Типы мейоза и его биологическое значение. Репродуктивная функция и биологическое значение мейоза

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет ) и последующего развития из оплодотворенной яйцеклетки - зиготы.

Половые клетки родителей обладают гаплоидным набором (n ) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n ): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому .

Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления - мейоза.

Мейоз - разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых же лез образуются гаплоидные гаметы (1 n ). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками - кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна - число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы - образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома - две хроматиды (1n2хр).

Интеркинез - короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 - профаза; 6 -метафаза; 7 - анафаза; 8 - телофаза; 9 - интеркинез. Мейоз II; 10 -метафаза; II -анафаза; 12 - дочерние клетки.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II - случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).

Рис. 2. Схема гаметогенеза: ? - сперматогенез; ? - овогенез

Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении

В природе существует несколько способов и видов деления клеток. Одним из них является процесс деления, именуемый мейозом. В данной статье Вы узнаете, как происходит данный процесс, об его особенностях, а также в чём заключается биологическое значение мейоза.

Фазы мейоза

Способ деления, в результате которого из материнской клетки образуется четыре дочерние с уменьшенным в два раза набором хромосом, называется мейозом.

Таким образом, если делится диплоидная соматическая клетка, то в результате получаем четыре гаплоидные клетки.

Весь процесс проходит непрерывно в два этапа, между которыми практически отсутствует интерфаза. Кратко описать весь процесс поможет следующая таблица:

Фаза

Описание

Первое деление:

Профаза 1

Ядрышки растворяются, разрушаются ядерные мембраны, и формируется веретено деления.

Метафаза 1

Спирализация достигает максимальных значений, пары хромосом располагаются в экваториальной части веретена.

Анафаза 1

Гомологичные хромосомы отходят к разным полюсам. Поэтому из каждой их пары одна попадает в дочернюю клетку.

Телофаза 1

Разрушается веретено деления, формируются ядра, и распределяется цитоплазма. В результате получается две клетки, которые буквально сразу же вступают в новый процесс деления способом митоза.

Второе деление:

Профаза 2

Происходит формирование хромосом, которые беспорядочно расположены в цитоплазме клетки. Образуется новое веретено деления.

Метафаза 2

Хромосомы перемещаются к экватору веретена деления.

Анафаза 2

Хроматиды разделяются и расходятся к разным полюсам.

Телофаза 2

В результате получаем четыре гаплоидные клетки с одной хроматидой.

Рис. 1. Схема мейоза

Профаза 1 проходит в пять стадий, во время которых хроматин спирализуется, образуются двухроматидные хромосомы. Наблюдается попарное сближение гомологичных хромосом (конъюгация), при этом в некоторых местах они перекрещиваются и обмениваются определёнными участками (кроссинговер).

Рис. 2. Схема профазы 1

Биологическое значение мейоза

Процесс деления клеток-эукариотов способом мейоза играет большую роль, особенно в образовании клеток половой системы - гамет. В процессе оплодотворения, когда гаметы сливаются, новый организм получает диплоидный набор хромосом и тем самым сохраняются признаки кариотипа. Если бы не было мейоза, то в результате размножения число хромосом постоянно бы росло.

Рис. 3. Схема образования гамет

Помимо этого биологическим смыслом мейоза является:

ТОП-4 статьи которые читают вместе с этой

  • образование споров у некоторых растительных организмов, а также грибов;
  • комбинативная изменчивость организмов, так как при конъюгации получаются новые наборы генетической информации;
  • основополагающий этап при образовании гамет;
  • передача генетического кода новому поколению;
  • поддержание постоянного числа хромосом при размножении;
  • дочерние клетки не похожи на материнские и сестринские.

Что мы узнали?

Мейозом называют процесс, сущность которого состоит в уменьшении числа хромосом при делении клетки. Проходит он в два этапа, каждый из которых состоит из четырёх фаз. В результате первого этапа получаем две клетки с гаплоидным набором хромосом. Второй этап проходит по принципу деления способом митоза, в результате чего получаем четыре клетки с гаплоидным набором. Данный процесс очень важен в образовании половых клеток, которые участвуют в оплодотворении. Полученные клетки - гаметы с гаплоидным набором при слиянии образуют зиготу с диплоидным набором, тем самым поддерживается постоянное число хромосом. Особенность мейоза состоит в том, что дочерние клетки не похожи на материнскую клетку, и имеют особый генетический материал.

Биологическое значение мейоза заключается в поддержании остоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Ход мейоза находится под контролем генотипа организма, под контролем половых гормонов (у животных), фитогормонов (у растений) и множества иных факторов (например, температуры).

45.Отличия мейоза и митоза .

Главное отличие мейоза от митоза - конъюгация гомологичных хромосом с последующим расхождением их в разные гаметы. Точность расхождения обусловлена точностью конъюгации, а последняя - идентичностью молекулярной структуры ДНК гомологов.
В заключение отметим, что цитологами доказано независимое расхождение негомологичных хромосом в профазе I деления мейоза. Это означает, что любая отцовская хромосома может попасть в гамету с любой, в крайнем варианте - со всеми материнскими негомологичными хромосомами. Однако если речь идет о дочерних хромосомах (во II делении мейоза), образовавшихся из перекрещенных, т. е. претерпевших кроссинговер, или кроссоверных хроматид, то их, строго говоря, нельзя рассматривать ни как чисто отцовские, ни как чисто материнские.

46. Оплодотворение, его биологическая роль .

Оплодотворение - соединение двух гамет, в результате чего образуется оплодотворенное яйцо - зигота - начальная стадия развития нового организма.Зигота содержит материнскую и отцовскую гаметы.В зиготе возрастает ядерно-плазменное соотношение.Резко усиливаются обменные процессы.Зигота способна к дальнейшему развитию. Сущность оплодотворения состоит во внесении сперматозоидом отцовских хромосом.Сперматозоид оказывает стимулирующее влияние, вызывающее начало развития яйцеклетки.

47. Виды оплодотворения .

Существует два типа оплодотворения: наружное и внутреннее. При наружном типе оплодотворение происходит в воде, и развитие зародыша также происходит в водной среде (ланцетник, рыбы, земноводные). При внутреннем типе оплодотворение происходит в половых путях самки, а развитие зародыша может происходить или во внешней среде (рептилии, птицы), или внутри организма матери в особом органе – матке (плацентарные млекопитающие, человек).

При оплодотворении в яйцеклетку может проникать один или несколько сперматозоидов. Если в яйцеклетку проникает один сперматозоид, то такое явление называют моноспермией. Если проникает несколько сперматозоидов, то это полиспермия. Как правило, моноспермия характерна для яйцеклеток, не имеющих плотных оболочек, полиспермия – для яйцеклеток с плотными оболочками. В случае полиспермии оплодотворение яйцеклетки также происходит только одним сперматозоидом, остальные растворяются и принимают участие в разжижении желтка.



Успех оплодотворения зависит и от внешних условий. Основным условием является наличие жидкой среды с определенной концентрацией. Среда должна обладать нейтральной или слегка щелочной реакцией, в кислой среде оплодотворение не происходит.

48. Этапы оплодотворения .

Важнейшие этапы процесса оплодотворения включают:1) Проникновение сперматозоида в яйцеклетку;2) Активацию в ядре метаболических процессов;3) Слияние ядер яйцеклетки и сперматозоида и восстановление диплоидного набора хромосом.

49. Механизмы оплодотворения .

Оплодотворение может произойти лишь при определенной концентрации сперматозоидов в семенной жидкости(1 мл семенной жидкости ~350 млн. сперматозоидов). Яйцеклетки животных и растений выделяют в окружающую среду вещества, активирующие сперматозоиды. Сперматозоиды двигаются по направлению к яйцеклетке. Вещества, выделяемые яйцеклеткой, вызывают склеивание сперматозоидов, что способствует удержанию их вблизи яйцеклетки. К яйцеклетке подходит множество сперматозоидов, но проникает один. Проникновению сперматозоида в яйцеклетку способствуют ферменты - гиалуронидаза и др. Ферменты выделяются акросомой. Оболочка яйцеклетки растворяется, и через отверстие в ней сперматозоид проникает в яйцеклетку. На поверхности яйца образуется оболочка оплодотворения, которая защищает яйцо от проникновения других сперматозоидов. Между этой оболочкой и поверхностью яйца есть свободное пространство, заполненное жидкостью. Проникновение сперматозоида способствует завершению второго деления мейоза, и овоцит 2-го порядка становится зрелым яйцом. В яйце усиливается метаболическая активность, увеличивается потребление кислорода и происходит интенсивный синтез белка.



Ядра сперматозоида и яйцеклетки сближаются, их мембраны растворяются. Ядра сливаются и восстанавливается диплоидный набор хромосом. Это самое основное в процессе оплодотворения. Оплодотворенное яйцо называют зиготой. Зигота способна к дальнейшему развитию. При оплодотворении сперматозоид вносит свой хромосомный материал в яйцеклетку и оказывает стимулирующее влияние, вызывая развитие организма.

50. Партеногенез, его разновидности и характеристика .

Партеногенез - развитие из неоплодотворенных яиц, позволяющее особи производитьпотомков без настоящего оплодотворения. Известен естественный и искусственный партеногенез. Естественный партеногенез существует у ряда растений, червей, насекомых, ракообразных. У пчел, муравьев встречается факультативный партеногенез. Из неоплодотворенных яиц развиваются самцы, а из оплодотворенных - самки.При облигатном партеногенезе яйца развиваются без оплодотворения. Например, у кавказской скальной ящерицы. Этот вид сохранился благодаря партеногенезу, т.к. встреча особей затруднена. Партеногенез может быть у птиц. У одной из пород индеек некоторые яйца развиваются партеногенетически, из них появляются только самцы. У многих видов партеногенез происходит циклически. У тлей, дафний в летнее время существуют только самки, размножающиеся партеногенетически, а осенью имеет место размножение с оплодотворением. Такое чередование форм размножения связано с большой гибелью особей. Искусственный партеногенез обнаружен в 1886 г. А.А. Тихомировым. Благодаря опытам с искусственным партеногенезом выяснили, что для развития яйца необходима активация. В естественных условиях эту функцию выполняют сперматозоиды после проникновения в яйцеклетку. В эксперименте активация может быть вызвана различными воздействиями: химическим, механическим, электрическим, термическим и др. Эти факторы изменяют метаболизм яйцеклетки и активируют ее.

Репродуктивная функция организма осуществляется в процессе соединения двух гамет при возникновении и последующем развитии из зиготы дочернего организма - оплодотворённой яйцеклетки. У половых родительских клеток есть определённый набор n-хромосом. Он называется гаплоидным. Зигота же, принимая в себя эти наборы, становится диплоидной клеткой, т.е. число хромосом там 2n: одна материнская и одна отцовская. Биологическое значение мейоза как особого деления на клетки состоит в том, что именно благодаря ему, образуется из клеток диплоидных.

Определение

Мейозом в биологии принято называть разновидность митоза; вследствие его диплоидные половых желез делятся на 1n гаметы. Когда ядро оплодотворяется, происходит слияние гамет. Таким образом, восстанавливается 2n хромосомный набор. Значение мейоза заключается в обеспечении сохранности присущего каждому виду живых организмов хромосомного набора и соответствующего количества ДНК.

Описание

Мейоз - процесс непрерывный. Его составляют 2 вида деления, последовательно следующих друг за другом: мейоз I и мейоз II. Каждый из процессов, в свою очередь, состоит из профазы, метафазы, анафазы, телофазы. Первое деление мейоза, или мейоз I, уменьшает вдвое количество хромосом, т.е. происходит явление так называемого редукционного деления. Когда наступает вторая стадия мейоза, или мейоз II, гаплоидности клеток не грозит изменение, она сохраняется. Этот процесс назван эквационным делением.

Все клетки, находящиеся в стадии мейоза, несут в себе некую информацию на генетическом уровне.

  • Профаза мейоза первого - этап постепенной спирализации хроматина и образования хромосом. В конце этого весьма сложного действия генетический материал присутствует в первоначальном виде - 2n2 хромосом.
  • Наступает метафаза - наступает и максимальный уровень спирализации. Генетический материал по-прежнему не изменяется.
  • Анафаза мейоза сопровождается редукцией. Каждая пара родительских хромосом отдаёт по одной своей дочерней клетке. Генетический материал изменяется по составу, т.к. число хромосом стало вдвое меньше: на каждый полюс клетки приходится по 1n2 хромосомы.
  • Телофаза - фаза, когда формируется ядро, разделяются цитоплазмы. Создаются дочерние клетки, их 2, и в каждой по 2 хроматиды. Т.е. набор хромосом в них гаплоидный.
  • Далее наблюдается интеркинез, небольшая передышка между первой и второй стадией мейоза. Обе дочерних клетки готовы вступить во вторую стадию мейоза, которая протекает по тому же механизму, что и митоз.

Биологическое значение мейоза заключается, следовательно, и в том, что в его второй стадии в результате сложных механизмов образуются уже 4 гаплоидных клетки - 1n1 хромосом. Т.е., одна диплоидная материнская клетка даёт жизнь четырём - у каждой гаплоидный хромосомный набор. В одной из фаз мейоза первой степени генетический материал перекомбинируется, а во второй стадии осуществляется движение хромосом и хроматид к разным полюсам клетки. Эти движения - источник изменчивости и различных внутривидовых комбинаций.

Итоги

Итак, биологическое значение мейоза, действительно, велико. Прежде всего, его следует отметить как главный, основной этап генеза гаметы. Мейозом обеспечивается передача генетической информации видов от одного организма другому, при условии, что они путём. Мейоз даёт возможность возникать внутривидовым комбинациям, т.к. дочерние клетки отличаются не только от родительских, но и различаются между собой.

Помимо этого, биологическое значение мейоза заключается и в обеспечении уменьшения количества хромосом в тот момент, когда образуются половые клетки. Мейоз обеспечивает их гаплоидность; в момент же оплодотворения в зиготе диплоидный состав хромосом восстанавливается.

Биологическое значение мейоза:

Характеристика половых клеток животных

Гаметы - высокодифференцированные клетки. Они предназначены для воспроизведения живых организмов .

Основные отличия гамет от соматических клеток:

1. Зрелые половые клетки имеют гаплоидный набор хромосом. соматические клетки имеют диплоидный набор. Например, соматические клетки человека содержат 46 хромосом. зрелые гаметы имеют 23 хромосомы.

2.У половых клеток изменено ядерно - цитоплазматическое соотношение. В женских гаметах объем цитоплазмы во много раз превышает объем ядра. в мужских клетках имеется обратная закономерность.

3. Гаметы имеют особый метаболизм. в зрелых половых клетках процессы ассимиляции и диссимиляции замедленны.

4. Гаметы различны между собой и эти различия обусловлены механизмами мейоза.

Гаметогенез

Сперматогенез - развитие мужских половых клеток. диплоидные клетки извитых канальцев семенников превращаются в гаплоидные сперматозоиды (рис.1). Сперматогенез включает 4 периода: размножения, роста, созревания, формирования.

1. Размножение . Исходный материал развития сперматозоидов - сперматогонии. клетки округлой формы с крупным, хорошо окрашивающимся ядром. содержит диплоидный набор хромосом. Сперматогонии быстро размножаются митотическим делением.

2. Рост . Сперматогонии образуют сперматоциты первого порядка.

3. Созревание . В зоне созревания происходит два мейотических деления. Клетки после первого деления созревания называются сперматоцитами второго порядка . Затем идет второе деление созревания. происходит редукция диплоидного числа хромосом до гаплоидного. образуется по 2 сперматиды . Следовательно, из одного диплоидного сперматоцита первого порядка образуются 4 гаплоидные сперматиды.

4. Формирование . Сперматиды постепенно превращаются в зрелые сперматозоиды . У мужчин выход сперматозоидов в полость семенных канальцев начинается после наступления половой зрелости. Он продолжается до затухания деятельности половых желез.

Овогенез - развитие женских половых клеток. клетки яичника - овогонии превращаются в яйцеклетки (рис.2).

Овогенез включает три периода: размножение, рост и созревание.

1. Размножение овогоний, так же как и сперматогоний, происходит путем митоза.

2. Рост . Во время роста овогонии превращаются в овоциты первого порядка.

Рис. 2. Сперматогенез и овогенез (схемы).

3. Созревание . как и при сперматогенезе, идут друг за другом два мейотических деления. После первого деления образуются две клетки, различные по своей величине. Одна большая - овоцит второго порядка и меньшая - первое направительное (полярное) тельце. В результате второго деления из овоцита второго порядка также образуются две неравные по размерам клетки. Большая - зрелая яйцевая клетка и маленькая - второе направительное тельце. Таким образом, из одного диплоидного овоцита первого порядка образуется четыре гаплоидные клетки. Одна зрелая яйцеклетка и три полярных тельца. Этот процесс протекает в маточной трубе.

Мейоз

Мейоз - биологический процесс в период созревания половых клеток . Мейоз включает первое и второе мейотическое деление .

Первое мейотическое деление (редукционное) . Первому делению предшествует интерфаза. в ней происходит синтез ДНК. Однако профаза I мейотического деления отличается от профазы митоза. Она состоит из пяти стадий: лептотена, зиготена, пахитена, диплотена и диакинез.

В лептонеме происходит увеличение ядра и выявление в нем нитевидных слабо спирализованных хромосом.

В зигонеме происходит попарное объединение гомологичных хромосом, при котором центромеры и плечи точно сближаются друг с другом (явление конъюгации).

В пахинеме происходит прогрессирующая спирализация хромосом и объединение их в пары - биваленты. В хромосомах идентифицируются хроматиды, в результате чего образуются тетрады. При этом происходит обмен участками хромосом – кроссинговер.

Диплонема – начало отталкивания гомологичных хромосом. Расхождение начинается в области центромеры, однако в местах кроссинговера связь сохраняется.

В диакинезе происходит дальнейшее расхождение хромосом, которые, тем не менее все еще остаются связанными в бивалентах своими концевыми участками. В результате возникают характерные кольцевые фигуры. Ядерная мембрана растворяется.

В анафазе I происходит расхождение к полюсам клетки гомологичных хромосом из каждой пары, а не хроматид. В этом принципиальное отличие от аналогичной стадии митоза.

Телофаза I. Происходит формирование двух клеток с гаплоидным набором хромосом (например, у человека – 23 хромосомы). однако количество ДНК сохраняется равным диплоидному набору.

Второе мейотическое деление (эквационное) . Сначала идет короткая интерфаза. в ней синтез ДНК отсутствует. Затем следуют профаза II и метафаза II. В анафазе II расходятся не гомологичные хромосомы, а только их хроматиды. Поэтому дочерние клетки остаются гаплоидным. ДНК в гаметах - вдвое меньше, чем в соматических клетках .

Биологическое значение мейоза:

error: Content is protected !!