтобы получить представление о математических методах.
    2. Учтите свою аудиторию. Прежде чем приступить к записи доказательства, следует подумать о том, для кого оно предназначено, и учесть уровень знаний этих людей. Если вы записываете доказательство для дальнейшей публикации в научном журнале, оно будет отличаться от того случая, когда вы выполняете школьное задание.

      • Знание целевой аудитории позволит вам записать доказательство с учетом подготовки читателей, чтобы они поняли его.
    3. Определите тип доказательства. Есть несколько видов математических доказательств, и выбор конкретной формы зависит от целевой аудитории и решаемой задачи. Если вы не знаете, какой вид выбрать, посоветуйтесь со своим учителем. В старших классах школы требуется оформлять доказательства в две колонки.

      • При записи доказательства в две колонки в одну заносят исходные данные и утверждения, а во вторую - соответствующие доказательства этих утверждений. Такую форму записи часто используют при решении геометрических задач.
      • При менее формальной записи доказательств используют грамматически правильные конструкции и меньшее количество символов. На более высоких уровнях следует применять именно эту запись.
    4. Сделайте набросок доказательства в виде двух колонок. Такая форма помогает упорядочить мысли и последовательно решить задачу. Разделите страницу пополам вертикальной линией и запишите исходные данные и вытекающие из них утверждения в левой части. Справа напротив каждого утверждения запишите соответствующие определения и теоремы.

      Запишите доказательство из двух колонок в виде неформального доказательства. Возьмите за основу запись в виде двух колонок и запишите доказательство в более краткой форме с меньшим количеством символов и сокращений.

      • Например: предположим, что углы А и В являются смежными. Согласно гипотезе, эти углы дополняют друг друга. Будучи смежными, угол A и угол B образуют прямую линию. Если стороны угла образуют прямую линию, такой угол равен 180°. Сложим углы A и B и получим прямую линию ABC. Таким образом, сумма углов A и B равна 180°, то есть эти углы являются дополнительными. Что и требовалось доказать.

      Запишите доказательство

      1. Освойте язык доказательств. Для записи математических доказательств используют стандартные утверждения и фразы. Необходимо выучить эти фразы и знать, как ими пользоваться.

        Запишите все исходные данные. При составлении доказательства первым делом следует определить и выписать все, что дано в задаче. В этом случае вы будете иметь перед глазами все исходные данные, на основании которых необходимо получить решение. Внимательно прочитайте условие задачи и выпишите все, что в нем дано.

      2. Определите все переменные. Помимо записи исходных данных полезно также выписать остальные переменные. Чтобы читателям было удобнее, запишите переменные в самом начале доказательства. Если переменные не определены, читатель может запутаться и не понять ваше доказательство.

        • Не используйте в ходе доказательства неопределенные ранее переменные.
        • Например: в рассмотренной выше задаче переменными являются величины углов A и B.
      3. Попробуйте найти доказательство в обратном порядке. Многие задачи легче решать в обратной последовательности. Начните с того, что требуется доказать, и подумайте, как можно связать выводы с исходным условием.

        • Перечитайте начальные и конечные шаги и посмотрите, не похожи ли они друг на друга. Используйте при этом начальные условия, определения и похожие доказательства из других задач.
        • Задавайте самому себе вопросы и продвигайтесь вперед. Чтобы доказать отдельные утверждения, спрашивайте себя: “Почему это именно так?” - и: “Может ли это оказаться неправильным?”
        • Не забывайте последовательно записывать отдельные шаги, пока не получите конечный результат.
        • Например: если углы A и B являются дополнительными, их сумма должна составлять 180°. Согласно определению смежных углов, углы A и B образуют прямую линию ABC. Так как линия образует угол 180°, в сумме углы A и B дают 180°.
      4. Расположите отдельные шаги доказательства так, чтобы оно было последовательным и логичным. Начните с самого начала и продвигайтесь к доказываемому тезису. Хотя иногда и полезно начать поиск доказательства с конца, при его записи необходимо соблюдать правильный порядок. Отдельные тезисы должны следовать один за другим, чтобы доказательство было логичным и не вызывало сомнений.

        • Для начала рассмотрите выдвинутые предположения.
        • Подтвердите сделанные утверждения простыми и очевидными шагами, чтобы у читателя не возникало сомнений в их правильности.
        • Иногда приходится не один раз переписывать доказательство. Продолжайте группировать утверждения и их доказательства до тех пор, пока не добьетесь наиболее логичного построения.
        • Например: начнем с начала.
          • Углы A и B являются смежными.
          • Стороны угла ABC образуют прямую линию.
          • Угол ABC составляет 180°.
          • Угол A + угол B = угол ABC.
          • Угол A + угол B = угол 180°.
          • Угол A является дополнительным к углу B.
      5. Не используйте в доказательстве стрелочки и сокращения. При работе с черновым вариантом можно пользоваться различными сокращениями и символами, однако не включайте их в окончательный чистовой вариант, так как это может запутать читателей. Используйте вместо этого такие слова, как “следовательно” и “тогда”.

        Завершайте доказательства фразой “что и требовалось доказать”. В конце доказательства должен стоять доказываемый тезис. После него следует написать “что и требовалось доказать” (сокращенно “ч. т. д.” или символ в виде закрашенного квадрата) - это означает, что доказательство завершено.

        • На латыни фразе “что и требовалось доказать” соответствует аббревиатура Q.E.D. (quod erat demonstrandum , то есть “что и требовалось показать”).
        • Если вы сомневаетесь в правильности доказательства, просто напишите несколько фраз о том, к какому выводу вы пришли и почему он важен.
      • Вся приводимая в доказательстве информация должна служить достижению поставленной цели. Не включайте в доказательство то, без чего можно обойтись.

1. Способы математического доказательства

2. Прямые и косвенные доказательства. Доказательство методом от противного.

3. Основные выводы

Способы математического доказательства

В обыденной жизни часто, когда говорят о доказательстве, имеют в виду просто проверку высказанного утверждения. В математике проверка и доказательство – это разные вещи, хотя и связанные между собой. Пусть, например, требуется доказать, что если в четырехугольнике три угла прямые, то он – прямоугольник.

Если мы возьмем какой-либо четырехугольник, у которого три угла прямые, и, измерив четвертый, убедимся в том, что он действительно прямой, то эта проверка сделает данное утверждение более правдоподобным, но еще не доказанным.

Чтобы доказать данное утверждение, рассмотрим произвольный четырехугольник, в котором три угла прямые. Так как в любом выпуклом четырехугольнике сумма углов 360⁰, то и в данном она составляет 360⁰. Сумма трех прямых углов равна 270⁰ (90⁰ 3 = 270⁰), и, значит, четвертый имеет величину 90⁰ (360⁰ - 270⁰). Если все углы четырехугольника прямые, то он – прямоугольник Следовательно, данный четырехугольник будет прямоугольником. Что и требовалось доказать.

Заметим, что сущность проведенного доказательства состоит в построении такой последовательности истинных утверждений (теорем, аксиом, определений), из которых логически следует утверждение, которое нужно доказать.

Вообще доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений .

В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обоснованно и также истинно, как и последние.

Таким образом, основой математического доказательства является дедуктивный вывод. А само доказательство – это цепочка умозаключений, причем заключение каждого из них (кроме последнего) является посылкой в одном из последующих умозаключений.

Например, в приведенном выше доказательстве можно выделить следующие умозаключения:

1. В любом выпуклом четырехугольнике сумма углов равна 360⁰; данная фигура – выпуклый четырехугольник, следовательно, сумма углов в нем 360⁰.

2. Если известна сумма всех углов четырехугольника и сумма трех из них, то вычитанием можно найти величину четвертого; сумма всех углов данного четырехугольника равна 360⁰, сумма трех 270⁰ (90⁰ 3 = 270⁰), то величина четвертого 360⁰ - 270⁰ = 90⁰.

3. Если в четырехугольнике все углы прямые, то этот четырехугольник – прямоугольник; в данном четырехугольнике все углы прямые, следовательно, он прямоугольник.

Все приведенные умозаключения выполнены по правилу заключения и, следовательно, являются дедуктивными.

Самое простое доказательство состоит из одного умозаключения. Таким, например, является доказательство утверждения о том, что 6 < 8.

Итак, говоря о структуре математического доказательства, мы должны понимать, что она, прежде всего, включает в себя утверждение, которое доказывается, и систему истинных утверждений, с помощью которых ведут доказательство.

Следует еще заметить, что математическое доказательство – это не просто набор умозаключений, это умозаключения, расположенные в определенном порядке.

По способу ведения (по форме) различают прямые и косвенные доказательства. Рассмотренное ранее доказательство было прямым – в нем, основываясь на некотором истинном предложении и с учетом условия теоремы, строилась цепочка дедуктивных умозаключений, которая приводила к истинному заключению.

Примером косвенного доказательства является доказательство методом от противного . Сущность его состоит в следующем. Пусть требуется доказать теорему

А ⇒ В. При доказательстве методом от противного допускают, что заключение теоремы (В) ложно, а, следовательно, его отрицание истинно. Присоединив предложение «не В» к совокупности истинных посылок, используемых в процессе доказательства (среди которых находится и условие А), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок и, в частности, условию А. Как только такое противоречие устанавливают, процесс доказательства заканчивают и говорят, что полученное противоречие доказывает истинность теоремы

Задача 1. Доказать, что если а + 3 > 10, то а ≠ 7. Метод от противного.

Задача 2. Доказать, что если х² - четное число, то х – четно. Метод от противного.

Задача 3. Даны четыре последовательных натуральных числа. Верно ли, что произведение средних чисел этой последовательности больше произведения крайних на 2? Метод неполной индукции.

Полная индукция – это такой метод доказательства, при котором истинность утверждения следует из истинности его во всех частных случаях.

Задача 4. Доказать, что каждое составное натуральное число, большее 4, но меньшее 20, представимо в виде суммы двух простых чисел.

Задача 5. Верно ли, что если натуральное число n не кратно 3, то значение выражения n² + 2 кратно 3? Метод полной индукции.

Основные выводы

В этом пункте познакомились с понятиями: умозаключение, посылка и заключение, дедуктивные (правильные) умозаключения, неполная индукция, аналогия, прямое доказательство, косвенное доказательство, полная индукция.

Мы выяснили, что неполная индукция и аналогия тесно связаны с дедукцией: выводы, полученные с помощью неполной индукции и аналогии, надо либо доказывать, либо опровергать. С другой стороны, дедукция не возникает на пустом месте, а является результатом предварительного индуктивного изучения материала.

Дедуктивные умозаключения позволяют из уже имеющегося знания получать новые истины, и притом с помощью рассуждения, без обращения к опыту, интуиции и т.д.

Мы выяснили, что математическое доказательство – это цепочка дедуктивных умозаключений, выполняемых по определенным правилам. Познакомились с простейшими из них: правилом заключения, правилом отрицания, правилом силлогизма. Узнали, что проверять правильность умозаключений можно с помощью кругов Эйлера.

ТЕКСТОВАЯ ЗАДАЧА И ПРОЦЕСС ЕЕ РЕШЕНИЯ

Лекция 11. Текстовая задача и процесс ее решения

1. Структура текстовой задачи

2. Методы и способы решения текстовых задач

3. Этапы решения задачи и приемы их выполнения

Кроме различных понятий, предложений, доказательств в любом математическом курсе есть задачи. В обучении математике младших школьников преобладают такие, которые называют арифметическими, текстовыми, сюжетными. Эти задачи сформулированы на естествен­ном языке (их называют текстовыми): в них обычно описывается количественная сторона каких-то явлений, событий (поэтому их часто называют арифметическими или сюжетными); они представ­ляют собой задачи на разыскание искомого и сводятся к вычислению неизвестного значения некоторой величины (поэтому их иногда назы­вают вычислительными).

В данном пособии мы будем применять термин «текстовые задачи», поскольку он чаще других используется в методике обучения математике младших школьников.

Решению текстовых задач при начальном обучении уделяется ог­ромное внимание. Связано это с тем, что такие задачи часто являются не только средством формирования многих математических понятий, но и главное - средством формирования умений строить математические модели реальных явлений, а также средством развития мышления детей.

Существуют различные методические подходы к обучению детей решению текстовых задач. Но какую бы методику обучения ни вы брал учитель, ему надо знать, как устроены такие задачи, и уметь их решать различными методами и способами.

Структура текстовой задачи

Как было сказано выше, любая текстовая задача представляет собой описание какого-либо явления (ситуации, процесса). С этой точки зре­ния текстовая задача есть словесная модель явления (ситуации, процесса). И, как во всякой модели, в текстовой задаче описывается не все явление в целом, а лишь некоторые его стороны, главным образом, его количественные характеристики. Рассмотрим, например, такую задачу: «Автомобиль выехал из пункта А со скоростью 60 км/ч. Через 2 ч вслед за ним выехал второй автомобиль со скоростью 90 км/ч. На каком рас­стоянии от А второй автомобиль догонит первый?»

В задаче описывается движение двух автомобилей. Как известно, любое движение характеризуется тремя величинами: пройденным расстоянием, скоростью и временем движения. В данной задаче из­вестны скорости первого и второго автомобилей (60 км/ч и 90 км/ч), известно, что они прошли одно и то же расстояние от пункта А до места встречи, количественную характеристику которого и надо найти. Кро­ме того, известно, что первый автомобиль был в пути на 2 ч больше, чем второй.

Обобщая, можно сказать, что текстовая задача есть описание на естественном языке некоторого явления (ситуации, процесса) с требо­ванием дать количественную характеристику какого-либо компонен­та этого явления, установить наличие или отсутствие некоторого от­ношения между компонентами или определить вид этого отношения.

Рассмотрим еще одну задачу из начального курса математики: «Свитер, шапку и шарф связали из I кг 200 г шерсти. На шарф по­требовалась на 100 г шерсти больше, чем на шапку, и на 400 г меньше, чем на свитер. Сколько шерсти израсходовали на каждую вещь?»

В задаче речь идет о расходовании шерсти на свитер, шапку и шарф. Относительно этих объектов имеются определенные утверждения и требования.

Утверждения:

1. Свитер, шапка и шарф связаны из 1200 г шерсти.

2. На шарф израсходовали на 100 г больше, чем на шапку.

3. На шарф израсходовали на 400 г меньше, чем на свитер.

Требования:

1. Сколько шерсти израсходовали на свитер?

2. Сколько шерсти израсходовали на шапку?

3. Сколько шерсти израсходовали на шарф?

Утверждения задачи называют условиями (или условием, как в на­чальной школе). В задаче обычно не одно условие, а несколько элемен­тарных условий. Они представляют собой количественные или каче­ственные характеристики объектов задачи и отношений между ними. Требований в задаче может быть несколько. Они могут быть сформу­лированы как в вопросительной, так и утвердительной форме. Усло­вия и требования взаимосвязаны.

Систему взаимосвязанных условий и требований называют высказывательной моделью задачи.

Таким образом, чтобы понять, какова структура задачи, надо вы­явить ее условия и требования, отбросив все лишнее, второстепенное, не влияющее на ее структуру. Иными словами, надо построить высказывательную модель задачи.

Чтобы получить эту модель, надо текст задачи развернуть (сделать это можно письменно или устно), так как текст задачи, как правило, дается в сокращенном, свернутом виде. Для этого можно перефрази­ровать задачу, построить ее графическую модель, ввести какие-либо обозначения и т.д.

Кроме того, вычленение условий задачи можно производить с раз­ной глубиной. Глубина анализа условий и требований задачи зависит главным образом от того, знакомы ли мы с видом задач, к которому принадлежит заданная, и знаем ли мы способ решения таких задач.

Пример 1. Сформулируйте условия и требования задачи:

Две девочки одновременно побежали навстречу друг другу по спортивной дорожке, длина которой 420 м. Когда они встретились, первая пробежала на 60 м больше, чем вторая. С какой скоростью бежала каждая девочка, если они встретились через 30 с?

В задаче речь идет о движении двух девочек навстречу друг другу. Как известно, движение характеризуется тремя величинами: расстоя­нием, скоростью и временем.

Условия задачи:

1. Две девочки бегут навстречу друг другу.

2. Движение они начали одновременно.

3. Расстояние, которое они пробежали, - 420 м.

4. Одна девочка пробежала на 60 м больше, чем другая.

5. Девочки встретились через 30 с.

6. Скорость движения одной девочки больше скорости движения
другой.

Требования задачи:

1. С какой скоростью бежала 1-я девочка?

2. С какой скоростью бежала 2-я девочка?

По отношению между условиями и требованиями различают:

а) определенные задачи - в них заданных условий столько, сколько
необходимо и достаточно для выполнения требований;

б) недоопределенные задачи - в них условий недостаточно для получения ответа;

в) переопределенные задачи - в них имеются лишние условия.

В начальной школе недоопределенные задачи считают задачами с недостающими данными, а переопределенные - задачами с избыточ­ными данными.

Например, задача «Возле дома росло 5 яблонь, 2 вишни и 3 березы. Сколько фруктовых деревьев росло возле дома?» является переопре­деленной, так как содержит лишнее условие.

Задача «Из зала вынесли сначала 12 стульев, потом еще 5. Сколько стульев осталось в зале?» является недоопределенной - в ней условий недостаточно, чтобы ответить на поставленный вопрос.

Уточним теперь смысл термина «решение задачи». Так сложилось, что этим термином обозначают разные понятия:

1) решением задачи называют результат, т.е. ответ на требование
задачи;

2) решением задачи называют процесс нахождения этого результата, причем этот процесс рассматривают двояко: и как метод нахождения результата (например, говорят о решении задачи арифметическим способом) и как последовательность тех действий, которые выполняет решающий, применяя тот или иной метод (т.е. в данном случае под
решением задачи понимается вся деятельность человека, решающего задачу).

Упражнения

1. В следующих задачах выделите условия и требования:

а) Два автобуса отправились одновременно из города в село, расстояние до которого 72 км. Первый автобус прибыл в село на 15 мин раньше второго. С какой скоростью шел каждый автобус, если скорость одного из них на 4 км/ч больше скорости другого?

б) Сумма двух чисел равна 199. Найдите эти числа, если одно из них больше другого на 61.

2. Задачи из упражнения 1 сформулируйте таким образом, чтобы предложение, содержащее требование, не содержало условий.

3. В задачах из упражнения 1 повелительную форму требований замените вопросительной, вопросительную - повелительной.

4. Решите задачи из упражнения I.

5. Даны условия задачи: «Собрали 42 кг огурцов и 5/7 всех огурцов засолили».

Из нижеследуемого списка выберите требования к данному усло­вию и решите полученную задачу:

а) Сколько килограммов огурцов осталось незасоленными?

б) Сколько килограммов помидор осталось незасоленными?

в) Что больше - масса огурцов, которые посолили или масса огурцов, которые остались незасоленными?

6. Сформулируйте возможные требования к условию задачи:

а) Купили 12 м ткани и третью часть ткани израсходовали на платье.

б) Из деревни вышел пешеход, а через 2 ч вслед за ним выехал велосипедист. Скорость велосипедиста 10 км/ч, а скорость пешехода 5 км/ч.

7. Какие данные необходимы для ответа на следующее требование
задачи:

а) Какая часть урока использована на решение задачи?

б) Сколько платьев сшили из купленной ткани?

в) Найдите периметр прямоугольника.

8. Ученику была предложена задача: «Велосипедист ехал 2 часа с
некоторой скоростью. После того как он проедет 60 км с такой же
скоростью, его путь станет равным 48 км. С какой скоростью ехал
велосипедист?» Он решил ее так:

1)60-48= 12 (км)

2) 12:2 = 6 (км/ч)

Ответ: 6 км/ч - скорость велосипедиста.

Согласны ли вы с таким решением данной задачи?

9. Можете ли вы дать ответ на требование следующей задачи:

а) За 3 м ткани заплатили 60000 р. Во второй раз купили 6 м ткани. Сколько денег заплатили за ткань, купленную во второй раз?

б) Два мотоциклиста едут навстречу друг другу. Скорость одного них 62 км/ч, а скорость другого 54 км/ч. Через сколько часов мотоциклисты встретятся?

В случае если нельзя ответить на требование задачи, дополните ее условие и решите задачу.

10. Есть ли среди нижеприведенных задачи с лишними данными:

а) Объем комнаты равен 72 м³. Высота комнаты 3 м. Найдите площадь пола комнаты, если ее длина 6 м.

5) Для посадки леса выделили участок, площадь которого 300 га. Ду6ы посадили на 7/10 участка, а сосны на 3/10 участка. Сколько гектаров занято дубами и соснами?

В случае если в задаче есть лишние данные, то исключите их и реш­нте задачу.

error: Content is protected !!