Что такое пространство по эйнштейну. Так был ли прав Эйнштейн? Проверяем теорию относительности

Сто лет назад, в 1915 году, молодой швейцарский учёный, который на тот момент уже сделал революционные открытия в физике, предложил принципиально новое понимание гравитации.

В 1915 году Эйнштейн опубликовал общую теорию относительности , которая характеризует гравитацию как основное свойство пространства-времени. Он представил серию уравнений, описывающих влияние кривизны пространства-времени на энергию и движение присутствующей в нём материи и излучения.

Сто лет спустя общая теория относительности (ОТО) стала основой для построения современной науки, она выдержала все тесты, с которыми на неё набросились учёные.

Но до недавнего времени было невозможно проводить эксперименты в экстремальных условиях, чтобы проверить устойчивость теории.

Удивительно, насколько сильной показала себя теория относительности за 100 лет. Мы всё ещё пользуемся тем, что написал Эйнштейн!

Клиффорд Уилл, физик-теоретик, Флоридский университет

Теперь у учёных есть технология, с помощью которой можно искать физику за пределами ОТО.

Новый взгляд на гравитацию

Общая теория относительности описывает гравитацию не как силу (так она предстаёт в ньютоновской физике), а как искривление пространства-времени за счёт массы объектов. Земля вращается вокруг Солнца не потому, что звезда её притягивает, а потому, что Солнце деформирует пространство-время. Если на растянутое одеяло положить тяжёлый шар для боулинга, оделяло изменит форму - гравитация влияет на пространство примерно так же.

Теория Эйнштейна предсказала несколько безумных открытий. Например, возможность существования чёрных дыр, которые искривляют пространство-время до такой степени, что ничего не может вырваться изнутри, даже свет. На основе теории были найдены доказательства общепринятому сегодня мнению, что Вселенная расширяется и ускоряется.

Общая теория относительности была подтверждена многочисленными наблюдениями . Сам Эйнштейн использовал ОТО, чтобы рассчитать орбиту Меркурия, чьё движение не может быть описано законами Ньютона. Эйнштейн предсказал существование объектов настолько массивных, что они искривляют свет. Это явление гравитационного линзирования, с которым часто сталкиваются астрономы. Например, поиск экзопланет основан на эффекте едва заметных изменений в излучении, искривлённом гравитационным полем звезды, вокруг которой вращается планета.

Проверка теории Эйнштейна

Общая теория относительности хорошо работает для гравитации обычной силы, как показывают опыты, проведённые на Земле, и наблюдения за планетами Солнечной системы. Но её никогда не проверяли в условиях экстремально сильного воздействия полей в пространствах, лежащих на границах физики.

Наиболее перспективный способ тестирования теории в таких условиях - наблюдение за изменениями в пространстве-времени, которые называются гравитационными волнами . Они появляются как итог крупных событий, при слиянии двух массивных тел, таких как чёрные дыры, или особенно плотных объектов - нейтронных звёзд.

Космический фейерверк такого масштаба отразится на пространстве-времени только мельчайшей рябью. Например, если бы две чёрные дыры столкнулись и слились где-то в нашей Галактике, гравитационные волны могли бы растянуть и сжать расстояние между объектами, находящимися на Земле в метре друг от друга, на одну тысячную диаметра атомного ядра.

Появились эксперименты, которые могут зафиксировать изменения пространства-времени вследствие таких событий.

Есть неплохой шанс зафиксировать гравитационные волны в ближайшие два года.

Клиффорд Уилл

Лазерно-интерферометрическая обсерватория гравитационных волн (LIGO) с обсерваториями в окрестностях Ричленда (Вашингтон) и Ливингстона (Луизиана) использует лазер для определения мельчайших искажений в двойных Г-образных детекторах. Когда рябь пространства-времени проходит через детекторы, она растягивает и сжимает пространство, вследствие чего детектор изменяет размеры. А LIGO может их измерить.

LIGO начала серию запусков в 2002 году, но не достигла результата. В 2010-м была проведена работа по улучшению, и преемник организации, обсерватория Advanced LIGO, снова должна заработать в этом году. Многие из запланированных экспериментов нацелены на поиск гравитационных волн.

Ещё один способ протестировать теорию относительности - посмотреть на свойства гравитационных волн. Например, они могут быть поляризованы, как свет, прошедший через поляризационные очки. Теория относительности предсказывает особенности такого эффекта, и любые отклонения от расчётов могут стать поводом усомниться в теории.

Единая теория

Клиффорд Уилл считает, что открытие гравитационных волн только укрепит теорию Эйнштейна:

Думаю, мы должны продолжать поиск доказательств общей теории относительности, чтобы быть уверенными в её правоте.

А зачем вообще нужны эти эксперименты?

Одна из важнейших и труднодостижимых задач современной физики - поиск теории, которая свяжет воедино исследования Эйнштейна, то есть науку о макромире, и квантовую механику , реальность мельчайших объектов.

Успехи этого направления, квантовой гравитации , могут потребовать внести изменения в общую теорию относительности. Возможно, что эксперименты в области квантовой гравитации потребуют столько энергии, что их будет невозможно провести. «Но кто знает, - говорит Уилл, - может, в квантовой вселенной существует эффект, незначительный, но доступный для поиска».

Про эту теорию говорили, что её понимают только три человека в мире, а когда математики попытались цифрами выразить то, что из неё следует, сам автор - Альберт Эйнштейн - шутил, что теперь и он перестал её понимать.

Специальная и общая теория относительности - неразрывные части учения, на котором строятся современные научные взгляды на устройство мира.

«Год чудес»

В 1905 году ведущий научный печатный орган Германии «Annalen der Physik» («Анналы физики») опубликовал одну за другой четыре статьи 26-летнего Альберта Эйнштейна, работавшего экспертом 3-го класса - мелким клерком - Федерального бюро патентования изобретений в Берне. Он и раньше сотрудничал с журналом, но публикация такого количества работ за один год была экстраординарным событием. Оно стало еще более выдающимся, когда стала ясна ценность идей, которые содержались в каждой из них.

В первой из статей высказывались мысли о квантовой природе света, рассмотрены процессы поглощения и выделения электромагнитного излучения. На этой основе был впервые объяснен фотоэффект - испускание веществом электронов, выбиваемых фотонами света, предложены формулы для расчета количества выделяемой при этом энергии. Именно за теоретические разработки фотоэлектрического эффекта, ставшие началом квантовой механики, а не за постулаты теории относительности Эйнштейну будет присуждена в 1922 году Нобелевская премия по физике.

В другой статье было положено начало прикладным направлениям физической статистики на основе исследования броуновского движения мельчайших, взвешенных в жидкости частиц. Эйнштейн предложил методы поиска закономерности флуктуаций - беспорядочных и случайных отклонений физических величин от их наиболее вероятных значений.

И наконец, в статьях «К электродинамике движущихся тел» и «Зависит ли инерция тела от содержания в нем энергии?» содержались зародыши того, что будет обозначено в истории физики как теория относительности Альберта Эйнштейна, вернее её первая часть - СТО, - специальная теория относительности.

Источники и предшественники

В конце XIX века многим физикам казалось, что большинство глобальных проблем мироздания решено, главные открытия сделаны, и человечеству предстоит лишь использовать накопленные знания для мощного ускорения технического прогресса. Лишь некоторые теоретические неувязки портили гармоническую картину Вселенной, заполненной эфиром и живущей по незыблемым ньютоновским законам.

Гармонию портили теоретические изыскания Максвелла. Его уравнения, которые описывали взаимодействия электромагнитных полей, противоречили общепринятым законам классической механики. Это касалось измерения скорости света в динамических системах отсчета, когда переставал работать принцип относительности Галилея, - математическая модель взаимодействия таких систем при движении со световой скоростью приводила к исчезновению электромагнитных волн.

Кроме того, не поддавался обнаружению эфир, который должен был примирить одновременное существование частиц и волн, макро и микрокосмоса. Эксперимент, который провели в 1887 году Альберт Майкельсон и Эдвард Морли имел целью обнаружение “эфирного ветра”, который неизбежно должен был быть зафиксирован уникальным прибором - интерферометром. Опыт длился целый год - время полного обращения Земли вокруг Солнца. Планета должна была полгода двигаться против эфирного потока, полгода эфир должен был «дуть в паруса» Земли, но результат был нулевым: смещения световых волн под воздействием эфира не обнаружили, что ставило под сомнение сам факт существования эфира.

Лоренц и Пуанкаре

Физики попытались найти объяснение результатам экспериментов по обнаружению эфира. Свою математическую модель предложил Хендрик Лоренц (1853-1928). Она возвращала к жизни эфирное заполнение пространства, но лишь при очень условном и искусственном предположении, что при движении сквозь эфир объекты могут сокращаться в направлении движения. Эту модель доработал великий Анри Пуанкаре (1854-1912).

В работах этих двух ученых впервые появились понятия, во многом составившие главные постулаты теории относительности, и это не дает утихнуть обвинениям Эйнштейна в плагиате. К ним относятся условность понятия об одновременности, гипотеза о постоянности скорости света. Пуанкаре допускал, что при больших скоростях законы механики Ньютона требуют переработки, делал вывод об относительности движения, но в приложении к эфирной теории.

Специальная теория относительности - СТО

Проблемы корректного описания электромагнитных процессов стали побудительной причиной для выбора темы для теоретических разработок, и опубликованные в 1905 году статьи Эйнштейна содержали интерпретацию частного случая - равномерного и прямолинейного движения. К 1915году была сформирована общая теория относительности, которая объясняла и взаимодействия гравитационные взаимодействия, но первой стала теория, получившая название специальной.

Специальная теория относительности Эйнштейна кратко может быть изложена в виде двух основных постулатов. Первый распространяет действие принципа относительности Галилея на все физические явления, а не только на механические процессы. В более общей форме он гласит: Все физические законы одинаковы для всех инерциальных (движущихся равномерно прямолинейно или находящихся в покое) систем отсчета.

Второе утверждение, которое содержит специальная теория относительности: скорость распространения света в вакууме для всех инерциальных систем отсчета одинакова. Далее делается более глобальный вывод: световая скорость - максимально большая величина скорости передачи взаимодействий в природе.

В математических выкладках СТО приводится формула E=mc², которая и раньше появлялась в физических публикациях, но именно благодаря Эйнштейну она стала самой знаменитой и популярной в истории науки. Вывод об эквивалентности массы и энергии - это самая революционная формула теории относительности. Понятие того что любой объект, обладающий массой, содержит огромное количество энергии стало основой для разработок по использованию ядерной энергии и, прежде всего, привело к появлению атомной бомбы.

Эффекты специальной теории относительности

Из СТО вытекает несколько следствий, получивших название релятивистских (relativity англ. -относительность) эффектов. Замедление времени - один из самых ярких. Суть его в том, что в движущейся системе отсчета время идет медленнее. Расчеты показывают, что на космическом корабле, совершившем гипотетический полет до звездной системы Альфа-Центавра и обратно при скорости 0,95 c (c -скорость света) пройдет 7,3 года, а на Земле - 12 лет. Такие примеры часто приводят, когда объясняется теория относительности для чайников, как и связанный с этим эффектом парадокс близнецов.

Еще один эффект - сокращение линейных размеров, - то есть с точки зрения наблюдателя, движущиеся относительно него со скоростью, близкой к c, предметы, будут иметь меньшие линейные размеры в направлении движения, чем их собственная длина. Этот предсказываемый релятивистской физикой эффект называется лоренцевым сокращением.

По законам релятивистской кинематики масса движущегося объекта больше массы покоя. Этот эффект становится особенно значим при разработке приборов для исследования элементарных частиц - без учета его трудно представить себе работу БАКа (Большого андронного коллайдера).

Пространство-время

Одним из важнейших компонентов СТО является графическое отображение релятивистской кинематики, особое понятие единого пространства-времени, которое предложил немецкий математик Герман Минковский, бывший одно время преподавателем математики у студента Альберта Эйнштейна.

Суть модели Минковского заключается в совершенно новом подходе к определению положения вступающих во взаимодействие объектов. Специальная теория относительности времени уделяет особое внимание. Время становится не просто четвертой координатой классической трехмерной системы координат, время - не абсолютная величина, а неотделимая характеристика пространства, которое принимает вид пространственно-временного континуума, графически выраженного в виде конуса, в котором и происходят все взаимодействия.

Такое пространство в теории относительности, с её развитием до более обобщающего характера, в дальнейшем было подвергнуто ещё и искривлению, что сделало такую модель подходящей для описания и гравитационных взаимодействий.

Дальнейшее развитие теории

СТО не сразу нашла понимание у физиков, но постепенно она стала основным инструментом описания мира, особенно мира элементарных частиц, который становился главным предметом изучения физической науки. Но задача дополнения СТО объяснением сил тяготения была очень актуальной, и Эйнштейн не прекращал работу, оттачивая принципы общей теории относительности - ОТО. Математическая обработка этих принципов заняла довольно много времени - около 11 лет, и в ней приняли участие специалисты смежных с физикой областей точных наук.

Так, огромный вклад внес ведущий математик того времени Давид Гильберт (1862-1943), ставший одним из соавторов уравнений гравитационного поля. Они явились последним камнем в построении прекрасного здания, получившего наименование - общая теория относительности, или ОТО.

Общая теория относительности - ОТО

Современная теория гравитационного поля, теория структуры «пространство-время», геометрия «пространства-времени», закон физических взаимодействий в неинерциальных системах отчета - всё это различные наименования, которыми наделена общая теория относительности Альберта Эйнштейна.

Теория всемирного тяготения, которая в течении долгого времени определяла взгляды физической науки на гравитацию, на взаимодействия объектов и полей различного размера. Парадоксально, но основным её недостатком была нематериальность, иллюзорность, математичность её сути. Между звездами и планетами находилась пустота, притяжение между небесными телами объяснялось дальнодействием неких сил, причем мгновенным. Общая теория относительности Альберта Эйнштейна наполнила гравитацию физическим содержанием, представила её как непосредственный контакт различных материальных объектов.

Геометрия гравитации

Главная идея, с помощью которой Эйнштейн объяснил гравитационные взаимодействия очень проста. Физическим выражением сил тяготения он объявляет пространство-время, наделенное вполне ощутимыми признаками - метрикой и деформациями, на которые влияет масса объекта, вокруг которого образуются такие искривления. Одно время Эйнштейну даже приписывали призывы вернуть в теорию мироздания понятие эфира, как упругой материальной среды, заполняющей пространство. Он же разъяснял, что ему трудно называть вауумом субстанцию, обладающую множеством качеств, поддающихся описанию.

Таким образом, гравитация - проявление геометрических свойств четырехмерного пространства-времени, которое было обозначено в СТО как неискривлённое, но в более общих случаях ото наделяется кривизной, определяющей движение материальных объектов, которым придается одинаковое ускорение в соответствии с декларируемым Эйнштейном принципом эквивалентности.

Этот основополагающий принцип теории относительности объясняет многие «узкие места» ньютоновской теории всемирного тяготения: искривление света, наблюдаемое при прохождении его около массивных космических объектов при некоторых астрономических явлениях и, отмеченное еще древними одинаковое ускорение падения тел, независимо от их массы.

Моделирование кривизны пространства

Обычным примером, с помощью которого объясняется общая теория относительности для чайников, является представление пространства-времени в виде батута - упругой тонкой мембраны, на которую выкладывают предметы (чаще всего шары), имитирующие взаимодействующие объекты. Тяжелые шары прогибают мембрану, образуя вокруг себя воронку. Более мелкий шар, запущенный по поверхности, двигается в полном соответствии с законами гравитации, постепенно скатываясь в углубления, образованные более массивными объектами.

Но такой пример достаточно условен. Реальное пространство-время многомерно, кривизна его тоже не выглядит так элементарно, но принцип формирования гравитационного взаимодействия и суть теории относительности становятся понятны. В любом случае, гипотезы, которая более логично и связно объяснила бы теорию гравитации, пока не существует.

Доказательства истинности

ОТО быстро стала восприниматься как мощное основание, на котором может строиться современная физика. Теория относительности с самого начала поражала своей стройностью и гармонией, и не только специалистов, и вскоре после своего появления стала подтверждаться наблюдениями.

Самая близкая к Солнцу точка - перигелий - орбиты Меркурия постепенно смещается относительно орбит других планет Солнечной системы, что было обнаружено еще в середине XIX века. Такое перемещение - прецессия - не находило разумного объяснения в рамках Ньютоновской теории всемирного тяготения, но было с точностью рассчитано на основе общей теории относительности.

Затмение Солнца, которое произошло в 1919 году предоставило возможность для очередного доказательства ОТО. Артур Эддингтон, который в шутку называл себя вторым человеком из трех, что понимают основы теории относительности, подтвердил предсказанные Эйнштейном отклонения при прохождении фотонов света вблизи светила: в момент затмения стало заметно смещение видимого положения некоторых звезд.

Эксперимент по обнаружению замедления хода часов или гравитационного красного смещения был предложен самим Эйнштейном в числе других доказательств ОТО. Лишь спустя долгие годы удалось подготовить необходимое экспериментальное оборудование и провести этот опыт. Гравитационное смещение частот излучения от излучателя и приёмника, разнесенных по высоте оказалось в пределах, предсказанных ОТО, а физики из Гарварда Роберт Паунд и Глен Ребка, которые провели этот эксперимент, в дальнейшем только повысили точность измерений, и формула теории относительности снова оказалась верной.

В обосновании самых значимых проектов исследования космического пространства обязательно присутствует теория относительности Эйнштейна. Кратко можно сказать, что она стала инженерным инструментом специалистов, в частности тех, кто занимается спутниковыми системами навигации - GPS, ГЛОНАСС и т.д. Рассчитать координаты объекта с нужной точностью, даже в относительно небольшом пространстве, без учета замедлений сигналов, предсказанных ОТО, невозможно. Тем более если речь идет об объектах, разнесенных на космические расстояния, где ошибка в навигации может быть огромной.

Творец теории относительности

Альберт Эйнштейн был еще молодым человеком, когда опубликовал основы теории относительности. Впоследствии ему самому становились ясны её недостатки и нестыковки. В частности, самой главной проблемой ОТО стала невозможность её врастания в квантовую механику, поскольку при описании гравитационных взаимодействий используются принципы, радикально отличающиеся друг от друга. В квантовой механике рассматривается взаимодействие объектов в едином пространстве-времени, а у Эйнштейна само это пространство формирует гравитацию.

Написание "формулы всего сущего" - единой теории поля, которая устранила бы противоречия ОТО и квантовой физики, было целью Эйнштейна на протяжении долгих лет, он работал над этой теорией до последнего часа, но успеха не достиг. Проблемы ОТО стали стимулом для многих теоретиков в поиске более совершенных моделей мира. Так появлялись теории струн, петлевая квантовая гравитация и множество других.

Личность автора ОТО оставила след в истории сравнимый со значением для науки самой теории относительности. Она не оставляет равнодушным до сих пор. Эйнштейн сам удивлялся, почему столько внимания уделялось ему и его работам со стороны людей, не имевших к физике никакого отношения. Благодаря своим личным качествам, знаменитому остроумию, активной политической позиции и даже выразительной внешности Эйнштейн стал самым знаменитым физиком на Земле, героем множества книг, фильмов и компьютерных игр.

Конец его жизни многими описывается драматически: он был одинок, считал себя ответственным за появление самого страшного оружия, ставшего угрозой всему живому на планете, его теория единого поля осталась нереальной мечтой, но лучшим итогом можно считать слова Эйнштейна, сказанные незадолго до смерти о том, что свою задачу на Земле он выполнил. С этим трудно спорить.

Об учении Альберта Эйнштейна, которое свидетельствует об относительности всего, что происходит в этом бренном мире, не знает разве что ленивый. Уже почти сто лет длятся споры не только в мире науки, но и в мире практикующих физиков. Теория относительности Эйнштейна, описанная простыми словами достаточно доступна, и не является тайной для непосвященных.

Вконтакте

Несколько общих вопросов

Учитывая особенности теоретического учения великого Альберта, его постулаты могут быть неоднозначно расценены самыми разными течениями физиков-теоретиков, достаточно высокими научными школами, а также приверженцами иррационального течения физико – математической школы.

Еще в начале прошлого века, когда произошел всплеск научной мысли и на фоне общественных изменений стали возникать те или иные научные течения, появилась теория относительности всего, в чем живет человек. Каким образом бы не оценивали наши современники данную ситуацию, все в реальном мире действительно не статично, специальная теория относительности Эйнштейна :

  • Меняются времена, меняются взгляды и ментальное мнение общества на те или иные проблемы в социальном плане;
  • Общественные устои и мировоззрение относительно учения о вероятности в различных государственных системах и при особых условиях развития социума менялись с течением времени и под влиянием иных объективных механизмов.
  • Каким образом формировались взгляды общества на проблемы социального развития, таким же было отношение и мнения о теории Эйнштейна о времени .

Важно! Теория гравитации Эйнштейна была основанием для системных споров среди наиболее солидных ученых, как в начале ее разработки, так и во время ее завершения. О ней говорили, проходили многочисленные диспуты, она становилась темой разговоров в самых высокопоставленных салонах разных стран.

Ученые обсуждали, оно было предметом разговоров. Была даже такая гипотеза, что учение доступно для понимания только трем людям из ученого мира. Когда же пришло время к объяснению постулатов приступили жрецы самой таинственной из наук – евклидовой математики. Тогда была совершена попытка построить ее цифровую модель и такие же математически выверенные последствия ее действия на мировое пространство, то автор гипотезы признался, что стало очень трудно понимать даже то, что он создал. Итак, что представляет собой общая теория относительности, что исследует и какое прикладное применение она нашла в современном мире?

История и корни теории

На сегодняшний день в подавляющем большинстве случаев достижения великого Эйнштейна кратко называют полным отрицанием того, что изначально было непоколебимой константой. Именно это открытие позволило опровергнуть известную всем школьникам как физический бином.

Большинство населения планеты, так или иначе, внимательно и вдумчиво или поверхностно, пусть даже однажды, обращалось к страницам великой книги – Библии.

Именно в ней можно прочесть о том, что стало истинным подтверждением сути учения – того, над чем работал в начале прошлого века молодой американский ученый. Факты левитации другие достаточно привычные вещи в ветхозаветной истории однажды стали чудесами в новое время. Эфир – пространство, в котором человек жил совершенно иной жизнью. Особенности жизни в эфире изучали многие мировые знаменитости в области естественных наук. И теория гравитации Эйнштейна подтвердила, что описанное в древней книге – это правда.

Работы Хендрика Лоренца и Анри Пуанкаре позволили экспериментальным путем обнаружить те или иные особенности эфира. В первую очередь это работы по созданию математических моделей мира. Основой было практическое подтверждение того, что при движении материальных частиц в эфирном пространстве происходит их сокращение относительно направления движения.

Труды этих великих ученых позволили создать фундамент для главных постулатов учения. Именно данный факт дает постоянный материал для утверждения, что труды Нобелевского лауреата и релятивистская теория Альберта были и остаются плагиатом. Многие ученые и сегодня утверждают, что многие постулаты, были приняты намного раньше, например:

  • Понятие условной одновременности событий;
  • Принципы гипотезы о постоянном биноме и критериях скорости света.

Что сделать, чтобы понять теорию относительности ? Суть кроется в прошлом. Именно в трудах Пуанкаре было высказана гипотеза относительно того, что большие скорости в законах механики нуждаются в переосмыслении. Благодаря высказываниям французского физика ученый мир узнал о том, насколько относительно движение в проекции к теории эфирного пространства.

В статической науке рассматривался большой объем физических процессов для различных материальных объектов, движущихся с . Постулаты общей концепции описывают процессы, происходящие с ускоряющимися объектами, объясняют существование частиц гравитонов и собственно гравитации. Суть теории относительности в пояснении тех фактов, которые ранее были нонсенсом для ученых. В случае необходимости описания особенностей движения и законов механики, соотношений пространства и временного континуума в условиях приближения к скорости света следует применять постулаты исключительно учения относительности.

О теории коротко и ясно

Чем же настолько отличается учение великого Альберта от того, чем занимались физики до него? Ранее физика была наукой достаточно статичной, которая рассматривала принципы развития всех процессов в природе в сфере системы «здесь, сегодня и сейчас». Эйнштейн позволил увидеть все происходящее вокруг не только в трехмерном пространстве, но и относительно разнообразных объектов и точек времени.

Внимание! В 1905 году, когда Эйнштейн опубликовал свою теорию относительности , она позволила объяснить и в доступном варианте интерпретировать движение между разными инерциальными системами расчетов.

Ее основные положения – соотношение постоянных скоростей двух объектов, движущихся относительно друг друга вместо принятия одного из объектов, которые можно принимать как один из абсолютных факторов отсчета.

Особенность учения заключается в том, что его можно рассматривать в отношении одного исключительного случая. Главные факторы:

  1. Прямолинейность направления перемещения;
  2. Равномерность движения материального тела.

При изменении направления или других простейших параметров, когда материальное тело может ускоряться или сворачивать в стороны, законы статичного учения относительности не действительны. В этом случае происходит вступление в силу общих законов относительности, что может объяснить движение материальных тел в общей ситуации. Таким образом, Эйнштейн нашел объяснение всем принципам взаимодействия физических тел между собой в пространстве.

Принципы теории относительности

Принципы учения

Утверждение об относительности в течение ста лет подвергается самым оживленным дискуссиям. Большинство ученых рассматривают различные варианты применения постулатов в качестве применения двух принципов физики. И этот путь имеет наибольшую популярность в среде прикладной физики. Основные постулаты теории относительности, интересные факты , которые сегодня нашли неопровержимое подтверждение:

  • Принцип относительности. Сохранность соотношения тел при всех законах физики. Принятие их в качестве инерциальных систем отсчета, которые двигаются на постоянных скоростях относительно друг друга.
  • Постулат о скорости света. Она остается неизменяемой константой, при всех ситуациях, независимо от скорости и соотношения с источниками света.

Несмотря на противоречия между новым учением и основными постулатами одной из самых точных наук, опирающихся на постоянные статичные показатели, новая гипотеза привлекла свежим взглядом на окружающий мир. Успех ученому был обеспечен, что подтвердило вручение ему Нобелевской премии в области точных наук.

Что стало причиной столь ошеломительной популярности, и как Эйнштейн открыл свою теорию относительности ? Тактика молодого ученого.

  1. До сих пор ученые с мировым именем выдвигали тезис, а только затем проводили ряд практических исследований. Если на определенном моменте были получены данные, не подходящие под общую концепцию, они признавались ошибочными с подведением причин.
  2. Молодой гений применил кардинально иную тактику, ставил практические опыты, они были серийными. Полученные результаты, несмотря на то, что могли каким-то образом не вписываться в концептуальный ряд, выстраивались в стройную теорию. И никаких «ошибок» и «погрешностей», все моменты гипотезы относительности, примеры и итоги наблюдений четко вписывались в революционное теоретическое учение.
  3. Будущий нобелевский лауреат опроверг необходимость изучения загадочного эфира, где распространяются волны света. Убежденность в том, что эфир существует, привела к ряду значительных заблуждений. Основной постулат – изменение скоростей пучка света относительно наблюдающего за процессом в эфирной среде.

Теория относительности для чайников

Теория относительности — самое простое объяснение

Вывод

Главным достижением ученого является доказательство гармонии и единства таких величин, как пространство и время. Фундаментальность связи этих двух континуумов в составе трех измерений в сочетании с временным измерением, позволило познать многие тайны природы материального мира. Благодаря теории гравитации Эйнштейна стало доступно изучение глубин и другие достижения современной науки, ведь полностью возможности учения не использованы и на сегодняшний день.

Общая теория относительности (ОТО) — геометрическая теория тяготения, опубликованная Альбертом Эйнштейном в 1915—1916 годах. В рамках этой теории, являющейся дальнейшим развитием специальной теории относительности, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Таким образом, в ОТО, как и в других метрических теориях, гравитация не является силовым взаимодействием. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в пространстве материей.

ОТО в настоящее время — самая успешная гравитационная теория, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. Затем, в 1919, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что подтвердило предсказания общей теории относительности.

С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационом поле и, пока лишь косвенно, гравитационное излучение. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр.

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный с тем, что её не удаётся переформулировать как классический предел квантовой теории из-за появления неустранимых математических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени. Для решения этой проблемы был предложен ряд альтернативных теорий. Современные экспериментальные данные указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

Основные принципы общей теории относительности

Теория гравитации Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой: она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с полевой парадигмой современной физики и, в частности, со специальной теорией относительности, созданной в 1905 году Эйнштейном, вдохновлённым работами Пуанкаре и Лоренца. В теории Эйнштейна никакая информация не может распространиться быстрее скорости света в вакууме.

Математически сила гравитации Ньютона выводится из потенциальной энергии тела в гравитационном поле. Потенциал гравитации, соответствующий этой потенциальной энергии, подчиняется уравнению Пуассона, которое не инвариантно при преобразованиях Лоренца. Причина неинвариантности заключается в том, что энергия в специальной теории относительности не является скалярной величиной, а переходит во временную компоненту 4-вектора. Векторная же теория гравитации оказывается аналогичной теории электромагнитного поля Максвелла и приводит к отрицательной энергии гравитационных волн, что связано с характером взаимодействия: одноимённые заряды (массы) в гравитации притягиваются, а не отталкиваются, как в электромагнетизме. Таким образом, теория гравитации Ньютона несовместима с фундаментальным принципом специальной теории относительности — инвариантностью законов природы в любой инерциальной системе отсчёта, а прямое векторное обобщение теории Ньютона, впервые предложенное Пуанкаре в 1905 году в его работе «О динамике электрона», приводит к физически неудовлетворительным результатам.

Эйнштейн начал поиск теории гравитации, которая была бы совместима с принципом инвариантности законов природы относительно любой системы отсчёта. Результатом этого поиска явилась общая теория относительности, основанная на принципе тождественности гравитационной и инертной массы.

Принцип равенства гравитационной и инертной масс

В классической механике Ньютона существует два понятия массы: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения. Первая масса — инертная (или инерционная) — есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса — гравитационная (или, как её иногда называют, тяжёлая) — определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть пропорциональными друг другу. Их строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу. Сам принцип был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 10?3. В конце XIX века более тонкие эксперименты провёл Этвёш, доведя точность проверки принципа до 10?9. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 10?12—10?13 (Брагинский, Дикке и т. д.). Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности. Альберт Эйнштейн положил его в основу общей теории относительности.

Принцип движения по геодезическим линиям

Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого пространства в этой точке.

Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела двигаются по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора. Эти 10 чисел образуют метрику пространства. Она определяет «расстояние» между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории. Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.

Кривизна пространства-времени

Если запустить из двух близких точек два тела параллельно друг другу, то в гравитационном поле они постепенно начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических линий. Аналогичный эффект можно наблюдать непосредственно, если запустить два шарика параллельно друг другу по резиновой мембране, на которую в центр положен массивный предмет. Шарики разойдутся: тот, который был ближе к предмету, продавливающему мембрану, будет стремиться к центру сильнее, чем более удалённый шарик. Это расхождение (девиация) обусловлено кривизной мембраны. Аналогично, в пространстве-времени девиация геодезических (расхождение траекторий тел) связана с его кривизной. Кривизна пространства-времени однозначно определяется его метрикой — метрическим тензором. Различие между общей теорией относительности и альтернативными теориями гравитации определяется в большинстве случаев именно в способе связи между материей (телами и полями негравитационной природы, создающими гравитационное поле) и метрическими свойствами пространства-времени.

Пространство-время ОТО и сильный принцип эквивалентности

Часто неправильно считают, что в основе общей теории относительности лежит принцип эквивалентности гравитационного и инерционного поля, который может быть сформулирован так:
Достаточно малая по размерам локальная физическая система, находящаяся в гравитационном поле, по поведению неотличима от такой же системы, находящейся в ускоренной (относительно инерциальной системы отсчёта) системе отсчёта, погружённой в плоское пространство-время специальной теории относительности.

Иногда тот же принцип постулируют как «локальную справедливость специальной теории относительности» или называют «сильным принципом эквивалентности».

Исторически этот принцип действительно сыграл большую роль в становлении общей теории относительности и использовался Эйнштейном при её разработке. Однако в самой окончательной форме теории он, на самом деле, не содержится, так как пространство-время как в ускоренной, так и в исходной системе отсчёта в специальной теории относительности является неискривленным — плоским, а в общей теории относительности оно искривляется любым телом и именно его искривление вызывает гравитационное притяжение тел.

Важно отметить, что основным отличием пространства-времени общей теории относительности от пространства-времени специальной теории относительности является его кривизна, которая выражается тензорной величиной — тензором кривизны. В пространстве-времени специальной теории относительности этот тензор тождественно равен нулю и пространство-время является плоским.

По этой причине не совсем корректным является название «общая теория относительности». Данная теория является лишь одной из ряда теорий гравитации, рассматриваемых физиками в настоящее время, в то время как специальная теория относительности (точнее, её принцип метричности пространства-времени) является общепринятой научным сообществом и составляет краеугольный камень базиса современной физики. Следует, тем не менее, отметить, что ни одна из прочих развитых теорий гравитации, кроме ОТО, не выдержала проверки временем и экспериментом.

Основные следствия ОТО

Согласно принципу соответствия, в слабых гравитационных полях предсказания общей теории относительности совпадают с результатами применения ньютоновского закона всемирного тяготения с небольшими поправками, которые растут по мере увеличения напряжённости поля.

Первыми предсказанными и проверенными экспериментальными следствиями общей теории относительности стали три классических эффекта, перечисленных ниже в хронологическом порядке их первой проверки:
1. Дополнительный сдвиг перигелия орбиты Меркурия по сравнению с предсказаниями механики Ньютона.
2. Отклонение светового луча в гравитационном поле Солнца.
3. Гравитационное красное смещение, или замедление времени в гравитационном поле.

Существует ряд других эффектов, поддающихся экспериментальной проверке. Среди них можно упомянуть отклонение и запаздывание (эффект Шапиро) электромагнитных волн в гравитационном поле Солнца и Юпитера, эффект Лензе-Тирринга (прецессия гироскопа вблизи вращающегося тела), астрофизические доказательства существования чёрных дыр, доказательства излучения гравитационных волн тесными системами двойных звёзд и расширение Вселенной.

До сих пор надёжных экспериментальных свидетельств, опровергающих ОТО, не обнаружено. Отклонения измеренных величин эффектов от предсказываемых ОТО не превышают 0,1 % (для указанных выше трёх классических явлений). Несмотря на это, в связи с различными причинами теоретиками было разработано не менее 30 альтернативных теорий гравитации, причём некоторые из них позволяют получить сколь угодно близкие к ОТО результаты при соответствующих значениях входящих в теорию параметров.

Еще в конце XIX века большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой - предстоит уточнять лишь детали. Но в первые десятилетия ХХ века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы ХIХ столетия и первые десятилетия ХХ, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером может служить теория относительности, созданная Альбертом Эйнштейном (1879-1955).

Теория относительности - физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов. Термин был введен в 1906 году Максом Планком с целью подчеркнуть роль принципа относительности
в специальной теории относительности (и, позже, общей теории относительности).

В узком смысле теория относительности включает в себя специальную и общую теорию относительности. Специальная теория относительности (далее - СТО) относится к процессам, при исследовании которых полями тяготения можно пренебречь; общая теория относительности (далее - ОТО) - это теория тяготения, обобщающая ньютоновскую.

Специальная , или частная теория относительности - это теория структуры пространства-времени. Впервые была представлена в 1905 году Альбертом Эйнштейном в работе «К электродинамике движущихся тел». Теория описывает движение, законы механики, а также пространственно-временные отношения, определяющие их, при любых скоростях движения,
в том числе и близких к скорости света. Классическая механика Ньютона
в рамках СТО является приближением для малых скоростей.

Одна из причин успеха Альберта Эйнштейна состоит в том, что он ставил экспериментальные данные выше теоретических. Когда в ряде экспериментов обнаружились результаты, противоречащие общепринятой теории, многие физики решили, что эти эксперименты ошибочны.

Альберт Эйнштейн был одним из первых, кто решил построить новую теорию на базе новых экспериментальных данных.

В конце 19 века физики находились в поиске таинственного эфира – среды, в которой по общепринятым предположениям должны были распространяться световые волны, подобно акустическим, для распространения которых необходим воздух, или же другая среда – твердая, жидкая или газообразная. Вера в существование эфира привела к убеждению, что скорость света должна меняться в зависимости от скорости наблюдателя по отношению к эфиру. Альберт Эйнштейн отказался от понятия эфира и предположил, что все физические законы, включая скорость света, остаются неизменными независимо от скорости наблюдателя – как это и показывали эксперименты.


СТО объясняла, как интерпретировать движения между различными инерциальными системами отсчета – попросту говоря, объектами, которые движутся с постоянной скоростью по отношению друг к другу. Эйнштейн объяснил, что когда два объекта двигаются с постоянной скоростью, следует рассматривать их движение друг относительно друга, вместо того чтобы принять один из них в качестве абсолютной системы отсчета. Так что, если два космонавта летят на двух космических кораблях и хотят сравнить свои наблюдения, единственное, что им нужно знать – это скорость относительно друг друга.

Специальная теория относительности рассматривает лишь один специальный случай (отсюда и название), когда движение прямолинейно и равномерно.

Исходя из невозможности обнаружить абсолютное движение, Альберт Эйнштейн сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, которые составили основу новой теории пространства и времени, получившей название Специальной Теории Относительности (СТО):

1. Принцип относительности Эйнштейна - этот принцип явился обобщением принципа относительности Галилея (утверждает то же самое, но не для всех законов природы, а только для законов классической механики, оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике) на любые физические. Он гласит: все физические процессы при одних и тех же условиях в инерциальных систем отсчета (ИСО) протекают одинаково . Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

2. Принцип постоянства скорости света - скорость света в вакууме постоянна и не зависит от движения источника и приемника света . Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме - предельная скорость в природе - это одна из важнейших физических постоянных, так называемых мировых констант.

Важнейшим следствием СТО явилась знаменитая формула Эйнштейна о взаимосвязи массы и энергии Е=mc 2 (где С - скорость света), которая показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения и подтвержденная данными современной физики. Время и пространство перестали рассматриваться независимо друг от друга и возникло представление о пространственно-временном четырехмерном континууме.

Согласно теории великого физика, когда скорость материального тела увеличивается, приближаясь к скорости света, увеличивается и его масса. Т.е. чем быстрее движется объект, тем тяжелее он становится. В случае достижения скорости света, масса тела, равно как и его энергия, становятся бесконечными. Чем тяжелее тело, тем сложнее увеличить его скорость; для ускорения тела с бесконечной массой требуется бесконечное количество энергии, поэтому для материальных объектов достичь скорости света невозможно.

В теории относительности «два закона - закон сохранения массы и сохранения энергии - потеряли свою независимую друг от друга справедливость и оказались объединенными в единый закон, который можно назвать законом сохранения энергии или массы». Благодаря фундаментальной связи между этими двумя понятиями, материю можно превратить в энергию, и наоборот – энергию в материю.

Общая теория относительности - теория гравитации, опубликованная Эйнштейном в 1916 году, над которой работал в течение 10 лет. Является дальнейшим развитием специальной теории относительности. Если материальное тело ускоряется или сворачивает в сторону, законы СТО уже не действуют. Тогда в силу вступает ОТО, которая объясняет движения материальных тел в общем случае.

В общей теории относительности постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, а деформацией самого пространства-времени, в котором они находятся. Эта деформация связана, в частности, с присутствием массы-энергии.

ОТО в настоящее время - самая успешная теория гравитации, хорошо подтверждённая наблюдениями. ОТО обобщила СТО на ускоренные, т.е. неинерциальные системы. Основные принципы ОТО сводятся к следующему:

- ограничение применимости принципа постоянства скорости света областями, где гравитационными силами можно пренебречь (там, где гравитация велика, скорость света замедляется);

- распространение принципа относительности на все движущиеся системы (а не только на инерциальные).

В ОТО, или теории тяготе­ния он также исхо­дит из экспериментального факта эквивалентности масс инер­ционных и гравитационных, или эквивалентности инерцион­ных и гравитационных полей.

Принцип эквивалентности играет важную роль в науке. Мы всегда можем вычислить непо­средственно действие сил инерции на любую физическую систему, и это дает нам возможность знать действие поля тяготения, отвлека­ясь от его неоднородности, которая часто очень незначительна.

Из ОТО был получен ряд важных выводов:

1. Свойства пространства-времени зависят от движущейся материи.

2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.

3. Частота света под действием поля тяготения должна смещаться в сторону более низких значений.

Долгое время экспериментальных подтверждений ОТО было мало. Согласие теории с опытом достаточно хорошее, но чистота экспериментов нарушается различными сложными побочными влияниями. Однако влияние искривления пространства-времени можно обнаружить даже в умеренных гравитационных полях. Очень чувствительные часы, например, могут обнаружить замедление времени на поверхности Земли. Чтобы расширить экспериментальную базу ОТО, во второй половине XX века были поставлены новые эксперименты: проверялась эквивалентность инертной и гравитационной масс (в том числе и путем лазерной локации Луны);
с помощью радиолокации уточнялось движение перигелия Меркурия; измерялось гравитационное отклонение радиоволн Солнцем, проводилась радиолокация планет Солнечной системы; оценивалось влияние гравитационного поля Солнца на радиосвязь с космическими кораблями, которые отправлялись к дальним планетам Солнечной системы, и т.д. Все они, так или иначе, подтвердили предсказания, полученные на основе ОТО.

Итак, специальная теория относительности основывается на постулатах постоянства скорости света и одинаковости законов природы во всех физических системах, а основные результаты, к которым она приходит таковы: относительность свойств пространства-времени; относительность массы и энергии; эквивалентность тяжелой и инертной масс.

Наиболее значительным результатом общей теории относительности с философской точки зрения является установление зависимости пространственно-временных свойств окружающего мира от расположения и движения тяготеющих масс. Именно благодаря воздействию тел
с большими массами происходит искривление путей движения световых лучей. Следовательно, гравитационное поле, создаваемое такими телами, определяет в конечном итоге пространственно-временные свойства мира.

В специальной теории относительности абстрагируются от действия гравитационных полей и поэтому ее выводы оказываются применимыми лишь для небольших участков пространства – времени. Кардинальное отличие общей теории относительности от предшествующих ей фундаментальных физических теорий в отказе от ряда старых понятий и формулировке новых. Стоит сказать, что общая теория относительности произвела настоящий переворот в космологии. На ее основе появились различные модели Вселенной.

error: Content is protected !!