Математические методы модели в экономике лекции. Распределение дискретных случайных величин X, Y, Z

МПС Российской федерации

Уральский Государственный Университет Путей Сообщения

Челябинский Институт Путей Сообщения

КУРСОВАЯ РАБОТА

по курсу: “Экономико-математическое моделирование"

Тема: “Математические модели в экономике"

Выполнил:

Шифр:

Адрес:

Проверил:

Челябинск 200_ г.

Введение

Создание и сохранение отчетов

Решение задачи на компьютере

Литература

Введение

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако, методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.

Процесс решения экономических задач осуществляется в несколько этапов:

Содержательная (экономическая) постановка задачи. Вначале нужно осознать задачу, четко сформулировать ее. При этом определяются также объекты, которые относятся к решаемой задаче, а также ситуация, которую нужно реализовать в результате ее решения. Это - этап содержательной постановки задачи. Для того, чтобы задачу можно было описать количественно и использовать при ее решении вычислительную технику, нужно произвести качественный и количественный анализ объектов и ситуаций, имеющих к ней отношение. При этом сложные объекты, разбиваются на части (элементы), определяются связи этих элементов, их свойства, количественные и качественные значения свойств, количественные и логические соотношения между ними, выражаемые в виде уравнений, неравенств и т.п. Это - этап системного анализа задачи, в результате которого объект оказывается представленным в виде системы.

Следующим этапом является математическая постановка задачи, в процессе которой осуществляется построение математической модели объекта и определение методов (алгоритмов) получения решения задачи. Это - этап системного синтеза (математической постановки) задачи. Следует заметить, что на этом этапе может оказаться, что ранее проведенный системный анализ привел к такому набору элементов, свойств и соотношений, для которого нет приемлемого метода решения задачи, в результате приходится возвращаться к этапу системного анализа. Как правило, решаемые в экономической практике задачи, стандартизованы, системный анализ производится в расчете на известную математическую модель и алгоритм ее решения, проблема состоит лишь в выборе подходящего метода.

Следующим этапом является разработка программы решения задачи на ЭВМ. Для сложных объектов, состоящих из большого числа элементов, обладающих большим числом свойств, может потребоваться составление базы данных и средств работы с ней, методов извлечения данных, нужных для расчетов. Для стандартных задач осуществляется не разработка, а выбор подходящего пакета прикладных программ и системы управления базами данных.

На заключительном этапе производится эксплуатация модели и получение результатов.

Таким образом, решение задачи включает следующие этапы:

2. Системный анализ.

3. Системный синтез (математическая постановка задачи)

4. Разработка или выбор программного обеспечения.

5. Решение задачи.

Последовательное использование методов исследования операций и их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней, которые к тому же не могут согласовать эти свои волевые решения.

Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.

Сложность процессов в экономике требует от человека, принимающего решения, высокой квалификации и большого опыта. Это, однако, не гарантирует ошибок, дать быстрый ответ на поставленный вопрос, провести экспериментальные исследования, невозможные или требующие больших затрат и времени на реальном объекте, позволяет математическое моделирование.

Математическое моделирование позволяет принять оптимальное, то есть наилучшее решение. Оно может незначительно отличаться от грамотно принятого решения без применения математического моделирования (около 3%). Однако при больших объемах производства такая "незначительная" ошибка может привести к огромным потерям.

Математические методы, применяемые для анализа математической модели и принятия оптимального решения, весьма сложны и их реализация без применения ЭВМ затруднительна. В составе программ Excel и Mathcad имеются средства, позволяющие провести математический анализ и найти оптимальное решение.

Часть № 1 "Исследование математической модели"

Постановка задачи.

На предприятии имеется возможность выпуска продукции 4-х видов. Для выпуска единицы продукции каждого вида необходимо затратить определенное количество трудовых, финансовых, сырьевых ресурсов. В наличии имеется ограниченное количество каждого ресурса. Реализация единицы продукции приносит прибыль. Значения параметров приведены в таблице 1. Дополнительное условие: финансовые затраты на производство продукций №2 и №4 не должны превышать 50р. (каждого вида).

На основе математического моделирования средствами Excel определить, какую продукцию и в каких количествах целесообразно произвести с точки зрения получения наибольшей прибыли, проанализировать результаты, ответить на вопросы, сделать выводы.

Таблица 1.

Составление математической модели

Целевая функция (ЦФ).

Целевая функция показывает, в каком смысле решение задачи должно быть наилучшим (оптимальным). В нашей задаче ЦФ:


Прибыль → max.

Значение прибыли можно определить по формуле:

Прибыль = кол 1 ∙ пр 1 + кол 2 ∙ пр 2 + кол 3 ∙ пр 3 + кол 4 ∙ пр 4, где кол 1 ,…, кол 4 –

количества выпущенной продукции каждого вида;

пр 1 ,…, пр 4 - прибыли, получаемые от реализации единицы каждого вида продукции. Подставив значения пр 1 ,…, пр 4 ( из табл.1) получим:

ЦФ: 1,7 ∙ кол 1 + 2,3 ∙ кол 2 + 2 ∙ кол 3 + 5 ∙ кол 4 → max (1)

Ограничения (ОГР).

Ограничения устанавливают зависимости между переменными. В нашей задаче ограничения накладываются на использование ресурсов, количества которых ограничены. Количество сырья, которое необходимо для производства всей продукции, можно подсчитать по формуле:

Сырьё = с 1 ∙ кол 1 + с 2 ∙ кол 2 + с 3 ∙ кол 3 + с 4 ∙ кол 4, где с 1 ,…, с 4

количества сырья, необходимые для выпуска единицы каждого вида продукции. Общее количество использованного сырья не может превышать имеющего в наличии ресурса. Подставив значения из табл.1, получим первое ограничение - по сырью:

1,8 ∙ кол 1 + 1,4 ∙ кол 2 + 1 ∙ кол 3 + 0,15 ∙ кол 4 ≤ 800 (2)

Аналогично запишем ограничения по финансам и трудозатратам:


0,63 ∙ кол 1 + 0,1 ∙ кол 2 + 1 ∙ кол 3 + 1,7 ∙ кол 4 ≤ 400 (3)

1,1 ∙ кол 1 + 2,3 ∙ кол 2 + 1,6 ∙ кол 3 + 1,8 ∙ кол 4 ≤ 1000 (4)

Граничные условия (ГРУ).

Граничные условия показывают, в каких пределах могут изменяться искомые переменные. В нашей задаче это финансовые затраты на производство продукций №2 и №4 согласно условию:

0,1 ∙ кол 2 ≤ 50 р.; 1,7 ∙ кол 4 ≤ 50 р. ( 5)

С другой стороны мы должны ввести, что количество продукции должно быть больше или равно нулю. Это очевидное для нас, но необходимое компьютеру условие:

кол 1 ≥ 0; кол 2 ≥ 0; кол 3 ≥ 0; кол 4 ≥ 0. ( 6)

Поскольку все искомые переменные (кол 1 ,…, кол 4 ) входят в соотношение 1-7 в первой степени и над ними производятся только действия суммирования и умножения на постоянные коэффициенты, то модель является линейной.

Решение задачи на компьютере.

Включаем компьютер. Перед входом в сеть задаем имя пользователя ZA, с паролем А. Загружаем программу Excel . Сохраняем файл под именем Лидовицкий Кулик. х ls . в папке Эк/к 31 (2). Создаем верхний колонтитул: слева - дата, в центре имя файла, справа имя листа.

Создаем и форматируем заголовок и таблицу исходных данных (таблица 1). Заносим в таблицу данные согласно варианту задачи.

Создаем и форматируем таблицу для расчета. В ячейки "Количество" заносим начальные значения. Их выбираем близкими к ожидаемому результату. Мы не имеем предварительной информации и поэтому выберем их равными 1. Это позволит легко проконтролировать вводимые формулы.

В строку "Трудозатраты" вносим слагаемые формулы (4) - произведения количества продукции на количество трудозатрат, необходимые для производства единицы продукции:

для продукции №1 (=С15*С8);

продукции №2 (=D15*D8);

продукции №3 (=E15*E8);

продукции №4 (=F15*F8).

В графе “ИТОГО” находим сумму содержимого этих ячеек при помощи кнопки автосуммирования Σ. В графе “Остаток” находим разницу между содержимым ячеек “Ресурс-Трудозатраты” таблицы 1 и “ИТОГО-Трудозатраты" (=G8-G17). Аналогично заполняем графы "Финансы" (=G9-G18) и "Сырье" (=G10-G19).

В ячейке “Прибыль” вычисляем прибыль по левой части формулы (1). При этом воспользуемся функцией =СУММПРОИЗВЕД (С15: F15; C11: F11).

Присваиваем ячейкам, содержащим итоговые прибыль, финансовые, трудовые и сырьевые затраты, а также количества продукции, имена, соответственно: "Прибыль", "Финансы", "Трудозатраты", "Сырье", "Пр1", "Пр2", "Пр3", "Пр4". Excel включит эти имена в отчеты.

Вызываем диалоговое окно Поиск решения командами Сервис-Поиск решения…

Назначение целевой функции.

Устанавливаем курсор в окно Установить целевую ячейку и щелчком мыши по ячейке "Прибыль" заносим в него ее адрес. Вводим направление целевой функции: Максимальному значению.

Вводим адреса искомых переменных, содержащих количества продукций 1-4, в окно Изменяя ячейки .

Ввод ограничений.

Щелкаем по кнопке Добавить . Появляется диалоговое окно Добавление ограничений . Ставим курсор в окошко Ссылка на ячейку и заносим туда адрес ячейки "Трудозатраты". Открываем список условий и выбираем <=, в поле Ограничение вводим адрес ячейки "Ресурс-Трудозатраты". Щелкаем по кнопке Добавить . В новое окно Добавление ограничений аналогично вводим ограничение по финансам. Щелкаем по кнопке Добавить , вводим ограничение по сырью. Щелкаем по ОК . ввод ограничений закончен. На экране снова появляется окно Поиск решения , в поле Ограничения виден список введенных ограничений.

Ввод граничных условий.

Ввод ГРУ не отличается от ввода ограничений. В окне Добавление ограничений в поле Ссылка на ячейку при помощи мыши вводим адрес ячейки "Фин2". Выбираем знак <=. В поле Ограничение записываем 50. Щелкаем по Добавить . Вводим при помощи мыши адрес ячейки "Фин4". Выбираем знак <=. В поле Ограничение записываем 50. Щелкаем по ОК . возвращаемся в окно Поиск решения . В поле Ограничения виден полный список введенных ОГР и ГРУ (рис.1).

Рисунок 1.

Ввод параметров.

Щелкаем по кнопке Параметры. Появляется окно Параметры поиска решения . В поле Линейная модель ставим флажок. Остальные параметры оставляем без изменения. Щелкаем по ОК (рис.2).

Рисунок 2.

Решение.

В окне Поиск решения щелкаем по кнопке Выполнить . На экране появляется окно Результаты поиска решения . В нем сообщается "Решение найдено. Все ограничения и условия оптимальности выполнены".

Создание и сохранение отчетов

Для ответа на вопросы задачи нам понадобятся отчеты. В поле Тип отчета мышью выделяем все типы: "Результаты", "Устойчивость" и "Пределы".

Ставим точку в поле Сохранить найденное решение и щелкаем по ОК . (рис. 3). Excel формирует затребованные отчеты и размещает их на отдельных листах. Открывается исходный лист с расчетом. В графе "Количество" - найденные значения для каждого вида продукции.

Рисунок 3.

Формируем сводный отчет. Копируем и располагаем на одном листе полученные отчеты. Редактируем их, так чтобы все разместить на одной странице.

Оформляем результаты решения графически. Строим диаграммы "Количество продукции" и "Распределение ресурсов".

Для построения диаграммы "Количество продукции" открываем мастер диаграмм и первым шагом выбираем объемный вариант обычной гистограммы. Вторым шагом в окне исходные данные выбираем диапазон данных =Лидовицкий! $C$14: $F$15. Третьим шагом в параметрах диаграммы задаем название диаграммы "Количество продукции". Четвертым шагом размещаем диаграмму на имеющимся листе. Нажатием на кнопку Готово заканчиваем построение диаграммы.

Для построения диаграммы "Распределение ресурсов" открываем мастер диаграмм и первым шагом выбираем трехмерную гистограмму. Вторым шагом в окне исходные данные выбираем диапазон: Лидовицкий! $A$17: $F$19; Лидовицкий! $C$14: $F$14. Третьим шагом в параметрах диаграммы задаем название диаграммы "Распределение ресурсов". Четвертым шагом размещаем диаграмму на имеющимся листе. Нажатием на кнопку Готово заканчиваем построение диаграммы (рис 4).

Рисунок 4.

Данные диаграммы иллюстрируют наилучший, с точки зрения получения наибольшей прибыли, ассортимент продукции и соответствующее распределение ресурсов.

Печатаем лист с таблицами исходных данных, с диаграммами и результатами расчета и лист со сводным отчетом на бумаге.

Анализ найденного решения. Ответы на вопросы

Согласно отчету по результатам.

Максимальная прибыль, которую можно получить при соблюдении всех условий задачи, составляет 1292,95 р.

Для этого необходимо выпускать максимально возможное количество продукции № 2 - 172,75 и № 4 - 29,41 единиц с финансовыми затратами не превышающими 50 р. на каждый вид, и продукции № 1 - 188,9 и № 3 - 213,72. При этом ресурсы по трудозатратам, финансам и сырью израсходуются полностью.

Согласно отчету по устойчивости.

Изменение одного из исходных данных не приведет к другой структуре найденного решения, т.е. к другому ассортименту продукции, необходимому для получения максимальной прибыли, если: прибыль от реализации единицы продукции №1 не увеличится более чем на 1,45 и уменьшится не более чем на 0,35. Таким образом:

(1,7 - 0,35) = 1,35 < Прибыль 1 < 3,15 = (1,7 + 1,45)

прибыль от реализации единицы продукции №2 не увеличится более чем на 0,56 и уменьшится не более чем на 1,61. Таким образом:

(2,3 - 1,61) = 0,69 < Прибыль 2 < 2,86 = (2,3 + 0,56)

прибыль от реализации единицы продукции №3 не увеличится более чем на 0,56 и уменьшится не более чем на 0,39. Таким образом:

(2 - 0,39) = 1,61 < Прибыль 3 < 2,56 = (2 + 0,56)

прибыль от реализации единицы продукции №4 может уменьшиться не более чем на 2,81, т.е. на 56,2% и увеличиваться неограниченно. Таким образом: прибыль 4 > 2,19 = (5 - 2,81) ресурс по сырью может быть увеличен на 380,54, т.е. на 47,57% и уменьшен на 210,46, т.е. на 26,31%. Таким образом: 589,54 < С < 1180,54 ресурс по финансам может быть увеличен на 231,38, т.е. на 57,84% и уменьшен на 195,98, т.е. на 48,99%. Таким образом: 204,02 < Ф < 631,38 ресурс по трудозатратам может быть увеличен на 346,45, т.е. на 34,64% и уменьшен на 352,02, т.е. на 35, 20%. Таким образом: 647,98 < ТЗ < 1346,45

Согласно отчету по пределам:

Количество выпускаемой продукции одного из видов может изменяться в пределах от 0 до найденного оптимального значения, это не приведет к изменению ассортимента продукции, необходимого для получения максимальной прибыли. При этом, если на выпускать продукцию №1, то прибыль составит 971,81 р., продукцию №2 - 895,63 р., продукцию №3 - 865,51 р., продукцию №4 - 1145,89 р.

Выводы

Проведенное исследование математической модели и ее последующий анализ позволяет сделать следующие выводы:

Максимально возможную прибыль, составляющую 1292,95 р., при выполнении всех заданных условий и ограничений можно получить, если выпустить продукции №1 - 188,9 единиц, продукции №2 - 172,75 единиц, продукции №3 - 213,72 единиц, продукции №4 - 29,41 единицы.

После выпуска продукции все ресурсы будут истрачены полностью.

Структура найденного решения наиболее сильно зависит от реализации единицы продукции №1 и №3, а также от уменьшения или увеличения всех имеющихся ресурсов.

Часть № 2 "Расчет экономико-математической модели межотраслевого баланса

Теоретические положения.

Балансовый метод - метод взаимного сопоставления финансовых, материальных и трудовых ресурсов и потребностям в них. Балансовая модель экономической системы - это система уравнений, удовлетворяющих требованиям соответствия наличия ресурса и его использования.

Межотраслевой баланс отражает производство и распределение продукта в отраслевом разрезе, в межотраслевые производственные связи, использование материальных и трудовых ресурсов, создание и распределение национального дохода.

Схема межотраслевого баланса.

Каждая отрасль в балансе является и потребляющей и производящей. Выделяют 4 области баланса (квадранты) имеющих экономическое содержание:

таблица межотраслевых материальных связей, здесь X ij - величины межотраслевых потоков продукции, т.е. стоимость средств производства произведенных в i отрасли и потребных в качестве материальных затрат в j отрасли.

Конечная продукция - это продукция выходящая из сферы производства в область потребления, накопления, на экспорт и т.д.

Условно чистая продукция Zj - это сумма амортизации Cj и чистой продукции (Uj + mj).

Отражает конечное распределение и использование национального дохода. Столбец и строка валовой продукции используется для проверки баланса и составления экономико-математической модели.

Итог материальных затрат любой потребляющей отрасли и ее условно чистой продукции равен валовой продукции этой отрасли:

(1)

Валовая продукция каждой отрасли равна сумме материальных затрат потребляющих ее продукцию отраслей и конечной продукции этой отрасли.

(2)

Просуммируем по всем отраслям уравнения 1:


Аналогично для уравнения 2:

Левая часть это валовый продукт, тогда и правые части приравниваем:

(3)

Постановка задачи.

Имеется четырехотраслевая экономическая система. Определить коэффициенты полных материальных затрат на основе данных: матрица коэффициентов прямых материальных затрат и вектор валовой продукции (табл.2).

Таблица 2.

Составление балансовой модели.

Основой экономико-математической модели межотраслевого баланса являются матрицы коэффициентов прямых материальных затрат:

Коэффициент прямых материальных затрат показывает какое количество продукции i отрасли необходимо, если учитывать только прямые затраты для производства единицы продукции j отрасли.

Учитывая выражение 4, выражение 2 можно переписать:

(5)

Вектор валовой продукции.

Вектор конечной продукции.

Матрицу коэффициентов прямых материальных затрат обозначим:


Тогда система уравнений 5 в матричной форме:

(6)

Последнее выражение это модель межотраслевого баланса или модель Леонтьева. При помощи модели можно:

Задав величины валовой продукции Х определить объемы конечной продукции Y:

(7)

где Е - единичная матрица.

Задав величины конечной продукции Y определить значение валовой продукции Х:

(8)

обозначим через В величину (Е-А) - 1 , т.е.

,

то элементы матрицы В будут .

Для каждой i отрасли:

Это коэффициенты полных материальных затрат, показывают какое количество продукции i отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j отрасли.

Для расчета экономико-математической модели межотраслевого баланса с учетом заданных величин:

Матрицы коэффициентов прямых материальных затрат:

Вектора валовой продукции:

Единичную матрицу, соответствующую матрице А примем:

Для расчета коэффициентов полных материальных затрат воспользуемся формулой:

Для определения валовой продукции по всем отраслям, формулой:

Для определения величины межотраслевых потоков продукции (матрица х) определим элементы матрицы х по формуле:

,

где i = 1…n; j = 1…n;

n - количество строк и столбцов квадратной матрицы А.

Для определения вектора условно чистой продукции Z элементы вектора вычисляются по формуле:

Решение задачи на компьютере

Загружаем программу Mathcad .

Создаем файл под именем Lidovitskiy- Kulik . mcd. в папке Эк/к 31 (2).

На основании предварительных установок (шаблона) создаем и форматируем заголовок.

Вводим с соответствующими комментариями (ORIGIN=1 ) заданные матрицу коэффициентов прямых материальных затрат А и вектор валовой Х продукции (все надписи и обозначения вводим латинским шрифтом, заданные формулы и комментарии должны располагаться либо на уровне, либо выше рассчитываемых значений).

Рассчитываем матрицу коэффициентов полных материальных затрат В. Для этого вычисляем единичную матрицу, соответствующую матрице А. Для этого используем функцию identiti ( cols ( A)).

Рассчитываем матрицу В по формуле:

Определяем объемы валовой продукции по всем отраслям Y по формуле:

Определяем матрицу х величин межотраслевых потоков продукции. Для этого определяем элементы матрицы, задавая комментарии:

i=1. rows (A) j=1. cols (A) x i,j =A i,j ·X j

После этого находим матрицу х .

Рассчитываем вектор условно чистой продукции Z, задав для этого формулу:

Поскольку в балансе Z - это вектор-строка, найдем транспонированный вектор Z T .

Найдем итоговые суммы:

9.11.1 Условно чистой продукции:

9.11.2 Конечной продукции:

9.11.3 Валовой продукции:

Печатаем результаты решения на бумаге.

Межотраслевой баланс производства и распределения продукции

На основании полученных данных составим межотраслевой баланс производства и распределения ресурсов.

Выводы

На основе матрица коэффициентов прямых материальных затрат и вектора валовой продукции определили коэффициенты полных материальных затрат и составили межотраслевой баланс производства и распределения ресурсов.

Определили материальные связи или величины межотраслевых потоков продукции (матрица х ), т.е. стоимость средств производства произведенных в производящей отрасли и потребных в качестве материальных затрат в потребляющей отрасли.

Определили конечную продукцию (Y), т.е. продукцию выходящую из производящей отрасли в потребляющую отрасль.

Определили величину условно чистой продукции по отраслям (Zj; Z T).

Определили конечное распределение валовой продукции (Х). По столбцу и строке валовой продукции проверили баланс (138+697+282+218) =1335.

На основании составленного баланса можно сделать выводы:

итог материальных затрат любой потребляющей отрасли и ее условно чистой продукции равен валовой продукции этой отрасли.

валовая продукция каждой отрасли равна сумме материальных затрат потребляющих ее продукцию отраслей и конечной продукции этой отрасли.

Литература

1. " Математические модели в экономике". Методические указания по выполнению лабораторных и контрольных работ для студентов экономических специальностей заочной формы обучения. Жуковский А.А. ЧИПС УрГУПС. Челябинск. 2001.

2. Гатаулин А.М., Гаврилов Г.В., Сорокина Т. M. и др. Математическое моделирование экономических процессов. - М., Агропромиздат, 1990.

3. Экономико-математические методы и прикладные модели: Учебное пособие для вузов/ Под ред.В. В. Федосеева. - М.: ЮНИТИ, 2001.

4. Поиск оптимальных решений средствами Excel 7.0. Курицкий Б.Я. СПб: " ВНV - Санкт-Петербург", 1997.

5. Плис А.И., Сливина Н.А. MathCAD 2000. Математический практикум для экономистов и инженеров. Москва. Финансы и статистика. 2000.

МПС Российской федерации

Уральский Государственный Университет Путей Сообщения

Челябинский Институт Путей Сообщения

КУРСОВАЯ РАБОТА

по курсу: “Экономико-математическое моделирование"

Тема: “Математические модели в экономике"

Выполнил:

Шифр:

Адрес:

Проверил:

Челябинск 200_ г.

Введение

Составление математической модели

Создание и сохранение отчетов

Анализ найденного решения. Ответы на вопросы

Часть № 2 "Расчет экономико-математической модели межотраслевого баланса

Решение задачи на компьютере

Межотраслевой баланс производства и распределения продукции

Литература

Введение

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако, методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.

Процесс решения экономических задач осуществляется в несколько этапов:

Содержательная (экономическая) постановка задачи. Вначале нужно осознать задачу, четко сформулировать ее. При этом определяются также объекты, которые относятся к решаемой задаче, а также ситуация, которую нужно реализовать в результате ее решения. Это - этап содержательной постановки задачи. Для того, чтобы задачу можно было описать количественно и использовать при ее решении вычислительную технику, нужно произвести качественный и количественный анализ объектов и ситуаций, имеющих к ней отношение. При этом сложные объекты, разбиваются на части (элементы), определяются связи этих элементов, их свойства, количественные и качественные значения свойств, количественные и логические соотношения между ними, выражаемые в виде уравнений, неравенств и т.п. Это - этап системного анализа задачи, в результате которого объект оказывается представленным в виде системы.

Следующим этапом является математическая постановка задачи, в процессе которой осуществляется построение математической модели объекта и определение методов (алгоритмов) получения решения задачи. Это - этап системного синтеза (математической постановки) задачи. Следует заметить, что на этом этапе может оказаться, что ранее проведенный системный анализ привел к такому набору элементов, свойств и соотношений, для которого нет приемлемого метода решения задачи, в результате приходится возвращаться к этапу системного анализа. Как правило, решаемые в экономической практике задачи, стандартизованы, системный анализ производится в расчете на известную математическую модель и алгоритм ее решения, проблема состоит лишь в выборе подходящего метода.

Следующим этапом является разработка программы решения задачи на ЭВМ. Для сложных объектов, состоящих из большого числа элементов, обладающих большим числом свойств, может потребоваться составление базы данных и средств работы с ней, методов извлечения данных, нужных для расчетов. Для стандартных задач осуществляется не разработка, а выбор подходящего пакета прикладных программ и системы управления базами данных.

На заключительном этапе производится эксплуатация модели и получение результатов.

Таким образом, решение задачи включает следующие этапы:

2. Системный анализ.

3. Системный синтез (математическая постановка задачи)

4. Разработка или выбор программного обеспечения.

5. Решение задачи.

Последовательное использование методов исследования операций и их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней, которые к тому же не могут согласовать эти свои волевые решения.

Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.

Сложность процессов в экономике требует от человека, принимающего решения, высокой квалификации и большого опыта. Это, однако, не гарантирует ошибок, дать быстрый ответ на поставленный вопрос, провести экспериментальные исследования, невозможные или требующие больших затрат и времени на реальном объекте, позволяет математическое моделирование.

Математическое моделирование позволяет принять оптимальное, то есть наилучшее решение. Оно может незначительно отличаться от грамотно принятого решения без применения математического моделирования (около 3%). Однако при больших объемах производства такая "незначительная" ошибка может привести к огромным потерям.

Математические методы, применяемые для анализа математической модели и принятия оптимального решения, весьма сложны и их реализация без применения ЭВМ затруднительна. В составе программ Excel и Mathcad имеются средства, позволяющие провести математический анализ и найти оптимальное решение.

Часть № 1 "Исследование математической модели"

Постановка задачи.

На предприятии имеется возможность выпуска продукции 4-х видов. Для выпуска единицы продукции каждого вида необходимо затратить определенное количество трудовых, финансовых, сырьевых ресурсов. В наличии имеется ограниченное количество каждого ресурса. Реализация единицы продукции приносит прибыль. Значения параметров приведены в таблице 1. Дополнительное условие: финансовые затраты на производство продукций №2 и №4 не должны превышать 50р. (каждого вида).

На основе математического моделирования средствами Excel определить, какую продукцию и в каких количествах целесообразно произвести с точки зрения получения наибольшей прибыли, проанализировать результаты, ответить на вопросы, сделать выводы.

Модель – это, прежде всего, упрощенное представление реального объекта или явления, сохраняющее его основные, существенные черты. Сам процесс разработки модели, т.е. моделирование, может быть осуществлен различными способами, из которых наиболее распространено физическое и математическое моделирование. Однако каждым из этих способов могут быть получены различные модели, поскольку их конкретная реализация зависит от того, какие именно черты реального объекта создатель модели считает основными, главными. Поэтому в инженерной практике и в научных исследованиях могут применяться различные модели одного и того же объекта, поскольку их многообразие позволяет тщательнее изучать самые различные стороны реального объекта или явления.

В инженерной практике и естественных науках широко распространены физические модели, которые отличаются от изучаемого объекта, как правило, меньшими размерами, и служат для проведения экспериментов, результаты которых используются для изучения исходного объекта и для выводов о выборе того или иного варианта его развития либо конструкции, если речь идет о проекте инженерного сооружения. Путь физического моделирования оказывается малопродуктивным для анализа экономических объектов и явлений. В связи с этим основным способом моделирования в экономике является метод математического моделирования , т.е. описание основных особенностей реального процесса с помощью системы математических формул.

Как мы действуем, создавая математическую модель? Какими бывают математические модели? Какие особенности возникают при моделировании экономических явлений? Попытаемся прояснить эти вопросы.

При создании математической модели исходят из реальной задачи. Вначале уясняется ситуация, выявляются важные и второстепенные характеристики, параметры, свойства, качества, связи и т.д. Затем выбирается одна из существующих математических моделей либо создается новая математическая модель для описания изучаемого объекта.

Вводятся обозначения. Записываются ограничения, которым должны удовлетворять переменные величины. Определяется цель – выбирается целевая функция (если это возможно). Не всегда выбор целевой функции однозначен. Возможны ситуации, когда хочется и того, и этого, и еще многого другого… Но различные цели приводят к различным решениям. В этом случае задача относится к классу многокритериальных задач.

Экономика – одна из сложнейших областей деятельности. Экономические объекты могут описываться сотнями, тысячами параметров, многие из которых носят случайный характер. Кроме того, в экономике действует человеческий фактор.


Предсказать поведение человека бывает трудно, подчас невозможно.

Сложность системы любой природы (технической, биологической, социальной, экономической) определяется количеством входящих в нее элементов, связями между

этими элементами, а также взаимоотношениями между системой и средой. Экономика обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природной средой, экономической деятельностью других субъектов, социальными отношениями и т.д.). В народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы. Экономика зависит от социального устройства общества, от политики и еще от многих и многих факторов.

Сложностью экономических отношений нередко обосновывали невозможность моделирования экономики, изучения ее средствами математики. И все же моделирование экономических явлений, объектов, процессов возможно. Моделировать можно объект любой природы и любой сложности. Для моделирования экономики применяют не одну модель, а систему моделей. В этой системе есть модели, описывающие разные стороны экономики. Есть модели экономики страны (их называют макроэкономическими), есть модели экономических моделей на отдельно предприятии или даже модель одного экономического события (их называют микроэкономическими). При составлении модели экономики сложного объекта производят так называемое агрегирование. При этом ряд родственных параметров объединяют в один параметр, тем самым общее количество параметров уменьшается. На этом этапе важную роль играют опыт и интуиция. В качестве параметров можно выбрать не все характеристики, а наиболее важные.

После того, как составлена математическая задача, выбирается способ ее решения. На этом этапе, как правило, применяют ЭВМ. После получения решения происходит его сопоставление с реальностью. Если полученные результаты подтверждаются практикой, то модель можно применять и с ее помощью строить прогнозы. Если же ответы, полученные на основе модели, не соответствуют действительности, то модель не годится. Нужно создавать более сложную модель, которая лучше соответствует изучаемому объекту.

Какая модель лучше: простая или сложная? Ответ на этот вопрос не может быть однозначным.

Если модель слишком простая, то она плохо соответствует реальному объекту. Если же модель слишком сложная, то может оказаться так, что при существовании хорошей модели мы не в состоянии на ее основе получить ответ. Может существовать хорошая модель и иметься алгоритм решения соответствующей задачи. Но время решения окажется настолько большим, что все остальные достоинства модели этим будут перечеркнуты. Поэтому при выборе модели нужна «золотая середина».

Московский Государственный Университет

экономики, статистики и информатики

Экономико-правовой факультет

КОНТРОЛЬНАЯ РАБОТА

Дисциплина: АХД

Выполнила

Студентка гр.ВФ-3

Тимонина Т.С.




Математическое моделирование

Одним из видов формализованного знакового моделирования является математического моделирование, осуществляемое средствами языка математики и логики. Для изучения какого-либо класса явлений внешнего мира строится его математическая модель, т.е. приближенное описание этого класса явлений, выраженное с помощью математической символики.

Сам процесс математического моделирования можно подразделить на четыре основных этапа:

I этап: Формулирование законов, связывающих основные объекты модели, т.е. запись в виде математических терминов сформулированных качественных представлений о связях между объектами модели.

II этап: Исследование математических задач, к которым приводят математические модели. Основной вопрос - решение прямой задачи, т.е. получение в результате анализа модели выходных данных (теоретических следствий) для дальнейшего их сопоставления с результатами наблюдений изучаемых явлений.

III этап: Корректировка принятой гипотетической модели согласно критерию практики, т.е. выяснение вопроса о том, согласуются ли результаты наблюдений с теоретическими следствиями модели в пределах точности наблюдений. Если модель была вполне определена - все параметры ее были даны, - то определение уклонений теоретических следствий от наблюдений дает решения прямой задачи с последующей оценкой уклонений. Если уклонения выходят за пределы точности наблюдений, то модель не может быть принята. Часто при построении модели некоторые ее характеристики остаются не определенными. Применение критерия практики к оценке математической модели позволяет делать вывод о правильности положений, лежащих в основе подлежащей изучению (гипотетической) модели.

IV этап: Последующий анализ модели в связи с накоплением данных об изученных явлениях и модернизация модели. С появлением ЭВМ метод математического моделирования занял ведущее место среди других методов исследования. Особенно важную роль этот метод играет в современной экономической науке. Изучение и прогнозирование какого-либо экономического явления методом математического моделирования позволяет проектировать новые технические средства, прогнозировать воздействие на данное явление тех или иных факторов, планировать эти явления даже при существовании нестабильной экономической ситуации.

Сущность экономического анализа

Анализ (разложение, расчленение, разбор) - логический прием, метод исследования, суть которого состоит в том, что изучаемый предмет мысленно расчленяется на составные элементы, каждый из которых затем исследуется в отдельности как часть расчлененного целого, для того чтобы выделенные в ходе анализа элементы соединить с помощью другого логического приема - синтеза - в целое, обогащенное новыми знаниями.

Под экономическим анализом понимают прикладную научную дисциплину, представляющую собой систему специальных знаний, позволяющих оценить эффективность деятельности того или иного субъекта рыночной экономики.

Теория экономического анализа позволяет рационально обосновать, спрогнозировать на ближайшую перспективу развитее объекта управления и оценить целесообразность принятия управленческого решения.

Основные направления экономического анализа:

Формулирование системы показателей, характеризующих работу анализируемого объекта;

Качественный анализ изучаемого явления (результата);

Количественный анализ этого явления (результата):

Для разработки и принятия управленческого решения важно, что оно является средством решения основной задачи выявления резервов повышения эффективности хозяйственной деятельности в улучшении использования производственных ресурсов, снижении себестоимости, повышении рентабельности и увеличении прибыли, т.е. направлен на конечную цель реализации управленческого решения.

Разработчики теории экономического анализа подчеркивают его характерные особенности:

1. Диалектичность подхода к изучению экономических процессов, которым свойственны: переход количества в качество, появление нового качества, отрицание отрицания, борьба противоположностей, отмирание старого и появление нового.

2. Обусловленность экономических явлений причинными связями и взаимозависимостью.

3. Выявление и измерение взаимосвязей и взаимозависимостей показателей базируются на знаниях объективных закономерностей развития производства и обращения товаров.

Экономический анализ, прежде всего, является факторным, т. е. определяющим влияние комплекса экономических факторов на результативный показатель деятельности предприятия.

Влияние различных факторов на экономический показатель функционирования предприятия, фирмы осуществляется с помощью стохастического анализа.

В свою очередь, детерминированный и стохастический анализы обеспечивают:

Установление причинно-следственных или вероятностных связей факторов и результативных показателей;

Выявление экономических закономерностей влияния факторов на функционирование предприятия и выражение их с помощью математических зависимостей;

Возможность построения моделей (в первую очередь, математических) воздействий факторных систем на результативные показатели и исследования с их помощью влияния на конечный результат принимаемого управленческого решения.

На практике используются различные виды экономического анализа. Для принимаемых управленческих решений особенно важны анализы: оперативные, текущие, перспективные (по временным отрезкам); частичные и комплексные (по объему); по выявлению резервов, повышению качества и т. п. (по назначению); прогнозный анализ. Прогнозы позволяют экономически обосновывать стратегические, оперативные (функциональные) или тактические управленческие решения.

Исторически сложились две группы способов и приемов: традиционные и математические. Рассмотрим подробнее применение математических методов в экономическом анализе.

Математические методы в экономическом анализе

Использование математических методов в сфере управления - важнейшее направление совершенствования систем управления. Математические методы ускоряют проведение экономического анализа, способствуют более полному учету влияния факторов на результаты деятельности, повышению точности вычислений. Применение математических методов требует:

* системного подхода к исследованию заданного объекта, учета взаимосвязей и отношений с другими объектами (предприятиями, фирмами);

* разработки математических моделей, отражающих количественные показатели системной деятельности работников организации, процессов, происходящих в сложных системах, какими являются предприятия;

* совершенствования системы информационного обеспечения управления предприятием с использованием электронно-вычислительной техники.

Решение задач экономического анализа математическими методами возможно, если они сформулированы математически, т.е. реальные экономические взаимосвязи и зависимости выражены с применением математического анализа. Это вызывает необходимость разработки математических моделей.

В управленческой практике для решения экономических задач прибегают к различным методам. На рисунке 1 приведены основные математические методы, применяемые в экономическом анализе.

Выбранные признаки классификации достаточно условны. Например, в сетевом планировании и управлении используются различные математические методы, а в значение термина "исследование операций" многие авторы вкладывают различное содержание.

Методы элементарной математики используются в традиционных экономических расчетах при обосновании потребностей в ресурсах, разработке плана, проектов и т. п.

Классические методы математического анализа используются самостоятельно (дифференцирование и интегрирование) и в рамках других методов (математической статистики, математического программирования).

Статистические методы - основное средство исследования массовых повторяющихся явлений. Они применяются при возможности представления изменения анализируемых показателей как случайного процесса. Если связь между анализируемыми характеристиками не детерминированная, а стохастическая, то статистические и вероятностные методы становятся практически единственным инструментом исследования. В экономическом анализе наиболее известны методы множественного и парного корреляционного анализа.

Для изучения одновременных статистических совокупностей служат закон распределения, вариационный ряд, выборочный метод. Для многомерных статистических совокупностей применяются корреляции, регрессии, дисперсионный, ковариационный, спектральный, компонентный, факторный виды анализа.

Экономические методы базируются на синтезе трех областей знаний: экономики, математики и статистики. Основа эконометрии - экономическая модель, т.е. схематическое представление экономического явления или процессов, отражение их характерных черт с помощью научной абстракции . Наиболее распространен метод анализа экономики "затраты - выпуск". Метод представляет матричные (балансовые) модели, построенные по шахматной схеме и наглядно иллюстрирующие взаимосвязь затрат и результатов производства.

Методы математического программирования - основное средство решения задач оптимизации производственно -хозяйственной деятельности. По сути, методы - средства плановых расчетов, и они позволяют оценивать напряженность плановых заданий, дефицитность результатов, определять лимитирующие виды сырья, группы оборудования.

Под исследованием операций понимаются разработки методов целенаправленных действий (операций), количественная оценка решений и выбор наилучшего из них. Цель исследования операций сочетание структурных взаимосвязанных элементов системы, в наибольшей степени обеспечивающее лучший экономический показатель.

Теория игр как раздел исследования операций представляет собой теорию математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.





Методы математической статистики

















Рис. 1. Классификация основных математических методов, применяемых в экономическом анализе.


Теория массового обслуживания на основе теории вероятности исследует математические методы количественной оценки процессов массового обслуживания. Особенность всех задач, связанных с массовым обслуживанием, - случайный характер исследуемых явлений. Количество требований на обслуживание и временные интервалы между их поступлениями имеют случайный характер, однако в совокупности подчиняются статистическим закономерностям, количественное изучение которых и есть предмет теории массового обслуживания.

Экономическая кибернетика анализирует экономические явления и процессы как сложные системы с точки зрения законов управления и движения в них информации. Методы моделирования и системного анализа наиболее разработаны именно в этой области.

Применение математических методов в экономическом анализе базируется на методологии экономико-математического моделирования хозяйственных процессов и научно обоснованной классификации методов и задач анализа. Все экономико-математические методы (задачи) подразделяются на две группы: оптимизационные решения по заданному критерию и неоптимизационные (решения без критерия оптимальности).

По признаку получения точного решения все математические методы делятся на точные (по критерию или без него получают единственное решение) и приближенные (на основе стохастической информации).

К оптимальным точным можно отнести методы теории оптимальных процессов, некоторые методы математического программирования и методы исследования операций, к оптимизационным приближенным - часть методов математического программирования, исследования операций, экономической кибернетики, эвристические.

К неоптимизационным точным принадлежат методы элементарной математики и классические методы математического анализа, экономические методы, к неоптимизационным приближенным - метод статистических испытаний и другие методы математической статистики.

Особенно часто применяются математические модели очередей и управления запасами. Например, теория очередей опирается на разработанную учеными А.Н. Колмогоровым и А.Л. Ханчиным теорию массового обслуживания.

Теория массового обслуживания

Данная теория позволяет изучать системы, предназначенные для обслуживания массового потока требований случайного характера. Случайными могут быть как моменты появления требований, так и затраты времени на их обслуживание. Целью методов теории является отыскание разумной организации обслуживания, обеспечивающей заданное его качество, определение оптимальных (с точки зрения принятого критерия) норм дежурного обслуживания, надобность в котором возникает непланомерно, нерегулярно.

С использованием метода математического моделирования можно определить, например, оптимальное количество автоматически действующих машин, которое может обслуживаться одним рабочим или бригадой рабочих и т.п.

Типичным примером объектов теории массового обслуживания могут служить автоматические телефонные станции - АТС. На АТС случайным образом поступают “требования” - вызовы абонентов, а “обслуживание” состоит в соединении абонентов с другими абонентами, поддержание связи во время разговора и т.д. Задачи теории, сформулированные математически, обычно сводятся к изучению специального типа случайных процессов.

Исходя их данных вероятностных характеристик поступающего потока вызовов и продолжительности обслуживания и учитывая схему системы обслуживания, теория определяет соответствующие характеристики качества обслуживания (вероятность отказа, среднее время ожидания начала обслуживания т.п.).

Математическими моделями многочисленных задач технико-экономического содержания являются также задачи линейного программирования. Линейное программирование - это дисциплина, посвященная теории и методам решения задач об экстремумах линейных функций на множествах, задаваемых системами линейных равенств и неравенств.

Задача планирования работы предприятия

Для производства однородных изделий необходимо затратить различные производственные факторы - сырье, рабочую силу, станочный парк, топливо, транспорт и т.д. Обычно имеется несколько отработанных технологических способов производства, причем в этих способах затраты производственных факторов в единицу времени для выпуска изделий различны.

Количество израсходованных производственных факторов и количество изготовляемых изделий зависит от того, сколько времени предприятие будет работать по тому или иному технологическому способу.

Ставится задача рационального распределения времени работы предприятия по различным технологическим способам, т.е. такого, при котором будет произведено максимальное количество изделий при заданных ограниченных затратах каждого производственного фактора.

На основе метода математического моделирования в операционных исследованиях решаются также многие важные задачи, требующие специфических методов решения. К их числу относятся:

· Задача надежности изделий.

· Задача замены оборудования.

· Теория расписаний (так называемая теория календарного планирования).

· Задача распределения ресурсов.

· Задача ценообразования.

· Теория сетевого планирования.

Задача надежности изделий

Надежность изделий определяется совокупностью показателей. Для каждого из типов изделий существуют рекомендации по выбору показателей надежности.

Для оценки изделий, которые могут находиться в двух возможных состояниях - работоспособном и отказовом, применяются следующие показатели: среднее время работы до возникновения отказа (наработка до первого отказа), наработка на отказ, интенсивность отказов, параметр потока отказов, среднее время восстановления работоспособного состояния, вероятность безотказной работы за время t, коэффициент готовности.

Задача распределения ресурсов

Вопрос распределения ресурсов является одним из основных в процессе управления производством. Для решения этого вопроса в операционных исследованиях пользуются построением линейной статистической модели.

Задача ценообразования

Для предприятия вопрос образования цены на продукцию играет немаловажную роль. От того, как проводится ценообразование на предприятии, зависит его прибыль. Кроме того, в существующих сейчас условиях рыночной экономики цена стала существенным фактором в конкурентной борьбе.

Теория сетевого планирования

Сетевое планирование и управление, является системой планирования управления разработкой крупных хозяйственных комплексов, конструкторской и технологической подготовкой производства новых видов товаров, строительством и реконструкцией, капитальным ремонтом основных фондов путем применения сетевых графиков.

Сущность сетевого планирования и управления состоит в составлении математической модели управляемого объекта в виде сетевого графика или модели находящейся в памяти компьютера, в которых отражается взаимосвязь и длительность определенного комплекса работ. Сетевой график после его оптимизации средствами прикладной математики и вычислительной техники используется для оперативного управления работами.

Решение экономических задач с помощью метода математического моделирования позволяет осуществлять эффективное управление как отдельными производственными процессами на уровне прогнозирования и планирования экономических ситуаций и принятия на основе этого управленческих решений, так и всей экономикой в целом. Следовательно, математическое моделирование как метод тесно соприкасается с теорией принятия решений в менеджменте.

Этапы экономико-математического моделирования

Основные этапы процесса моделирования уже рассматривались выше. В различных отраслях знаний, в том числе и в экономике, они приобретают свои специфические черты. Проанализируем последовательность и содержание этапов одного цикла экономико-математического моделирования.

1. Постановка экономической проблемы и ее качественный анализ. Главное здесь - четко сформулировать сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез, объясняющих поведение и развитие объекта.

2. Построение математической модели . Это - этап формализации экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таким образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше "работает" и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).

Одна из важных особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться "изобретать" модель; вначале необходимо попытаться применить для решения этой задачи уже известные модели.

В процессе построения модели осуществляется взаимосопоставление двух систем научных знаний - экономических и математических. Естественно стремиться к тому, чтобы получить модель, принадлежащую хорошо изученному классу математических задач. Часто это удается сделать путем некоторого упрощения исходных предпосылок модели, не искажающих существенных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация экономической проблемы приводит к неизвестной ранее математической структуре. Потребности экономической науки и практики в середине ХХ в. способствовали развитию математического программирования, теории игр, функционального анализа, вычислительной математики. Вполне вероятно, что в будущем развитие экономической науки станет важным стимулом для создания новых разделов математики.

3. Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели (теорема существования). Если удастся доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает; следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные (неизвестные) могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости от каких исходных условий они изменяются, каковы тенденции их изменения и т.д. Аналитической исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели.

Знание общих свойств модели имеет столь важное значение, часто ради доказательства подобных свойств исследователи сознательно идут на идеализацию первоначальной модели. И все же модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В тех случаях, когда аналитическими методами не удается выяснить общих свойств модели, а упрощения модели приводят к недопустимым результатам, переходят к численным методам исследования.

4. Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов. Эти затраты не должны превышать эффект от использования дополнительной информации.

В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5. Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составления программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации.

Обычно расчеты по экономико-математической модели носят многовариантный характер. Благодаря высокому быстродействию современных компьютеров удается проводить многочисленные "модельные" эксперименты, изучая "поведение" модели при различных изменениях некоторых условий. Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.

6. Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних.

Математические методы проверки могут выявлять некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.



Использованная литература

Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО - ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

ТУЛЬСКИЙ ФИЛИАЛ

(ТФ ГОУ ВПО РГТЭУ)


Реферат по математике на тему:

«Экономико-математические модели»


Выполнили:

Студентки 2 курса

«Финансы и кредит»

дневное отделение

Максимова Кристина

Витка Наталья

Проверил:

Доктор технических наук,

профессор С.В. Юдин _____________



Введение

1.Экономико-математическое моделирование

1.1 Основные понятия и типы моделей. Их классификация

1.2 Экономико-математические методы

Разработка и применение экономико-математических моделей

2.1 Этапы экономико-математического моделирования

2.2 Применение стохастических моделей в экономике

Заключение

Список литературы

Введение


Актуальность. Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако, методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Экономико-математическое моделирование является неотъемлемой частью любого исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовало формированию различного рода моделей экономики.

Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.

Почему можно говорить об эффективности применения методов моделирования в этой области? Во-первых, экономические объекты различного уровня (начиная с уровня простого предприятия и кончая макроуровнем - экономикой страны или даже мировой экономикой) можно рассматривать с позиций системного подхода. Во-вторых, такие характеристики поведения экономических систем как:

-изменчивость (динамичность);

-противоречивость поведения;

-тенденция к ухудшению характеристик;

-подверженность воздействию окружающей среды

предопределяют выбор метода их исследования.

Проникновение математики в экономическую науку связано с преодолением значительных трудностей. В этом отчасти была "повинна" математика, развивающаяся на протяжении нескольких веков в основном в связи с потребностями физики и техники. Но главные причины лежат все же в природе экономических процессов, в специфике экономической науки.

Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.

Цель данной работы - раскрыть понятие экономико-математических моделей и изучить их классификацию и методы, на которых они базируются, а также рассмотреть их применение в экономике.

Задачи данной работы: систематизация, накопление и закрепление знаний об экономико-математических моделях.

1.Экономико-математическое моделирование


1.1 Основные понятия и типы моделей. Их классификация


В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. В общем виде модель можно определить как условный образ реального объекта (процессов), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием . Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процессов). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процессов), хотя на самом деле действительность значительно содержательнее и богаче.

Модель - это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте.

На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей.

Экономико-математические модели - это модели экономических объектов или процессов, при описании которых используются математические средства. Цели их создания разнообразны: они строятся для анализа тех или иных предпосылок и положений экономической теории, логического обоснования экономических закономерностей, обработки и приведения в систему эмпирических данных. В практическом плане экономико-математические модели используются как инструмент прогноза, планирования, управления и совершенствования различных сторон экономической деятельности общества.

Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.

По целевому назначению модели делятся на:

·Теоретико-аналитические (используются в исследовании общих свойств и закономерностей экономических процессов);

·Прикладные (применяются в решении конкретных экономических задач, таких как задачи экономического анализа, прогнозирования, управления).

По учету фактора времени модели подразделяются на:

·Динамические (описывают экономическую систему в развитии);

·Статистические (экономическая система описана в статистике, применительно к одному определенному моменту времени; это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени).

По длительности рассматриваемого периода времени различают модели:

·Краткосрочного прогнозирования или планирования (до года);

·Среднесрочного прогнозирования или планирования (до 5 лет);

·Долгосрочного прогнозирования или планирования (более 5 лет).

По цели создания и применения различают модели:

·Балансовые;

·Эконометрические;

·Оптимизационные;

·Сетевые;

·Систем массового обслуживания;

·Имитационные (экспертные).

В балансовых моделях отражается требование соответствия наличия ресурсов и их использования.

Параметры эконометрических моделей оцениваются с помощью методов математической статистики. Наиболее распространены модели, представляющие собой системы регрессионных уравнений. В данных уравнениях отражается зависимость эндогенных (зависимых) переменных от экзогенных (независимых) переменных. Данная зависимость в основном выражается через тренд (длительную тенденцию) основных показателей моделируемой экономической системы. Эконометрические модели используются для анализа и прогнозирования конкретных экономических процессов с использованием реальной статистической информации.

Оптимизационные модели позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наилучшим образом для достижения поставленной цели.

Сетевые модели наиболее широко используются в управлении проектами. Сетевая модель отображает комплекс работ (операций) и событий, и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. В этом случае ставится задача нахождения критического пути. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ.

Модели систем массового обслуживания создаются для минимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания.

Имитационная модель, наряду с машинными решениями, содержит блоки, где решения принимаются человеком (экспертом). Вместо непосредственного участия человека в принятии решений может выступать база знаний. В этом случае персональный компьютер, специализированное программное обеспечение, база данных и база знаний образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом имитации действий человека, эксперта в данной области.

По учету фактора неопределенности модели подразделяются на:

·Детерминированные (с однозначно определенными результатами);

·Стохастические (вероятностные; с различными, вероятностными результатами).

По типу математического аппарата различают модели:

·Линейного программирования (оптимальный план достигается в крайней точке области изменения переменных величин системы ограничений);

·Нелинейного программирования (оптимальных значений целевой функции может быть несколько);

·Корреляционно-регрессионные;

·Матричные;

·Сетевые;

·Теории игр;

·Теории массового обслуживания и т.д.

С развитием экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей и новых признаков их классификации, осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.

моделирование математический стохастический


1.2 Экономико-математические методы


Как и всякое моделирование, экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта посредством построения и рассмотрения другого, подобного ему, но более простого и доступного объекта, его модели.

Практическими задачами экономико-математического моделирования являются, во-первых, анализ экономических объектов, во-вторых, экономическое прогнозирование, предвидение развития хозяйственных процессов и поведения отдельных показателей, в-третьих, выработка управленческих решений на всех уровнях управления.

Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей, которые следует понимать как продукт процесса экономико-математического моделирования, а экономико-математические методы - как инструмент.

Рассмотрим вопросы классификации экономико-математических методов. Эти методы представляют собой комплекс экономико-математических дисциплин, являющихся сплавом экономики, математики и кибернетики. Поэтому классификация экономико-математических методов сводится к классификации научных дисциплин, входящих в их состав.

С известной долей условности классификацию этих методов можно представить следующим образом.

·Экономическая кибернетика: системный анализ экономики, теория экономической информации и теория управляющих систем.

·Математическая статистика: экономические приложения данной дисциплины - выборочный метод, дисперсионный анализ, корреляционный анализ, регрессионный анализ, многомерный статистический анализ, теория индексов и др.

·Математическая экономия и изучающая те же вопросы с количественной стороны эконометрия: теория экономического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространственный анализ, глобальное моделирование.

·Методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объемный раздел, включающий в себя следующие дисциплины и методы: оптимальное (математическое) программирование, сетевые методы планирования и управления, теорию и методы управления запасами, теорию массового обслуживания, теорию игр, теорию и методы принятия решений.

В оптимальное программирование в свою очередь входят линейное и нелинейное программирование, динамическое программирование, дискретное (целочисленное) программирование, стохастическое программирование и др.

·Методы и дисциплины, специфичные отдельно как для централизованно планируемой экономики, так и для рыночной (конкурентной) экономики. К первым можно отнести теорию оптимального ценообразования функционирования экономики, оптимальное планирование, теорию оптимального ценообразования, модели материально-технического снабжения и др. Ко вторым - методы, позволяющие разработать модели свободной конкуренции, модели капиталистического цикла, модели монополии, модели теории фирмы и т.д. Многие из методов, разработанных для централизованно планируемой экономики, могут быть оказаться полезными и при экономико-математическом моделировании в условиях рыночной экономики.

·Методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспериментов, методы машинной имитации (имитационное моделирование), деловые игры. Сюда можно отнести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению.

В экономико-математических методах применяются различные разделы математики, математической статистики, математической логики. Большую роль в решении экономико-математических задач играют вычислительная математика, теория алгоритмов и другие дисциплины. Использование математического аппарата принесло ощутимые результаты при решении задач анализа процессов расширенного производства, определения оптимальных темпов роста капиталовложений, оптимального размещения, специализации и концентрации производства, задач выбора оптимальных способов производства, определения оптимальной последовательности запуска в производство, задачи подготовки производства методами сетевого планирования и многих других.

Для решения стандартных проблем характерны четкость цели, возможность заранее выработать процедуры и правила ведения расчетов.

Существуют следующие предпосылки использования методов экономико-математического моделирования, важнейшими из которых являются высокий уровень знания экономической теории, экономических процессов и явлений, методологии их качественного анализа, а также высокий уровень математической подготовки, владение экономико-математическими методами.

Прежде чем приступить к разработке моделей, необходимо тщательно проанализировать ситуацию, выявить цели и взаимосвязи, проблемы, требующие решения, и исходные данные для их решения, вести систему обозначений и только тогда описать ситуацию в виде математических соотношений.


2. Разработка и применение экономико-математических моделей


2.1 Этапы экономико-математического моделирования


Процесс экономико-математического моделирования - это описание экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования, выделив следующие шесть этапов:

.Постановка экономической проблемы и ее качественный анализ;

2.Построение математической модели;

.Математический анализ модели;

.Подготовка исходной информации;

.Численное решение;

Рассмотрим каждый из этапов более подробно.

1.Постановка экономической проблемы и ее качественный анализ . Главное здесь - четко сформулировать сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта.

2.Построение математической модели . Это - этап формализации экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таком образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше «работает» и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности т неопределенности и т.д.

Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом.

Одна из важный особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться «изобретать» модель; сначала необходимо попытаться применить для решения этой задачи уже известные модели.

.Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели. Если удается доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает и следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные (неищвестные) могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости исходных условий они изменяются, каковы тенденции их изменения и т.д. Аналитической исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели.

4.Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов.

Эти затраты не должны превышать эффект от использования дополнительной информации.

В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5.Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составление программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации.

Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.

6.Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних.

Математические методы проверки могут выявить некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.


2.2 Применение стохастических моделей в экономике


Основу эффективности банковского менеджмента составляет планомерный контроль за оптимальностью, сбалансированностью и устойчивостью функционирования в разрезе всех элементов, формирующих ресурсный потенциал и определяющих перспективы динамического развития кредитного учреждения. Его методы и инструменты требуют модернизации с учетом изменяющихся экономических условий. В то же время необходимость совершенствования механизма реализации новых банковских технологий обуславливает целесообразность научного поиска.

Используемые в существующих методиках интегральные коэффициенты финансовой устойчивости (КФУ) коммерческих банков зачастую характеризуют сбалансированность их состояния, но не позволяют дать полную характеристику тенденции развития. Следует учитывать, что результат (КФУ) зависит от многих случайных причин (эндогенного и экзогенного характера), которые не могут быть заранее полностью учтены.

В связи с этим оправданно рассматривать возможные результаты исследования устойчивого состояния банков в качестве случайных величин, имеющих одинаковое распределение вероятностей, поскольку исследования проводятся по одной и той же методике с использованием одинакового подхода. Кроме того, они взаимно независимы, т.е. результат каждого отдельного коэффициента не зависит от значений остальных.

Приняв во внимание, что в одном испытании случайная величина принимает одно и только одно возможное значение, заключаем, что события x 1 , x 2 , …, x n образуют полную группу, следовательно, сумма их вероятностей будет равна 1: p 1 +p 2 +…+p n =1 .

Дискретная случайная величина X - коэффициент финансовой устойчивости банка «А»,Y - банка «В», Z - банка «С» за заданный период. В целях получения результата, дающего основание сделать вывод об устойчивости развития банков, оценка была осуществлена на базе 12-летнего ретроспективного периода (табл.1).


Таблица 1

Порядковый номер годаБанк «А»Банк «В»Банк «С» 11,3141,2011,09820,8150,9050,81131,0430,9940,83941,2111,0051,01351,1101,0901,00961,0981,1541,01771,1121,1151,02981,3111,3281,06591,2451,1911,145101,5701,2041,296111,3001,1261,084121,1431,1511,028Min0,8150,9050,811Max1,5701,3281,296Шаг0,07550,04230,0485

Для каждой выборке по определенному банку значения разбиты на N интервалов, определены минимальное и максимальное значение. Процедура определения оптимального числа групп основана на применении формулы Стерджесса:


N =1+3,322 * ln N;

N =1+3,322 * ln12=9,525?10,


Где n - число групп;

N - число совокупности.


h=(КФУ max - КФУ min ) / 10.


Таблица 2

Границы интервалов значений дискретных случайных величин X, Y, Z (коэффициентов финансовой устойчивости) и частоты появлений данных значений в обозначенных границах

Номер интервалаГраницы интерваловЧастота появлений (n )XYZXYZ 10,815-0,8910,905-0,9470,811-0,86011220,891-0,9660,947-0,9900,860-0,90800030,966-1,0420,990-1,0320,908-0,95702041,042-1,1171,032-1,0740,957-1,00540051,117-1,1931,074-1,1171,005-1,05412561,193-1,2681,117-1,1591,054-1,10223371,268-1,3441,159-1,2011,102-1,15131181,344-1,4191,201-1,2431,151-1,19902091,419-1,4951,243-1,2861,199-1,248000101,495-1,5701,286-1,3281,248-1,296111

Исходя из найденного шага интервала, были рассчитаны границы интервалов путем прибавления к минимальному значению найденного шага. Полученное значение - это граница первого интервала (левая граница - LG). Для нахождения второго значения (правой границы PG) к найденной первой границе снова прибавляет я шаг и т.д. Граница последнего интервала совпадает с максимальным значением:


LG 1 =КФУ min ;

PG 1 =КФУ min +h;

LG 2 =PG 1;

PG 2 =LG 2 +h;

PG 10 =КФУ max .


Данные по частоте попадания коэффициентов финансовой устойчивости (дискретных случайных величин X, Y, Z) сгруппированы в интервалы, и определена вероятность попадания их значений в заданные границы. При этом левое значение границы входит в интервал, а правое - нет (табл.3).


Таблица 3

Распределение дискретных случайных величин X, Y, Z

ПоказательЗначения показателяБанк «А»X 0,8530,9291,0041,0791,1551,2311,3061,3821,4571,532P(X) 0,083000,3330,0830,1670,250000,083Банк «В»Y 0,9260,9691,0111,0531,0961,1381,1801,2221,2651,307P(Y) 0,08300,16700,1670,2500,0830,16700,083Банк «С»Z 0,8350,8840,9330,9811,0301,0781,1271,1751,2241,272P(Z) 0,1670000,4170,2500,083000,083

По частоте появлений значений n найдены их вероятности (частота появления делится на 12, исходя из числа единиц совокупности), а также в качестве значений дискретных случайных величин были использованы середины интервалов. Законы их распределения:


P i = n i /12;

X i = (LG i +PG i )/2.


На основании распределения можно судить о вероятности неустойчивого развития каждого банка:


P(X<1) = P(X=0,853) = 0,083

P(Y<1) = P(Y=0,926) = 0,083

P(Z<1) = P(Z=0,835) = 0,167.


Так с вероятностью 0,083 банк «А» может достигнуть значения коэффициента финансовой устойчивости, равное 0,853. Другими словами, вероятность того, что его расходы превысят доходы, составляет 8,3 %. По банку «В» вероятность падения коэффициента ниже единицы также составила 0,083, однако с учетом динамичного развития организации это снижение все же окажется незначительным - до 0,926. Наконец, высока вероятность (16,7%), что деятельность банка «С», при прочих равных условиях, охарактеризуется значением финансовой устойчивости, равным 0,835.

В то же время по таблицам распределений можно увидеть вероятность устойчивого развития банков, т.е. сумму вероятностей, где варианты коэффициентов имеют значение, большее 1:


P(X>1) = 1 - P(X<1) = 1 - 0,083 = 0,917

P(Y>1) = 1 - P(Y<1) = 1 - 0,083 = 0,917

P(Z>1) = 1 - P(Z<1) = 1 - 0,167 = 0,833.


Можно наблюдать, что наименее устойчивое развитие ожидается в банке «С».

В целом закон распределения задает случайную величину, однако чаще целесообразнее пользоваться числами, которые описывают случайную величину суммарно. Их называют числовыми характеристиками случайной величины, к ним относится математическое ожидание. Математическое ожидание приближенно равно среднему значению случайной величины и оно тем больше приближается к среднему значению, чем больше было проведено испытаний.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех возможных величин на ее вероятности:


M(X) = x 1 p 1 +x 2 p 2 +…+x n p n


Результаты расчетов значений математических ожиданий случайных величин представлены в табл.4.


Таблица 4

Числовые характеристики дискретных случайных величин X, Y, Z

БанкМатематическое ожиданиеДисперсияСреднее квадратическое отклонение «А»M(X) = 1,187D(X) =0,027?(x) = 0,164«В»M(Y) = 1,124D(Y) = 0,010?(y) = 0,101«С»M(Z) = 1,037D(Z) = 0,012?(z) = 0,112

Полученные математические ожидания позволяют оценить средние значения ожидаемых вероятных значений коэффициента финансовой устойчивости в будущем.

Так по расчетам можно судить, что математическое ожидание устойчивого развития банка «А» составляет 1,187. Математическое ожидание банков «В» и «С» составляет 1,124 и 1,037 соответственно, что отражает предполагаемую доходность их работы.

Однако, зная лишь математическое ожидание, показывающее «центр» предполагаемых возможных значений случайной величины - КФУ, еще нельзя судить ни о его возможных уровнях, ни о степени их рассеянности вокруг полученного математического ожидания.

Другими словами, математическое ожидание в силу своей природы полностью устойчивости развития банка не характеризует. По этой причине возникает необходимость вычисления других числовых характеристик: дисперсии и среднеквадратического отклонения. Которые позволяют оценить степень рассеянности возможных значений коэффициента финансовой устойчивости. Математические ожидания и средние квадратические отклонения позволяют оценить интервал, в котором будут находиться возможные значения коэффициентов финансовой устойчивости кредитных организаций.

При сравнительно высоком характерном значении математического ожидания устойчивости по банку «А» среднее квадратическое отклонение составило 0,164, что говорит о том, что устойчивость банка может либо повыситься на эту величину, либо снизиться. При отрицательном изменении устойчивости (что все же маловероятно, учитывая полученную вероятность убыточной деятельности, равную 0,083) коэффициент финансовой устойчивости банка останется положительным - 1, 023 (см. табл. 3)

Деятельность банка «В» при математическом ожидании в 1,124, характеризуется меньшим размахом значений коэффициента. Так, даже при неблагоприятном стечении обстоятельств банк останется устойчивым, поскольку среднее квадратическое отклонение от прогнозируемого значения составило 0, 101, что позволит ему остаться в положительной зоне доходности. Следовательно, можно сделать вывод об устойчивости развития данного банка.

Банк «С», напротив, при невысоком математическом ожидании своей надежности (1, 037) столкнется при прочих равных условиях с недопустимым для него отклонением, равным 0,112. При неблагоприятной ситуации, а также учитывая высокий процент вероятности убыточной деятельности (16,7%), данная кредитная организация, скорее всего, снизит свою финансовую устойчивость до 0,925.

Важно заметить, что, сделав выводы об устойчивости развития банков, нельзя заранее уверенно предвидеть, какое из возможных значений примет коэффициент финансовой устойчивости в итоге испытания; это зависит от многих причин, учесть которые невозможно. С этой позиции о каждой случайной величине мы располагаем весьма скромными сведениями. В связи с чем вряд ли можно установить закономерности поведения и суммы достаточно большого числа случайных величин.

Однако оказывается, что при некоторых сравнительно широких условиях суммарное поведение достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным.

Оценивая устойчивость развития банков, остается оценить вероятность того, что отклонение случайной величины от ее математического ожидания не превышает по абсолютной величине положительного числа ?. Дать интересующую нас оценку позволяет неравенство П.Л. Чебышева. Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа ? не меньше, чем :

или в случае обратной вероятности:

Учитывая риск, связанный с потерей устойчивости, проведем оценку вероятности отклонения дискретной случайной величины от математического ожидания в меньшую сторону и, считая равновероятностными отклонения от центрального значения как в меньшую, так и в большую стороны, перепишем неравенство еще раз:

Далее, исходя из поставленной задачи необходимо оценить вероятность того, что будущее значение коэффициента финансовой устойчивости не окажется ниже 1 от предлагаемого математического ожидания (для банка «А» значение ? примем равное 0,187, для банка «В» - 0,124, для «С» - 0.037) и произведем расчет данной вероятности:


банк «А»:

банк «С»:


Согласно неравенству П.Л. Чебышева, наиболее устойчивым в своем развитии является банк «В», поскольку вероятность отклонения ожидаемых значений случайной величины от ее математического ожидания невысокая (0,325), при этом она сравнительно меньше, чем по другим банкам. На втором месте по сравнительной устойчивости развития располагается банк «А», где коэффициент этого отклонения несколько выше, чем в первом случае (0,386). В третьем банке вероятность того, что значение коэффициента финансовой устойчивости отклониться в левую сторону от математического ожидания больше чем на 0, 037, является практически достоверным событием. Тем более, если учесть, что вероятность не может быть больше 1, превышающие значения, согласно доказательству Л.П. Чебышева, необходимо принимать за 1. Другими словами, факт того, что развитие банка может перейти в неустойчивую зону, характеризующуюся коэффициентом финансовой устойчивости меньше 1, является достоверным событием.

Таким образом, характеризуя финансовое развитие коммерческих банков, можно сделать следующие выводы: математическое ожидание дискретной случайной величины (среднее ожидаемое значение коэффициента финансовой устойчивости) банка «А» равно 1,187. Среднее квадратическое отклонение этой дискретной величины составляет 0,164, что объективно характеризует небольшой разброс значений коэффициента от среднего числа. Однако степень неустойчивости этого ряда подтверждается достаточно высокой вероятностью отрицательного отклонения коэффициента финансовой устойчивости от 1, равной 0,386.

Анализ деятельности второго банка показал, что математическое ожидание КФУ равно 1,124 при среднем квадратическом отклонении 0,101. Таким образом, деятельность кредитной организации характеризуется небольшим разбросом значений коэффициента финансовой устойчивости, т.е. является более концентрированной и стабильной, что подтверждается сравнительно низкой вероятностью (0,325) перехода банка в зону убыточности.

Устойчивость банка «С» характеризуется невысоким значением математического ожидания (1,037) и также небольшим разбросом значений (среднеквадратическое отклонение равно 0,112). Неравенство Л.П. Чебышева доказывает тот факт, что вероятность получения отрицательного значения коэффициента финансовой устойчивости равна 1, т.е. ожидание положительной динамики его развития при прочих равных условиях будет выглядеть весьма необоснованным. Таким образом, предложенная модель, базирующаяся на определении существующего распределения дискретных случайных величин (значений коэффициентов финансовой устойчивости коммерческих банков) и подтверждаемая оценкой их равновероятностного положительного или отрицательного отклонения от полученного математического ожидания, позволяет определить ее текущий и перспективный уровень.


Заключение


Применение математики в экономической науке, дало толчок в развитии как самой экономической науке, так и прикладной математике, в части методов экономико-математической модели. Пословица говорит: «Семь раз отмерь - Один раз отрежь». Использование моделей есть время, силы, материальные средства. Кроме того, расчёты по моделям противостоят волевым решениям, поскольку позволяют заранее оценить последствия каждого решения, отбросить недопустимые варианты и рекомендовать наиболее удачные. Экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта посредством построения и рассмотрения другого, подобного ему, но более простого и доступного объекта, его модели.

Практическими задачами экономико-математического моделирования являются, во-первых, анализ экономических объектов; во-вторых, экономическое прогнозирование, предвидение развития хозяйственных процессов и поведения отдельных показателей; в-третьих, выработка управленческих решений на всех уровнях управления.

В работе было выяснено, что экономико-математические модели можно разделить по признакам:

·целевого назначения;

·учета фактора времени;

·длительности рассматриваемого периода;

·цели создания и применения;

·учета фактора неопределенности;

·типа математического аппарата;

Описание экономических процессов и явлений в виде экономико-математических моделей базируется на использовании одного из экономико-математических методов, которые применяются на всех уровнях управления.

Особенно большую роль приобретают экономико-математические методы по мере внедрения информационных технологий во всех областях практики. Также были рассмотрены основные этапы процесса моделирования, а именно:

·постановка экономической проблемы и ее качественный анализ;

·построение математической модели;

·математический анализ модели;

·подготовка исходной информации;

·численное решение;

·анализ численных результатов и их применение.

В работе была представлена статья кандидата экономических наук, доцента кафедры финансов и кредита С.В. Бойко, в которой отмечается, что перед отечественными кредитными организациями, подверженными влиянию внешней среды, стоит задача поиска управленческих инструментов, предполагающих реализацию рациональных антикризисных мер, направленных на стабилизацию темпов роста базовых показателей их деятельности. В этой связи повышается важность адекватного определения финансовой устойчивости с помощью различных методик и моделей, одной из разновидностей которых являются стохастические (вероятностные) модели, позволяющие не только выявить предполагаемые факторы роста или снижения устойчивости, но и сформировать комплекс превентивных мероприятий по ее сохранению.

Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.

Список литературы


1)Красс М.С. Математика для экономических специальностей: Учебник. -4-е изд., испр. - М.: Дело, 2003.

)Иванилов Ю.П., Лотов А.В. Математические модели в экономике. - М.: Наука, 2007.

)Ашманов С.А. Введение в математическую экономику. - М.: Наука, 1984.

)Гатаулин А.М., Гаврилов Г.В., Сорокина Т.М. и др. Математическое моделирование экономических процессов. - М.: Агропромиздат, 1990.

)Под ред. Федосеева В.В. Экономико-математические методы и прикладные модели:Учебное пособие для ВУЗов. - М.: ЮНИТИ, 2001.

)Савицкая Г.В. Экономический анализ: Учебник. - 10-е изд., испр. - М.:Новое знание, 2004.

)Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 2002

)Исследование операций. Задачи, принципы, методология: учеб. пособие для вузов / Е.С. Вентцель. - 4-е изд., стереотип. - М. :Дрофа, 2006. - 206, с. : ил.

) Математика в экономике: учебное пособие/ С.В.Юдин. - М.: Изд-во РГТЭУ,2009.-228 с.

)Кочетыгов А.А. Теория вероятностей и математическая статистика: Учеб. Пособие/ Тул. Гос. Ун-т. Тула, 1998. 200с.

)Бойко С.В, Вероятностные модели в оценке финансовой устойчивости кредитных организаций /С.В. Бойко// Финансы и кредит. - 2011. N 39. -


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

error: Content is protected !!