Гормоны человека могут быть пептидами. Пептидные гормоны и спорт

Замечания можно прислать по почте: [email protected]
https://vk.com/bch_5

См. п.91, 56-59, 83, 6. И файл «91 ТАБЛИЦА»

ПАРАГРАФ 99 1:
«Белково-пептидные гормоны.»

99. 1. Белково-пептидные гормоны (БПГ): общие свойства.
99. 2. Классификация белково-пептидных гормонов.
99. 3. Органы, клетки и биологические жидкости, в которых образуются БПГ.

Белково-пептидными называют гормоны,
которые химически являются пептидами или белками (п.56, 57).

99. 1. Белково-пептидные гормоны: общие свойства.

1. Все они представляют собой последовательности аминокислотных остатков
(аминоацилов), соединённых между собой пептидными связями (п.56).
Из-за этого белково-пептидные гормоны при попадании в ЖКТ
расщепляются пищеварительными ферментами (пептидазами) на аминокислоты,
как и белки пищи (п.61).
Поэтому при лечении гормонами белково-пептидной природы делают инъекции,
а не в виде таблеток или сиропов принимают внутрь препараты гормонов.

2. Все белково-пептидные гормоны образуются
из полипептидных цепей-предшественников,
при расщеплении определённых связей этих цепей,
то есть путём ОГРАНИЧЕННОГО ПРОТЕОЛИЗА предшественника (п.83).

Полипептидная цепь-предшественник синтезируется, как и все белки,
из аминокислот в ходе процесса, который называется трансляцией и осуществляется рибосомами (п.82).
Для трансляции нужна мРНК, кодирующая данную ППЦ.
мРНК образуется в результате транскрипции и процессинга – п.80 и 81.

Пример ППЦ-предшественника белково-пептидных гормонов –
1) предшественник КОРТИКОтропина (АКТГ, п. 100),
2) МЕЛАНОцит-стимулирующих гормонов (МСГ) и
3) ОПИАТОВ,
4) липопротопина,
который называется ПроОпиоМеланоКортином (ПОМК).

Синтез ПОМК в гипофизе
стимулируется кортиколиберином и снижается ГКС (п.108).
Поэтому при избытке ГКС синтез ПОМК снижен,
что приводит к снижению синтеза опиатов,
что может быть причиной неуравновешенности (до психоза),
абдоминальных болей
и общего физического дискомфорта при избытке ГКС.

Нарушения ограниченного протеолиза ППЦ-предшественников
могут привести к дефициту белково-пептидных гормонов.
Другой пример – ограниченный протеолиз предшественника инсулина в п.102.

3. Все белково-пептидные гормоны КОДИРУЮТСЯ ГЕНАМИ.

Точнее, генами кодируются ППЦ-предшественники
белково-пептидных гормонов.
Мутации в этих генах могут привести
к нарушению работы белково-пептидных гормонов
(например, к дефициту гормонов).
Например, мутации в генах, которые кодируют СТГ или ИФР,
приводят к карликовости – п.100.
Лечится это инъекциями СТГ И ИФР,
получаемых для медицины методами генной инженерии.

4. Клетки, синтезирующие белково-пептидные гормоны.

Белково-пептидные гормоны синтезируются
многими клетками организма, не только эндокринными железами. – см. п. 99.3.
Один и тот же гормон может синтезироваться в разных клетках.
Например, соматостатин синтезируется
гипоталамусом
и поджелудочной железой (дельта-клетками ПЖЖ).
Соматостатин гипоталамуса снижает синтез соматотропина,
а соматостатин ПЖЖ снижает синтез инсулина и глюкагона.
Другой пример – холецистокинин и опиаты, которые синтезируются:
и в ЖКТ, и в головном мозге.

5. Белково-пептидные гормоны гидрофильны (п.92),

Поэтому не способны проходить через мембраны,
поэтому рецепторы белково-пептидных гормонов расположены на поверхности цитоплазматических мембран клеток – п.92.
В передаче сигнала от белково-пептидного гормона внутрь клетки
могут участвовать мембранные G-белки, протеинкиназы, тирозинкиназы, вторые посредники – п.94-98.

6. Способ промышленного производства белково-пептидных гормонов

Для лечения ими – генная инженерия (технология рекомбинантных ДНК).
Этим способом получают:
1) инсулин для диабетиков (п.103),
2) соматотропин для карликов (п.100),
3) лептин для людей с ожирением (п.99.2 и 44.3),
4) эритропоэтин для людей с некоторыми формами анемии (п.121),
5) гонадотропины для лечения бесплодия (некоторых форм)
и многие другие гормоны,
без которых вылечить ряд больных было бы невозможно другими известными методами - п.88 и 124.

99. 2. Классификация белково-пептидных гормонов. См. п. 91.

1. Классификация по химической природе.

Белково-пептидные гормоны делятся на БЕЛКИ И ПЕПТИДЫ.
Они отличаются тем, что
в состав пептидов входят от 2 до 100 аминоацилов,
а в состав белков входят от 100 аминоацилов.
Но это формально; например, инсулин, состоящий из 51 аминоацила, тоже является настоящим белком.

Белки делят на ПРОСТЫЕ И СЛОЖНЫЕ.
Простые белки состоят только из аминоацилов,
а в состав сложных белков входят другие, небелковые вещества,
образующие комплексы с ППЦ.
Обычно в состав белковых гормонов входят углеводные компоненты.
Такие сложные белки (в состав которых входят углеводы) называются ГЛИКОПРОТЕИНАМИ.
О структуре гликопротеинов – п.38 и 39.
Углеводный компонент представлен олигосахаридом
(соединением из нескольких моносахаридных остатков, соединённых гликозидными связями),
участвует в специфическом распознавании.
Примеры гликопротеиновых гормонов – тиреотропин, гонадотропины.

2. Классификация по клеткам, которые синтезируют белково-пептидные гормоны (См. файл «91 ТАБЛИЦА» и далее 99.3):

1) гормоны головного мозга (нейропептиды, в том числе опиоиды и т.д.),
2) гипоталамуса (либерины, окситоцин, АДГ = вазопрессин),
3) гипофиза (тропины, тропные гормоны),
4) щитовидной железы (кальцитонин, не йодтиронины –они не белковые),
5) поджелудочной железы (инсулин, глюкагон, соматостатин),
6) жировых клеток (лептин),
7) ФРК, синтезируемые разными клетками,
8) клетки почек (эритропоэтин),
9) клетки печени (соматомедины, ИФР)
и т.д. – см. п. 91.

3. Классификация по виду регуляции.

Как и другие гормоны (п.91), белково-пептидные гормоны
1) бывают ДИСТАНТНЫМИ гормонами (инсулин, ТТГ, опиоиды),
2) бывают НЕЙРОГОРМОНАМИ (медиаторами и модуляторами; примеры – либерины, опиоиды),
3) бывают гормонами МЕСТНОГО действия (инсулин),

БПГ могут участвовать в регуляции:

1) ЭНДОкринной (при которой гормон доставляется к клетке-мишени с током крови),
2) НЕЙРОкринной (при которой гормон диффундирует в синаптической щепи),
3) ПАРАкринной (при которой гормон диффундирует в ткани) и
4) АУТОкринной (при которой гормон действует на ту же клетку, которая его секретировала).

4. Можно выделить группы гормонов, которые действуют:

1) через РЕЦЕПТОРЫ разных типов,
2) через разные ВТОРЫЕ ПОСРЕДНИКИ,
3) вызывают ЭФФЕКТЫ разных типов – п.92.

Например, группа гормонов, действующих через тирозинкиназные рецепторы
(рецепторы, которые регулируют активность тирозинкиназ)
и поэтому относящиеся к онкобелкам. Примеры – СТС, инсулин – п.98.

Гормоны, влияющие на концентрацию ионов кальция в клетке (в гиалоплазме),
называются кальций-зависимыми (п.97): ангиотензин, либерины и т.д.

Гормоны, действующие через изменение концентрации цАМФ в клетке. И т.д.

5. Можно классифицировать белково-пептидные гормоны
ПО ВЛИЯНИЮ НА ОРГАНИЗМ.

Например, есть гормоны, снижающие артериальное давление
это ГИПОТЕНЗИВНЫЕ гормоны, примеры – НУП и адреномедуллин (п.113).

Есть гормоны, которые повышают артериальное давление – это ГИПЕРТЕНЗИВНЫЕ гормоны. Пример – ангиотензин, АДГ (п.112. 113).

Есть гормоны, которые стимулируют синтезы в организме, деление клеток, рост, заживление, увеличение мышечной массы
их называют АНАБОЛИЧЕСКИМИ гормонами или анаболиками (это сленг).

Есть анаболические стероиды, но среди белково-пептидных гормонов
анаболическими являются инсулин, соматотропин, ИФР – п.85.
Инсулин и СТГ стимулируют синтез белка,
но синтез жира стимулирует только инсулин,
а СТГ стимулирует распад жира.

99. 3. Органы, клетки и биологические жидкости,
в которых образуются белково-пептидные гормоны. См. файл «91 ТАБЛИЦА»

1. В КРОВИ образуются пептидные гормоны АНГИОТЕНЗИН и БРАДИКИНИН
из предшественников ангиотензиногена (п.112) и кининогена (п.62). Предшественники образуются не в крови,
они синтезируются клетками ПЕЧЕНИ (П.117).
Ангиотензин и брадикинин регулируют артериальное давление и много другое.

2. Многие клетки синтезируют факторы роста клеток (ФРК).

3. Лейкоциты синтезируют ЦИТОКИНЫ.

4. Клетки белой жировой ткани (адипоциты) синтезируют «гормон стройности» ЛЕПТИН.
(голова)
5. Клетки головного мозга синтезируют НЕЙРОПЕПТИДЫ, в том числе ЭНДОРФИНЫ и другие опиаты,
влияющие на психику, ВНД, мышление, чувства и т.д. – см. 99.2 и 99.3.

6. Гипоталамус синтезирует ЛИБЕРИНЫ и СТАТИНЫ,
регулирующие работу гипофиза и мозга – п. 100.

7. Гипофиз синтезирует ТРОПИНЫ, регулирующие работу многих эндокринных желёз – п.100.
(шея)
8. Щитовидная железа синтезирует КАЛЬЦИТОНИН (её йодтиронины – не белковые гормоны) – п. 114.

9. Паращитовидные железы синтезируют ПАРАТИРИН – п. 114.
Гормоны «шейных» желёз
кальцитонин и паратирин регулируют концентрацию кальция в крови:
кальцитонин – снижает (гипо/кальции/емический гормон),
а паратирин – повышает (гипер/кальции/емический гормон) – п.114.

10. Тимус синтезирует ТИМОЗИНЫ и другие гормоны, влияющие на иммунную систему.

11. Сердце и сосуды синтезируют гормоны
НУП (натрийуретический пептид) и АДРЕНОМЕДУЛЛИН,
которые снижают артериальное давление
и защищают от сердечно-сосудистых заболеваний – п.113.

(ЖКТ)
12. Желудок синтезирует ГАСТРИН, повышающий кислотность и т.д. (п.61)

13. Поджелудочная железа синтезирует ИНСУЛИН, ГЛЮКАГОН (не глИкогЕн), СОМАТОСТАТИН. – п.100, 102, 37.
Гормоны ПЖЖ регулируют концентрацию глюкозы в крови (гликемию) – п.37, 102, 103.
Инсулин снижает гликемию (гипогликемический гормон),
а глюкагон повышает гликемию (гипергликемический гормон), спасая от обморока и комы.

14. Некоторые клетки ЖКТ синтезируют гормоны:

СЕКРЕТИН
(обеспечивает нейтрализацию кислого содержимого, поступающего из желудка,
за счёт стимуляции секреции бикарбонатного сока из ПЖЖ),

ХОЛЕЦИСТОКИНИН
(обеспечивает расщепление полимеров пищи за счёт стимуляции поступления в ДПК сока с ферментами – пептидазами, липазой и т.д.),

ОПИАТЫ (предотвращают диарею и т.д.)

Не белково-пептидные гормоны синтезируют только щитовидная железа, надпочечники и половые железы.

Пептиды (греч. πεπτος - питательный) - семейство веществ, молекулы которых построены из остатков α-аминокислот, соединённых в цепь пептидными (амидными) связями. Это природные или синтетические соединения, содержащие десятки, сотни или тысячи мономерных звеньев - аминокислот. На сегодняшний день известно более 1500 видов пептидов, определены их свойства и разработаны методы синтеза.

Свойства пептидов
Пептиды постоянно синтезируются во всех живых организмах для регулирования физиологических процессов. Свойства пептидов зависят, главным образом, от их первичной структуры - последовательности аминокислот, а также от строения молекулы и её конфигурации в пространстве (вторичная структура).

Значение

Пептидные гормоны и нейропептиды, например, регулируют большинство процессов организма человека, в том числе, и принимают участие в процессах регенерации клеток. Пептиды иммунологического действия защищают организм от попавших в него токсинов. Для правильной работы клеток и тканей необходимо адекватное количество пептидов. Однако с возрастом и при патологии возникает дефицит пептидов, который существенно ускоряет износ тканей, что приводит к старению всего организма. Сегодня проблему недостаточности пептидов в организме научились решать. Пептидный пул клетки восполняют синтезированными в лабораторных условиях короткими пептидами.

Синтез пептидов

Образование пептидов в организме происходит в течение нескольких минут, химический же синтез в условиях лаборатории - достаточно длительный процесс, который может занимать несколько дней, а разработка технологии синтеза - несколько лет. Однако, несмотря на это, существуют довольно весомые аргументы в пользу проведения работ по синтезу аналогов природных пептидов. Во-первых, путем химической модификации пептидов возможно подтвердить гипотезу первичной структуры. Аминокислотные последовательности некоторых гормонов стали известны именно благодаря синтезу их аналогов в лаборатории.

Во-вторых, синтетические пептиды позволяют подробнее изучить связь между структурой аминокислотной последовательности и её активностью. Для выяснения связи между конкретной структурой пептида и его биологической активностью была проведена огромная работа по синтезу не одной тысячи аналогов. В результате удалось выяснить, что замена лишь одной аминокислоты в структуре пептида способна в несколько раз увеличить его биологическую активность или изменить её направленность. А изменение длины аминокислотной последовательности помогает определить расположение активных центров пептида и участка рецепторного взаимодействия.

В-третьих, благодаря модификации исходной аминокислотной последовательности, появилась возможность получать фармакологические препараты. Создание аналогов природных пептидов позволяет выявить более «эффективные» конфигурации молекул, которые усиливают биологическое действие или делают его более продолжительным.

В-четвертых, химический синтез пептидов экономически выгоден. Большинство терапевтический препаратов стоили бы в десятки раз больше, если бы были сделаны на основе природного продукта.

Зачастую активные пептиды в природе обнаруживаются лишь в нанограммовых количествах. Плюс к этому, методы очистки и выделения пептидов из природных источников не могут полностью разделить искомую аминокислотную последовательность с пептидами противоположного или же иного действия. А в случае специфических пептидов, синтезируемых организмом человека, получить их возможно лишь путем синтеза в лабораторных условиях.

Пептидные гормоны

Пептидные гормоны - это многочисленный и наиболее разнообразный по составу класс гормональных соединений, представляющий собой биологически активные вещества. Их образование происходит в специализированных клетках железистых органов, после чего активные соединения поступают в кровеносную систему для транспортировки к органам-мишеням. По достижении цели гормоны специфически воздействуют на определенные клетки, взаимодействуя с соответствующим рецептором.

Нейропептиды - соединения, синтезируемые в нейронах, обладающие сигнальными свойствами. Действие нейропептидов на ЦНС очень разнообразно. Они воздействуют непосредственно на мозг и контролируют сон, влияют на память, поведение, процесс обучения, обладают обезболивающим действием.

Пептиды иммунологического действия

Наиболее изученные пептиды, участвующие в иммунном ответе - тафцин, тимопотин II и тимозин α1. Их синтез в клетках организма человека обеспечивает функционирование иммунной системы.

Пептидные биорегуляторы

На основе разработанной петербургскими учеными технологии из органов и тканей животных были выделены пептиды, обладающие тканеспецифическим действием, способные восстанавливать на оптимальном уровне метаболизм в клетках тех тканей, из которых они выделены. Важным отличием этих пептидов является их регулирующее действие: при подавлении функции клетки они её стимулируют, а при повышенной функции - снижают до нормального уровня. Это позволило создать новый класс лекарственных препаратов - пептидные биорегуляторы.

Первый из них - иммуномодулятор тималин - уже более 28 лет находится на фармацевтическом рынке и применяется для восстановления функции иммунной системы при заболеваниях различного генеза, включая онкологические заболевания. За ним последовали эпиталамин (биорегулятор нейроэндокринной системы), сампрост (препарат для лечения заболеваний предстательной железы), кортексин (препарат для лечения широкого спектра неврологических заболеваний), ретиналамин (препарат для лечения дегенеративно-дистрофических заболеваний сетчатки). За 25 лет широкого применения пептидных биорегуляторов их получили более 15 млн человек. При этом не было выявлено противопоказаний к их применению и побочного действия.

Стимуляторы гормона роста

Главные регуляторы секреции гормона роста - пептидные гормоны гипоталамуса (соматостатин и соматолиберин), которые выделяются нейросекреторными клетками гипоталамуса в портальные вены гипофиза и действуют непосредственно на соматотропы. Однако на баланс этих гормонов и на секрецию соматотропина влияет множество физиологических факторов. Учеными доказано, что уровень секреции гормона роста можно увеличить в 3-5 раз, без применения гормональных средств.

Пептиды - наиболее мощные стимуляторы гормона роста, увеличивают концентрацию в 7-15 раз, при этом стоимость эквивалентного курса в несколько раз ниже:

  • GHRP-2
  • GHRP-6
  • GRF (1-29)
  • CJC-1295
  • Ипаморелин
  • HGH Frag (176-191) - фрагмент

Гормон роста и пептиды в бодибилдинге

В настоящее время на рынке все чаще и чаще встречаются пептиды, которые представляют собой стимуляторы гормона роста. Наиболее популярные пептиды в бодибилдинге:

  • Из группы Грелина (GHRP): (создают выраженный пик концентрации ГР сразу после введения, вне зависимости от времени суток и наличия соматостатина в крови).
    • GHRP-6 и Гексарелин
    • GHRP-2
    • Ипаморелин
  • Из группы Гормон роста рилизинг гормона (GHRH): (введение в организм вызывает волнообразный подъем концентрации, который будет слабым в часы когда естественная секреция ГР снижена за счет соматостатина, и высоким во время естественного подъема концентрации ГР (например, ночью). Иными словами GHRH усиливает секрецию ГР, не нарушая естественную пульсообразную кривую.)
    • GRF (1-29) Серморелин
    • CJC-1295
  • HGH Frag (176-191) - фрагмент гормона роста (жиросжигатель)

Преимущества пептидов

У многих возникают вопросы, зачем использовать новые пептидные вещества, если существует искусственный гормон роста? Ответ прост: пептидные стимуляторы имеют несколько веских преимуществ:

  • Пептиды значительно дешевле гормона роста. Стоимость аналогичного курса будет в несколько раз ниже.
  • Различные механизмы действия и периоды полувыведения позволяют манипулировать концентрационной кривой, добиваясь оптимального анаболического отклика.
  • Различное воздействие на чувство голода и метаболизм, позволяет отдавать предпочтение тем или иным веществам.
  • На данный момент производство и распространение пептидов не регулируется законом, поэтому их без опаски можно заказывать в сети.
  • Быстро и бесследно разрушаются, поэтому можно не бояться за допинг контроль.

Пептиды, так же как и классический гормон роста легко проверить на подлинность. Для этого достаточно сдать анализы на уровень соматотропина в плазме после введения препарата.

Как принимать пептиды. Основные правила приёма пептидов:

  • Местом инъекции служит область живота в 8см от пупка;
  • Угол наклона шприца при инъекции составляет 45 градусов;
  • Делать инъекцию строго на голодный желудок;
  • Не принимать пищу в течении 40 минут после инъекции;
  • Перерыв между инъекциями должен составлять не менее 4 часов.

Правила разведения пептидов в стерильной воде для инъекций:

  • Разводить пептид стерильной водой для инъекций по стенке ампулы;
  • При разведении избегать падений капли воды на пептидную массу;
  • Не смешивать различные пептиды в одной ампуле;
  • Не трясти разведённый в воде пептид;
  • Не держать смесь пептидов из разных ампул в одном шприце долгое время;
  • Беречь от прямых солнечных лучей;
  • Хранить приготовленный раствор в холодильнике при температуре 2-8 градусов;
  • Срок хранения приготовленного раствора до 7-10 дней.
  • Использовать инсулиновый шприц на 100 инсулиновых единиц U100 (оранжевая крышка, см на картинку);
  • Не путать инсулиновые единицы с делениями;
  • Четко следовать дозировке и рекомендациям спортивного врача;
  • Повысить количество белков в дневном рационе до 3г на 1 кг веса;
  • Ведите дневник инъекций, что бы не забыть что и когда колоть;
  • Делайте инъекции в одной и той же последовательности (что бы не перепутать препараты и не вколоть 2раза одно и тоже);
  • В области живота есть места где инъекция безболезненна и напротив;
  • Постарайтесь избежать инъекций в сосуды;
  • После инъекции шприц не вытаскивать 5-10 секунд, что бы исключить вытекание препарата.

Перед началом курса вам необходимо купить

  • Инсулиновые шприцы U100 (1 миллилитр). В аптеке 70-100р;
  • Ампулы с стерильной водой для инъекций. В аптеке 30-50р;
  • Шприцы с длинной иглой для разведения пептидов. В аптеке 5-10р;
  • Ватные диски. В аптеке 30-50р;
  • Спирт или спиртовые салфетки. В аптеке 40-60р.

Основные правила стерильности при инъекциях

  • Инъекцию проводить чистыми руками;
  • Протереть спиртом горлышко ампулы с пептидом перед эксплуатацией;
  • Протереть спиртом место инъекции (можно пренебречь, так как риск заражения слишком мал, если использовать инсулиновые шприцы);
  • Исключить соприкасание иглы с не стерильными поверхностями;
  • Исключить попадание воздуха в шприц;
  • Шприц используется только 1 раз (в целях экономии можно дневную дозу 1 препарата набирать в отдельный шприц).

Пептиды. Возможные побочные явления

Пептиды используются достаточно долго и так таковых побочных явлений не выявилось, однако следует заметить некоторые негативные реакции организма на препарат:

  • Сильная головная боль;
  • Периодическое чувство слабости;
  • Повышение давления;
  • Сниженное внимание;
  • Вздутие кожи и зуд в месте инъекций;
  • Твёрдые овальные уплотнения под кожей после инъекций (гематомы).

Какие гормоны следят за запасами энергии в нашем теле и выращивают мышцы? А какие делают так, чтобы мы любили друг друга? И самое интересное – чьими силами была приручена собака, друг человека? Про самые известные пептидные гормоны – инсулин и окситоцин – читайте в нашем новом материале.

БОЛЬШЕ ВСЕХ

Про гормоны в общем , а вот тут можно прочитать про , и группу гормонов. Сегодня говорим о последней, самой большой группе гормонов – пептидах.

В основном они вырабатываются гипофизом, самые популярные пептиды этой группы – вазопрессин, окситоцин, липотропный гормон.

Огромная часть пептидов рождается в гипоталамусе, их называют рилизинг-гормонами, потому что они стимулируют выделение других гормонов (от англ. release – выделять).

★ Еще есть пептиды, синтезируемые поджелудочной железой, например, инсулин.

ИНСУЛИН

Фото: @elsas_wholesomelife

Инсулин неспроста является одним из самых изученных гормонов. Он участвует в обмене веществ практически всех тканей организма, но главная его работа – в снижении количества глюкозы в крови.

При нарушении производства инсулина в организме развивается сахарный диабет первого типа, а при нарушении взаимодействия инсулина и тканей – диабет второго типа.

Инсулин сравнивают с умным регулировщиком, которые замедляет движение на опасном участке дороги, перенаправляя потоки так, чтобы не происходило никаких столкновений. Не самая простая метафора, но суть передает точно.

Посмотрим, что еще делает инсулин.

  • Помогает росту мышц: во-первых, он стимулирует производство белка, а во-вторых – помогает переносить аминокислоты в мышечные волокна.
  • Препятствует разрушению мышц – а это очень важно, ведь если разрушается больше или даже равно тому, сколько создается, никакого роста не выйдет.
  • Подавляет чувство голода и снижает аппетит.

Что ж, картина весьма привлекательная для всех, кто следит за своим весом и внешним видом. Но есть и ложечка дегтя, потому что инсулин делает еще и много чего другого.

  • Препятствует расщеплению жировой ткани, так что если вы хотите похудеть, инсулин может быть конкретно против.
  • Повышает давление, и если вы гипертоник, скорее всего, содержание инсулина в крови у вас повышено.
  • Стимулирует рост нежелательных образований, ведь инсулин часто не особенно щепетилен к тому, что именно ему выращивать.

ОКСИТОЦИН

Фото: @anthropologie

Это гормон, который вырабатывается, когда мы обнимаемся, занимаемся сексом или кормим грудью. Его называют еще «молекулой любви», ведь именно окситоцин формирует привязанность. Считается, что у женщин этого пептидного гормона вырабатывается больше, но мы верим, но существуют и мужчины, щедрые на любовь и выработку окситоцина.

Обнаружен окситоцин был очень романтично. При сравнении двух видов полевок (это такие мышки) – степных и луговых – была замечена странная закономерность. Первые, степные, были моногамны, а вот луговые – нет. Степные мыши-полевки были привязаны друг к другу, выращивали детенышей, нежно заботясь о них. Луговые имели беспорядочную личную жизнь и меняли партнеров как перчатки. Все дело в том, что у первых окситоцина в крови было гораздо больше, чем у вторых, а вот когда степным мышам сделали инъекцию гормона любви – тут-то они и превратились в нежных и любящих семьянинов.

Первоначально окситоцин был задуман природой как ускоритель родов. Действительно, именно выброс этого гормона позволяет разродиться: и женщине, и кошке, и корове. Более того, окситоцин призван стирать из памяти негативные воспоминания, уж не по этой ли причине матери так быстро забывают все муки родов и начинают любить своего ребенка несмотря на всю боль, которую пришлось испытать?

Фото: @talinegabriel

Выработка окситоцина повышается, когда мы обнимаемся, возимся с любимым псом (кстати, в деле одомашнивания собак окситоцин тоже сыграл одну из главных ролей), влюбляемся и думаем об объекте чувств. Этот гормон снижает тревожность, успокаивает нас, благодаря нему все становится неважным. К слову, есть гормон, совершенно противоположного действия – вазопрессин – он заставляет нас учиться, работать, тревожиться. Тоже полезный гормон, безусловно, но о нем мы расскажем как-нибудь в другой раз.

На этом закончим рассказ о пептидах, хотя писать о них можно вечно, все-таки самая многочисленная группа гормонов. И напоследок желаем, чтобы окситоцина в вашей жизни всегда было чуточку больше, чем вазопрессина!

Пептидные гормоны, или белково-пептидные, - общее название гормонов, являющихся по своей структуре белками или пептидами. Пептидные гормоны в организме часто выполняют функцию запускающих факторов. Они являются стимулами к выработке других гормонов, в частности таких, как тестостерон и кортикостероиды. После применения пептидных гормонов значительно усиливаются анаболические процессы в организме, увеличивается рост мышц либо снижается порог болевой чувствительности.

К аналогам человеческих пептидных гормонов относятся синтетические препараты, или препараты, полученные с помощью современных генно-инженерных технологий. Это гонадотропин, гормон роста, адренокортикотропный гормон и эритропоэтин.

Гонадотропные гормоны образуются в передней доле гипофиза и стимулируют функции половых желез. Это дает эффекты, сходные с таковыми у тестостерона, т. е. рост мышечной массы.

Гормон роста вызывает рост скелета у человека до определенного предела и используется некоторыми спортсменами для наращивания мышечной массы. Препараты, содержащие соматотропин, как еще называют гормон роста, вызывают ряд побочных эффектов. Это могут быть аномалии в размерах рук, лица, внутренних органов, в частности печени. Экзогенный гормон роста вызывает заболевания суставов, развитие диабета, сердечно-сосудистых заболеваний.

Адренокортикотропный гормон, или АКТГ, увеличивает содержание кортикостероидов и используется спортсменами для восстановления травмированных тканей и мышц. При длительном использовании экзогенного АКТГ может произойти отмирание мышц. Помимо этого у атлета возникают проблемы со сном, повышается кровяное давление, развивается диабет, язва желудка и другие побочные эффекты.

Эритропоэтин увеличивает количество красных кровяных телец - эритроцитов. Это значительно улучшает результативность в видах спорта на выносливость за счет повышения кислородтранспортной функции крови. Поэтому в некоторых видах спорта международные федерации вынуждены вводить дополнительный допинг-контроль количества эритроцитов. Эритропоэтин влияет на гематокрит организма, т. е. повышает вязкость крови. В свою очередь для нормального снабжения тканей кислородом, хотя это звучит парадоксально в отношении действия препарата, стимулирующего эритропоэз, организм вынужден включать механизмы повышения кровяного давления. Напряженная сердечная деятельность в этом случае может вызвать инфаркт миокарда. Другие опасные эффекты действия эритропоэтина связаны с церебральным параличом, возможностью появления кровяных сгустков в легких.

Пептидные гормоны – это вещества, вырабатываемые железами внутренней секреции для контроля различных функций организма. Миметики – это вещества, имитирующие действия других субстанций. Аналоги – это искусственно синтезированные соединения, обладающие такими же свойствами, как и естественные гормоны человека.

Пептидные гормоны, миметики и аналоги. Действие

Гормоны несут информацию от одного органа к другому, регулируя разнообразные функции организма, такие как рост, сексуальное влечение, поведение и чувствительность к боли.

Почему пептидные гормоны, миметики и аналоги запрещены?

Спортсмены используют эти субстанции по разным причинам, в зависимости от того, чего они хотят добиться. Гормоны могут применяться для:

  • Стимуляции выработки собственных гормонов;
  • Увеличения мышечной массы и силы;
  • Стимуляции выработки эритроцитов, что увеличивает объем переносимого кровью кислорода.

Побочные эффекты

Сложно оценить, сколько вреда может принести использование в качестве допинга пептидных гормонов, миметиков и аналогов, поскольку это зависит от многих факторов, таких как особенности индивидуальные организма, тип субстанции, ее количество. Субстанции, имитирующие действия естественных гормонов могут влиять на гормональный баланс в организме.

Правильнее будет рассмотреть по отдельности различные запрещенные пептидные гормоны, миметики и аналоги, такие как:

  • Хорионический гонадотропин ((hCG), запрещен к применению только для мужчин);
  • Питуитарный и синтетический гонадотропины ((LH), запрещены к применению только для мужчин);
  • Кортикотрофин (ACTH, тетракозактид);
  • Гормон роста (hGH);
  • Инсулиноподобный фактор роста (IGF-1);
  • Эритропоэтин (EPO);
  • Инсулин

Хорионический гонадотропин

Человеческий хорионический гонадотропин (hCG) – это гормон, вырабатываемый плацентой во время беременности, он способен увеличивать секрецию натуральных мужских и женских стероидов. В медицине он используется для лечения бесплодия, неопустившихся яичек и задержки полового созревания.
Применение hCG мужчинами стимулирует тестикулы на быструю выработку тестостерона, поэтому его использование приравнивается к использованию тестостерона. Его применение запрещено только для мужчин. В основном его используют потребители анаболических стероидов в попытке преодолеть пагубные для их яичек последствия их применения, или же в качестве маскирующего агента.

Поскольку hCG стимулирует выработку тестостерона, побочные эффекты от его использования такие же, как и от применения анаболических стероидов. Кроме того, возможны и следующие побочные эффекты:

  • головные боли;
  • раздражительность;
  • депрессии;
  • апатия;
  • гинекомастия (рост грудей у мужчин)

Питуитарный и синтетический гонадотропины.

Это гормоны, вырабатываемые гипофизом, включая лютеинизирующий гормон (LH). LH стимулирует функционирование тестикул, а также выработку половых гормонов у мужчин и женщин.

В медицине LH при лечении женского и мужского бесплодия. У женщин он стимулирует овуляцию, а у мужчин – выработку тестостерона, что приравнивается к его применению. Использование LH запрещено тоько для мужчин.

Интетические гонадотропины, такие как тамоксифен, циклофенил и кломифен, регулируют выработку гонадотропина. Побочные эффекты от применения каждой из этих субстанций разные.

Кортикотропины

Кортикотропин (адренокортикотропин ACTH) – это естественный гормон, вырабатываемый гипофизом для стимуляции секреции кортикостероидов. В медицине он используется как диагностическое средство для анализа функции коры надпочечников, и для лечения некоторых неврологических расстройств, таких как детский паралич и рассеянный склероз. Спортсменами он используется с целью повышения уровня натуральных кортикостероидов, что обеспечивает противовоспалительный эффект, а также вызывает чувство эйфории. Применение кортикотропина приравнивается к применению глюкокортикостероидов, и поэтому запрещено.

Краткосрочные побочные эффекты от применения ACTH включают в себя расстройства пищеварения, язвы и психологические эффекты, например, раздражительность. Кроме того, возможны:

  • размягчение соединительной ткани;
  • ослабление поврежденных участков мышц, костей, сухожилий и связок;
  • остеопороз;
  • катаракта;
  • накопление жидкости в организме;
  • повышенный уровень сахара в крови (гипергликемия);
  • пониженная сопротивляемость к инфекциям.

Гормон роста

Человеческий гормон роста (hGH) вырабатывается гипофизом. Он активно стимулирует рост мышц, костей и других тканей, а также способствует сжиганию жира. Он необходим для нормального роста и развития детей, а также поддержания метаболизма у взрослых.

В медицине он применяется для лечения детей с пониженной функцией гипофиза. Обычно его применяют только при лечении тех детей, у кого центры роста костей еще не закрыты. С 1989 года его также начали использовать для лечения взрослых с дефицитом гормона роста. У таких людей он:

  • нормализует конституцию тела (способствует наращиванию костей и мышц и уменьшает жировые запасы);
  • улучшает самочувствие (в частности настроение и энергетический уровень);
  • нормализует метаболизм, в том числе холестерина и других факторов риска сосудистых заболеваний.

Существует масса причин, по которым спортсмены могут начать принимать гормон роста, например, чтобы увеличить мышечную массу и уменьшить жировые запасы. Другим стимулом к его приему может послужить желание, чтобы ребенок вырос более высоким.

В научных исследованиях упоминаются и другие положительные эффекты от приема гормона роста (это имеет отношение только к взрослым с дефицитом этого гормона), такие как увеличение минутного сердечного выброса во время тренировок, увеличение потоотделения, улучшение терморегуляции организма, интенсификация расщепления жиров, что дает дополнительную энергию для повышения выносливости, а также, возможно, для укрепления связок и сокращения времени заживления травм. Спортсменов не могли не заинтересовать подобные свойства гормона, однако еще раз следует подчеркнуть, что в исследованиях принимали участие только пациенты с дефицитом гормона роста.

Побочные эффекты применения гормона роста могут включать в себя:

  • диабет;
  • сердечная недостаточность;
  • повышенное кровяное давление;
  • задержка вывода из организма воды и натрия;
  • ускоренный остеоартрит;

  • гигантизм у молодых спортсменов (избыточный рост скелета).

Инсулиноподобный фактор роста

Инсулиноподобный фактор роста I (IGF-I) – это гормон, вырабатываемый преимущественно печенью и регулируемый гормоном роста и инсулином. IGF-I стимулирует синтез протеина и тормозит разрушение мышечных клеток, что способствует увеличению мышечной массы и уменьшению жировых отложений.
IGF-I применялся в медицине для лечения карликовости у детей, а также для лечения детей, у которых были антитела, уменьшавшие эффективность действия гормона роста.

Спортсмены используют IGF-I из-за его анаболических свойств. В числе прочих от его применения возможны следующие побочные эффекты:

  • пониженный уровень сахара (гипогликемия);
  • акромегалия у взрослых (деформированный рост внутренних органов,
    костей и частей лица, рост и утолщение пальцев, ушей и кожи);
  • головные боли и боли в суставах;
  • периодически возникающая мышечная слабость из-за дегенеративных изменений в суставах.

Эритропоэтин (EPO)

Эритропоэтин (EPO) – это гормон, вырабатываемый почками и стимулирующий образование эритроцитов. В медицинской практике синтетическая форма EPO используется для лечения анемии ассоциированной с хронической почечной недостаточностью.

EPO может использоваться спортсменами для увеличения объема транспортировки в организме кислорода, который возрастает с ростом количества эритроцитов. Этот дополнительный кислород поступает в мышцы, что повышает выносливость. Чаще всего на этом допинге попадаются бегуны на длинные дистанции, лыжники и велосипедисты.
Вот некоторые из серьезных последствий приема эритропоэтина:
сгущение крови,
повышенный риск закупорки сосудов и сердечного приступа,
риск заражения инфекциями, такими как гепатит и СПИД из-за необеспечения стерильности при выполнении инъекций.
У таких спортсменов, как бегуны на длинные дистанции и т.п. риск закупорки сосудов многократно возрастает из-за обезвоживания организма.

Инсулин

Инсулин – это гормон, вырабатываемый поджелудочной железой и участвующий в регуляции уровня сахара в крови. Он участвует в метаболизме углеводов, жиров и белков. В медицине он используется при лечении сахарного диабета.

Спортсмены его принимали вместе с анаболическими стероидами, кленбутеролом и/или гормоном роста в попытке увеличения мышечной массы. Вопрос о том, способствует ли достижению такого результат инсулин, небесспорен, в отличие от того факта, что при таком его использовании весьма велик риск проявления серьезных побочных эффектов. Не исключен, в том числе, и летальный исход от применения инсулина.

В числе побочных эффектов возможен низкий уровень сахара (гипогликемия) с такими сопутствующими явлениями, как дрожь, тошнота, слабость, короткое дыхание, сонливость, кома, повреждения мозга и смерть.
Инсулин разрешен к применению только тем спортсменам, кто является инсулинозависимыми диабетиками. При этом необходимо предоставить выписку из истории болезни, подготовленную эндокринологам или врачом команды. Спортсмен должен узнать в своей национальной или международной федерации требования к предоставлению уведомления.

Современные методы анализа пока не позволяют «ловить» спортсменов на применении инсулина.

error: Content is protected !!