История зарождения. Исследовательская работа: «История возникновения квадратных уравнений"

ВВЕДЕНИЕ

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Сила теории уравнений в том, что она не только имеет теоретическое значение для познания естественных законов, но и служит конкретным практическим целям. Большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, люди находят ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Так же для формирования умения решать уравнения большое значение имеет самостоятельная работа учащегося при обучении решения уравнений. При изучении любой темы уравнения могут быть использованы как эффективное средство закрепления, углубления, повторения и расширения теоретических знаний, для развития творческой математической деятельности учащихся .

В современном мире уравнения широко используются в различных разделах математики, в решении важных прикладных задач. Для этой темы характерна большая глубина изложения и богатство устанавливаемых с ее помощью связей в обучении, логическая обоснованность изложения. Поэтому она занимает исключительное положение в линии уравнений. К изучению темы «Квадратные трехчлены» учащиеся приступают, уже накопив определенный опыт, владея достаточно большим запасом алгебраических и общематематических представлений, понятий, умений. В значительной мере именно на материале данной темы необходимо осуществлять синтез материала, относящегося к уравнениям, реализовывать принципы историзма, доступности.

Актуальность темы состоит в необходимости реализовывать принципы историзма и недостаточности материала для реализации этого по теме «Решение квадратных уравнений».

Проблема исследования : выявление исторического материала для обучения решению квадратных уравнений.

Цель работы : формирование представлений о работе над квадратными уравнениями на уроках математики, подбор комплекса уроков с элементами историзма по теме «Квадратные уравнения».

Объект исследования : решение квадратных уравнений в 8 классе с использованием элементов историзма.

Предмет исследования : квадратные уравнения и разработки уроков по обучению решения квадратных уравнений с использованием исторических материалов.

Задачи :

      выполнить анализ научно-методической литературы по проблеме исследования;

      проанализировать школьные учебники и выделить в них место обучения решению квадратных уравнений;

      подобрать комплекс уроков по решению квадратных уравнений с использованием исторических материалов.

Методы исследования :

      анализ литературы по теме «Решение квадратных уравнений»;

      наблюдение за учащимися во время урока на тему «Решение квадратных уравнений»;

      подбор материала: уроков по теме «Решение квадратных уравнений» с использованием исторической справки.

§ 1. Из истории возникновения квадратных уравнений

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне.

Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей эры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 2. «Найти два числа, зная, что их сумма равна 20, а произведение – 96».

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е.
. Другое же меньше, т. е.
. Разность между ними
. Отсюда уравнение:

Отсюда
. Одно из искомых чисел равно 12, другое 8. Решение
для Диофанта не существует, так как греческая математика знала только положительные числа.

Если решить эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то можно прийти к решению уравнения:

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения.

Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

(1)

В уравнении (1) коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений.

Соответствующее задаче 3 уравнение:

Бхаскара пишет под видом:

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем:

Квадратные уравнения у Аль-Хорезми

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:


Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Приведем пример.

Задача 4. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения
).

Решение: раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат Аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения .

Квадратные уравнения в Европе XII - XVII в.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду
при всевозможных комбинациях знаков и коэффициентовb, c, было сформулировано в Европе в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид .

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX-VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI-Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака. А затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры, использование букв, введение символов арифметических операций, скобок и т. д. На рубеже XVI-XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики.

Итак, ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики связано с тремя главными областями своего возникновения и функционирования.

Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения: Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.


Как составлял и решал Диофант квадратные уравнения «Найти два числа, зная, что их сумма равна 20, а произведение 96» Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, т.к. если бы они равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10+X, другое же меньше, т.е. 10-X. Разность между ними 2Х Отсюда Х=2. Одно из искомых чисел равно 12, другое 8. Решение Х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа. УРАВНЕНИЕ: или же:


Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются и в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта, изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax ² +bx=c, a>0 Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?. Соответствующее задачи уравнение: Баскара пишет под видом: Дополнил левую часть до квадрата, 0 Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?. Соответствующее задачи уравнение: Баскара пишет под видом: Дополнил левую часть до квадрата,">


Квадратные уравнения в Древней Азии Вот как решал это уравнение среднеазиатский ученый ал-Хорезми: Он писал: "Правило таково: раздвои число корней, х=2х·5 получите в этой задаче пять, 5 умножь на это равное ему, будет двадцать пять, 5·5=25 прибавь это к тридцати девяти, будет шестьдесят четыре, 64 извлеки из этого корень, будет восемь, 8 и вычти из этого половину числа корней, т.е.пять, 8-5 останется 3 это будет корень квадрата, который ты искал." А второй корень? Второй корень не находили, так как отрицательные числа не были известны. х х = 39


Квадратные уравнения в Европе XIII-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2+вх+с=0, было сформулировано в Европе лишь в 1544 г. Штифелем.. Формулы решения квадратных уравнений в Европе были впервые изложены в 1202 г. итальянским математиком Леонардом Фибоначчи. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Лишь в 17 в. благодаря трудам Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид


О теореме Виета Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если B+D, умноженное на А-А, равно BD, то А равно В и равно D». Чтобы понять Виета, следует помнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же B,D- кэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: Если приведенное квадратное уравнение x 2 +px+q=0 имеет действительные корни, то их сумма равна -p, а произведение равно q, то есть x 1 + x 2 = -p, x 1 x 2 = q (сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).


Метод разложения на множители привести квадратное уравнение общего вида к виду: А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х. Цель: Вынесение общего множителя за скобки; Использование формул сокращенного умножения; Способ группировки. Способы: Пример:




Корни квадратного уравнения: Если D>0, Если D 0, Если D"> 0, Если D"> 0, Если D" title="Корни квадратного уравнения: Если D>0, Если D"> title="Корни квадратного уравнения: Если D>0, Если D">


X 1 и х 2 – корни уравнения Решение уравнений с помощью теоремы Виета Х 2 + 3Х – 10 = 0 Х 1 ·Х 2 = – 10, значит корни имеют разные знаки Х 1 + Х 2 = – 3, значит больший по модулю корень - отрицательный Подбором находим корни: Х 1 = – 5, Х 2 = 2 Например:


0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" class="link_thumb"> 14 Решите уравнение: 2х х +15 = 0. Перебросим коэффициент 2 к свободному члену у у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнений способом «переброски» 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени"> 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнений способом «переброски»"> 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени"> title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени">


Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен второй по теореме Виета равен Если в квадратном уравнении a+c=b, то один из корней равен (-1), а второй по теореме Виета равен Пример: Свойства коэффициентов квадратного уравнения 137х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1; 137х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1;




Графический способ решения квадратного уравнения Не используя формул квадратное уравнение можно решить графическим способом. Решим уравнение Для этого построим два графика: X Y X 01 Y012 Ответ: Абсциссы точек пересечения графиков и будет корнями уравнения. Если графики пересекаются в двух точках, то уравнение имеет два корня. Если графики пересекаются в одной точке, то уравнение имеет один корень. Если графики не пересекаются, то уравнение корней не имеет. 1)y=x2 2)y=x+1




Решение квадратных уравнений с помощью номограммы Это старый и незаслуженно забытый способ решения квадратных уравнений, помещенный на с.83 «Четырехзначные математические таблицы» Брадис В.М. Таблица XXII. Номограмма для решения уравнения Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения. Для уравнения номограмма дает корни


Геометрический способ решения квадратных уравнений В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. А вот, например, как древние греки решали уравнение: или Выражения и геометрически предоставляют собой один и тот же квадрат, а исходное уравнение одно и тоже уравнение. Откуда и получаем что, или


Заключение данные приёмы решения заслуживают внимания, поскольку они не все отражены в школьных учебниках математики; овладение данными приёмами поможет учащимся экономить время и эффективно решать уравнения; потребность в быстром решении обусловлена применением тестовой системы вступительных экзаменов;

 Представители различных цивилизаций: Древнего Египта, Древнего Вавилона, Древней Греции, Древней Индии, Древнего Китая, Средневекового Востока, Европы овладели приемами решения квадратных уравнений.

Впервые квадратное уравнение сумели решить математики Древнего Египта. В одном из математических папирусов содержится задача:

«Найти стороны поля, имеющего форму прямоугольника, если его площадь 12, а – длины равны ширине». «Длина поля равна 4», – указано в папирусе.

Прошли тысячелетия, в алгебру вошли отрицательные числа. Решая уравнение х²= 16, мы получаем два числа: 4, –4.

 Разумеется, в задаче египтян мы приняли бы X = 4, так как длина поля может быть только положительной величиной.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Правило решения квадратных уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом вавилоняне «дошли до этого». Но почти во всех найденных папирусах и клинописных текстах приводятся только задачи с решениями. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел!».

Греческий математик Диофант составлял и решал квадратные уравнения. В его «Арифметике» нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

Задачи на составление квадратных уравнений встречаются уже в астрономическом трактате «Ариа-бхатиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой.

Другой индийский ученый Брахмагупта (VII в.) изложил общее правило решения квадратных уравнений вида ах² + bх = с.

​ В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг по поводу таких соревнований говорится следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары:

Обезьянок резвых стая

Всласть поевши, развлекалась.

Их в квадрате часть восьмая на поляне забавлялась.

А двенадцать по лианам... стали прыгать, повисая...

Сколько ж было обезьянок,

Ты скажи мне, в этой стае?

​ Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.

 Наиболее древние из дошедших до нас китайских математических текстов относятся к концу I в. до н.э. Во II в. до н.э. была написана «Математика в девяти книгах». Позднее, в VII в., она вошла в сборник «Десять классических трактатов», который изучали в течение многих столетий. В трактате «Математика в девяти книгах» объясняется, как извлечь квадратный корень с помощью формулы квадрата суммы двух чисел.

Метод получил название «тянь-юань» (буквально – «небесный элемент») – так китайцы обозначали неизвестную величину. ​

 Первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр»– со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми стало отправной точкой в становлении науки о решении уравнений. В алгебраическом трактате аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает шесть видов уравнений, выражая их следующим образом:

-квадраты равны корням , то есть ах² = bх;

-квадраты равны числу , то есть ах² = с;

-корни равны числу , то есть ах = с;

-квадраты и числа равны корням , то есть ах²+ с = bх;

-квадраты и корни равны числу , то есть ах² + bх = с;

-корни и числа равны квадратам , то есть bх + с = ах²;

Трактат аль-Хорезми является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

Формулы решения квадратных уравнений по образцу аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Автор самостоятельно разработал некоторые новые алгебраические примеры решения задач и первым в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» были включены почти во все европейские учебники XVI-XVII в. и частично XVIII в.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х² + bх = с, при всевозможных комбинациях знаков коэффициентов b и с было сформулировано в Европе лишь в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако он также признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают помимо положительных и отрицательные корни. Лишь в XVII в., благодаря трудам Жирара, Декарта, Ньютона и других ученых, способ решения квадратных уравнений принимает современный вид.

Исследовательская работа

На тему

«Способы решения квадратных уравнений »

Выполнила:
группа 8 «Г » класса

Руководитель работы:
Беньковская Мария Михайловна

Цели и задачи проекта.

1. Показать, что в математике, как и во всякой другой науке, достаточно своих неразгаданных тайн.
2. Подчеркнуть, что математиков отличает нестандартное мышление. А иногда смекалка и интуиция хорошего математика просто приводят в восхищение!
3. Показать, что сама попытка решения квадратных уравнений содействовала развитию новых понятий и идей в математике.
4. Научиться работать с различными источниками информации.
5. Продолжить исследовательскую работу по математике

Этапы исследования

1. История возникновения квадратных уравнений.

2. Определение квадратного уравнения и его виды.

3. Решение квадратных уравнений, используя формулу дискриминанта.

4. Франсуа Виет и его теорема.

5. Свойства коэффициентов для быстрого нахождения корней квадратного уравнения.

6. Практическая направленность.

Посредством уравнений, теорем

Я уйму всяких разрешал проблем.

(Чосер, английский поэт, средние века.)

этап. История возникновения квадратных уравнений.

Необходимость решать уравнения не только первой, но и второй степени, ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и земляными работами военного характера, а также с развитием астрономии и самой математики.

Квадратные уравнения умели решать ещё около 2000 лет до нашей эры вавилоняне. Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает, по существу, с современными, однако не известно, каким образом дошли вавилоняне до нахождения правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта содержится систематический ряд задач, сопровождаемых объяснениями и решаемые при помощи составления уравнений различных степеней, однако в ней нет систематического изложения алгебры.

Задачи на квадратные уравнения встречаются уже в астрономических трактатах «Ариабхаттиам», составленном в 499г. индейским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

В алгебраическом трактате аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений. Для аль-Хорезми, незнавшего отрицательных чисел, члены каждого уравнения слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений, при решении неполного квадратного уравнения аль-Хорезми, как и все ученые до XVII века, не учитывает нулевого решения.

Трактат аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и формулы их решения.

Формулы решения квадратных уравнений по образцу аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Этот объёмистый труд отличается полнотой и ясностью изложения. Автор самостоятельно разработал некоторые новые алгебраические приёмы решения задач, и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI - XVII и частично XVIII веков.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду при всевозможных комбинациях знаков коэффициентов b,c было сформулировано в Европе лишь в 1544 году М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI веке учитывают, не только положительные, но и отрицательные корни. Лишь в XVII веке, благодаря трудам Жиррара, Декарта, Ньютона и других ученых, способ решения квадратных уравнений принимает современный вид.

ОКАЗЫВАЕТСЯ :

Задачи на квадратные уравнения встречаются уже в 499 г.

В Древней Индии были распространены публичные соревнования в решении трудных задач – ОЛИМПИАДЫ.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

error: Content is protected !!