Основные типы антител. Классификация антител (АТ)

Связывающую и эффекторную (вызывают тот или иной иммунный ответ , например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками , которыми становятся некоторые В-лимфоциты, в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких и двух тяжёлых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

Энциклопедичный YouTube

  • 1 / 5

    Самое первое антитело было обнаружено Берингом и Китазато в 1890 году , однако в то время о природе обнаруженного столбнячного антитоксина, кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тиселиуса и Кабата, началось изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном , который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

    Строение антител

    Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами , имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из V H , C Н 1, шарнира, C H 2- и C H 3-доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из V L - и C L - доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA), так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε- и μ-цепи) и два типа легких цепей (κ-цепь и λ-цепь).

    Классификация по тяжелым цепям

    Различают пять классов (изотипов ) иммуноглобулинов, различающихся:

    • последовательностью аминокислот
    • молекулярной массой
    • зарядом

    Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA - на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

    Функции антител

    Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

    • распознает и связывает антиген, а затем
    • усиливает уничтожение и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

    Одна область молекулы антител (Fab) определяет её антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

    Имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

    Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген , похожий на полимеризованный флагеллин , связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

    Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

    Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка, полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

    Клонально-селекционная теория :

    1. Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.
    2. Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.
    3. Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.
    4. Лимфоциты, имеющие антиген , проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины , которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

    Вариабельность антител

    Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

    • Изотипическая вариабельность - проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;
    • Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов - является генетически детерминированным отличием данного организма от другого;
    • Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

    Контроль пролиферации

    Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит её ингибитором . Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM усиливает иммунный ответ . Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

    3367 0

    Одной из основных функций иммунной системы является продукция растворимых белков, свободно циркулирующих и обладающих особыми свойствами, необходимыми для работы иммунной системы и защиты от чужеродных субстанций. Эти растворимые белки - антитела - относятся к классу белков, называемых глобулинами в связи с их глобулярной структурой.

    Первоначально из-за способности к перемещению при электрофорезе их назвали γ-глобулинами (в отличие от более быстро перемещающихся альбумина, α-глобулинов и β-глобулинов). Теперь они известны под общим названием иммуноглобулины (Ig).

    Иммуноглобулины экспрессируются в виде секретируемых и мембранных форм. Секретируемые антитела вырабатываются В-клетками на терминальной стадии дифференцировки - плазматическими клетками, которые служат фабриками по производству антител и располагаются в основном в костном мозге. Мембранные антитела присутствуют на поверхности В-клеток, где они служат антигенспецифичными рецепторами. Мембранная форма антитела, ассоциированная с гетеродимером, называемым Iga/Igp, образует В-клеточный рецептор (BCR). Гетеродимер Iga/Igp проводит внутрь клетки сигналы, связанные с активацией В-лимфоцита.

    Структура иммуноглобулинов определяет некоторые свойства, необходимые для их участия в иммунном ответе. Двумя наиболее важными из этих свойств являются специфичность и биологическая активность. Как будет показано далее, специфичность обусловлена определенной областью молекулы антитела, которая содержит гипервариабельный участок, или участок, определяющий комплементарность (CDR). Этот участок ограничивает связь антитела только с теми субстанциями, которые содержат одну определенную антигенную структуру.

    Существование огромного разнообразия потенциальных антигенных детерминант, или эпитопов, обусловило эволюцию системы в направлении продукции такого спектра молекул антител, чтобы каждая из них была способна комбинироваться со строго определенной (частной) антигенной структурой. Все вместе - репертуар антител - характеризуется большим разнообразием в отношении типов молекулярных структур, с которыми они способны реагировать, однако по отдельности эти антитела проявляют высокий уровень специфичности, поскольку одно антитело способно реагировать только с одной определенной антигенной структурой.

    Хотя количество антител разных специфичностей, способных реагировать со многими структурными единицами, очень велико, биологические эффекты таких реакций довольно немногочисленны. К ним относятся: нейтрализация токсинов, иммобилизация микроорганизмов, нейтрализация вирусной активности, агглютинация (скопление) микроорганизмов или антигенных частиц, связывание растворимого антигена, ведущее к образованию преципитатов (которые активно элиминируются фагоцитирующими клетками) и активация сывороточного комплемента для усиления лизиса микроорганизмов или фагоцитоза и деструкции, осуществляемых либо фагоцитирующими клетками, либо лимфоцитами-киллерами.

    Еще одним важным биологическим свойством антител является их способность проникать через плаценту от матери к плоду. Не все молекулы антител способны одинаково выполнять все эти биологические функции.

    Различия в биологических функциях антител определяются их изотипической структурой (классом). В то время как одна часть молекулы антитела должна легко подвергаться адаптации, чтобы обеспечить возможность приспосабливаться к "большому числу эпитопов, другая часть должна легко адаптироваться для выполнения биологических функций, общих для многих антител.

    Определение структуры антител, установление взаимосвязи между их структурой и функцией и выявление генетической организации молекул иммуноглобулинов в значительной степени способствовали нашему пониманию эволюционирования иммунной системы. Весь антительный репертуар представляет собой сложную, высокоспециализированную систему, в которой различные структуры (иммуноглобулины) распознают одно и то же - антиген, но комплекс иммуноглобулина с антигеном определяет развитие множества различных биологических эффектов. В этой главе описываются структурные и биологические свойства иммуноглобулинов.

    Обнаружение антител и определение их характеристик

    Антитела содержатся в сыворотке крови, которую получают после ее свертывания и удаления образовавшегося сгустка с находящимися в нем клетками и факторами свертывания. При электрофорезе сыворотки (разделении в электрическом поле) в условиях слабощелочной среды (рН 8,2), в ней, как правило, можно различить пять основных компонентов (рис. 4.1). Было показано, что антитела содержатся в области γ-глобулинов, где располагаются самые медленные с точки зрения миграции относительно анода элементы. После выявления этой закономерности провели простое сравнение элекрофоретических профилей антисыворотки, взятой у гипериммунизированного кролика (получившего многоразовую иммунизацию тест-антигеном) до и после удаления тестируемых антигенспецифичных антител, для чего провели преципитацию с антигеном.

    Эта процедура привела к уменьшению размера только фракции γ-глобулинов. Анализ показал, что когда эта фракция собиралась отдельно, в ней содержались все определяемые антитела. Позднее было показано, что активность антител присутствует не только в γ-глобулиновой фракции, но и в области, несколько более близкой к аноду. В результате все глобулярные белки, обладающие свойствами антител, были в основном отнесены к иммуноглобулинам, что подтверждает γ-пик (см. рис. 4.1).

    Ширина электрофоретических пиков свидетельствует, что они представляют гетерогенную смесь иммуноглобулиновых молекул с немного различающимися зарядами. Эта гетерогенность была одним из первых препятствий на пути определения структуры антител, поскольку аналитическая химия в качестве первичного материала требует гомогенных материалов, способных кристаллизоваться.

    Эта проблема была частично решена после открытия миеломных белков, которые являются гомогенными иммуноглобулинами, производимыми потомством одной плазматической клетки, подвергшейся опухолевой трансформации при злокачественном заболевании, называемом множественной миеломой. Это наглядно демонстрирует форма ү-глобулинового зубца элекрофореграммы сывороточных белков больного множественной миеломой (см. рис. 4.1). Когда выяснили, что некоторые миеломные белки связывают антиген, стало очевидно, что с ними можно обращаться, как с типичными молекулами иммуноглобулина.

    Рис. 4.1. Электрофоретическая мобильность белков сывороток, полученных от нормального индивидуума (голубая) и больного с lgG-миеломой (красная) (с любезного разрешения д-ра С Miller, School of Medicine, University of California at Davis)

    Другим подспорьем в исследованиях структуры антител стало открытие белков Бенс-Джонса в моче. Эти гомогенные белки, определяемые в больших количествах у некоторых больных множественной миеломой, являются димерами κ- или λ-легких цепей иммуноглобулинов. Они оказались очень полезными при определении структуры этой части иммуноглобулиновой молекулы. Сегодня разработана эффективная методика гибридизации двух клеток (гибридомная технология), которая позволяет получать большое количество гомогенных препаратов моноклональных антител практически любой специфичности.

    Структура легких и тяжелых цепей

    Структурные характеристики антител начали анализировать в 1959 г. после двух открытий, показавших, что эти молекулы могут быть разделены на части, пригодные для дальнейшего исследования. В Англии Р. Р. Портер (R.R., Porter) обнаружил, что после протеолитического расщепления молекулы иммуноглобулина (молекулярная масса 150000 Да) ферментом папаином получаются три фрагмента примерно одинаковой величины (рис. 4.2). Два фрагмента сохраняют способность к специфическому связыванию антигена, хотя в отличие от интактной молекулы утрачивают способность к преципитации антигена в растворе.


    Рис 4.2. Протеолитическое расщепление иммуноглобулина с использованием папаина и пепсина

    Эти два фрагмента назвали Fab-фрагментами (fragment antigen binding - фрагмент, связывающий антиген), их считают моновалентными (имеющими по одному связывающему центру) и идентичными по всем параметрам. Третий фрагмент может быть выкристаллизован из раствора, что указывает на его явную гомогенность. Он называется Fc-фрагментом (crystallizable fragment - кристаллизуемый фрагмент). Он не может связываться с антигеном, но, как было показано в дальнейшем, отвечает за биологические функции молекулы антитела после того, как антиген связывается с Fab-фрагментом интактной молекулы.

    Примерно в то же время в США Д. Г. Эдельман (D. H.Edelman) обнаружил, что при воздействии меркаптоэтанола (реактива, разрушающего S - S-мостики) молекула γ-глобулина значительно уменьшается; она разделяется на четыре цепи: две одинаковые легкие цепи молекулярной массой около 53000 Да каждая и две другие примерно по 22000 Да каждая. Более крупные молекулы были названы тяжелыми (heavy - Н) цепями, а более мелкие - легкими (light - L). На основании этих результатов была определена структура молекул иммуноглобулина, как она представлена на рис. 4.2.

    В последующем была доказана принципиальная правильность модели, а Р. Р. Портер и Д. Г. Эдельман поделили Нобелевскую премию за открытие структуры антител. Таким образом, все молекулы иммуноглобулина имеют базовую структуру, состоящую из четырех полипептидных цепей - двух одинаковых тяжелых и двух одинаковых легких, связанных несколькими дисульфидными мостиками. Следует отметить, что папаин расщепляет иммуноглобулиновую молекулу в N-терминальном конце шарнирной области до дисульфидного мостика, в результате чего получаются два моновалентных Fab- и Fc-фрагмента.

    В отличие от папаина пепсин расщепляет шарнирную область в С-терминальном конце ниже дисульфидного мостика, что приводит к получению двухвалентного фрагмента, названного F(ab")2, в котором содержатся два Fab-фрагмента, соединенных дисульфидным мостиком, а также несколько Fc-субфрагментов (см. рис. 4.2). Детально базовая структура молекулы иммуноглобулина, состоящая из двух гликозилированных тяжелых и двух легких цепей, представлена на рис. 4.3.

    Заметьте, что кроме дисульфидных мостиков между цепями, которые удерживают их вместе, внутри каждой тяжелой и легкой цепи содержатся дисульфидные мостики создающие иммуноглобулиновые (петлевые) домены, которые формируют антипараллельную β-складку - структуру, характерную для молекул антител. Другие молекулы, принадлежащие к так называемому суперсемейству иммуноглобулинов, также обладают этим структурным признаком.


    Рис. 4.3. Молекула иммуноглобулина с наличием иммуноглобулиновых петлевых доменов, сформированных дисульфидными мостиками внутри цепей

    Как в случае с другими белками, иммуноглобулины одного вида иммуногенны для другого вида. Использование иммуноглобулинов определенного вида в качестве иммуногенов у другого вида позволяет вырабатывать различные антисыворотки, которые способны распознавать структуру разных цепей иммуноглобулинов. При совместном использовании биохимических и серологических (с использованием сывороточных антител) методов было показано, что почти у всех исследованных видов животных имеются два основных класса легких цепей: κ и λ.

    У животных каждого вида продуцируются легкие цепи обоих типов, но соотношение κ- и λ-цепей различны для каждого вида (у мыши 95 % κ-цепей, у человека 60%). Однако в любой молекуле иммуноглобулина обе легкие цепи всегда или κ-, или λ-типа; никогда не бывает по одной цепи каждого типа. Хотя существует всего два типа легких цепей, было показано, что иммуноглобулины практически у всех видов состоят из пяти разных классов (изотипов), различающихся по структуре тяжелых цепей.

    Эти тяжелые цепи различаются по антигенным свойствам (серологически), содержанию углеводородов и размеру. Более важно то, что они определяют различные биологические свойства, присущие каждому изотипу. Тяжелые цепи, чьи константные области являются производными генов тяжелых цепей иммуноглобулинов, обозначаются греческими буквами, как показано в табл. 4.1.

    Гены, кодирующие константные области тяжелых цепей, обозначаются сходным образом. Поэтому гены, кодирующие константные (С) области, отвечающие за μ, δ, γ, α и ε тяжелые цепи, называются Сμ, Сδ, Сγ, Сα, Сε соответственно.

    Таблица 4.1. Распределение иммуноглобулинов по изотипам в соответствии с наличием тяжелых цепей

    У представителей любого вида есть тяжелые цепи в пропорциях, характерных для данного вида, но в любой молекуле антитела обе тяжелые цепи идентичны (например 2γ, 2ε). Таким образом, молекула антитела класса IgG может иметь структуру κ2γ2 с двумя идентичными легкими κ-цепями и двумя тяжелыми γ-цепями. В отличие от этого антитело класса IgE может иметь структуру κ2ε2 или λ2ε2. В каждом случае именно природа тяжелых цепей придает молекуле ее уникальные биологические свойства, такие как период полураспада в кровотоке, способность связываться с определенными рецепторами и активировать ферменты в комбинации с антигенами.

    Дальнейшее определение характеристик этих изотипов с помощью специфических антисывороток привело к выявлению ряда подклассов, имеющих более тонкие отличия. Так, основной класс IgG человека может быть разделен на подклассы IgG1 IgG2, IgG3 и IgG4. Иммуноглобулин А также был разделен на два подкласса: IgA1 и lgA2. Подклассы отличаются друг от друга по числу и организации дисульфидных мостиков между цепями, а также по изменениям в других структурных свойствах. Эти изменения в свою очередь вызывают изменения функциональных свойств, как описано далее.

    Домены

    На ранних этапах исследования структуры иммуноглобулинов стало ясно, что кроме дисульфидных мостиков, которые удерживают вместе легкие и тяжелые цепи, а также две тяжелые цепи, внутри каждой цепи существуют дисульфидные мостики, формирующие петли в структуре каждой цепи. Глобулярная структура иммуноглобулинов и способность ферментов расщеплять эти молекулы на крупные составляющие в строго определенных местах, а не разрушать их до олигопептидов и аминокислот, указывает на чрезвычайную компактность структуры.

    Более того, наличие дисульфидных мостиков внутри цепи через регулярные и примерно равные промежутки по 100-110 аминокислот означает, что каждая петля в пептидных цепях должна формировать компактно сложенный глобулярный домен. В действительности каждая легкая цепь имеет по два домена, а тяжелые цепи - по четыре или пять доменов, разделенных несложно организованными отрезками (см. рис. 4.3). Наличие таких конфигураций было подтверждено прямыми наблюдениями и с помощью генетического анализа.

    Молекулы иммуноглобулинов собраны из отдельных доменов, каждый из которых располагается вокруг дисульфидного мостика и настолько гомологичен остальным, что можно предположить, что они развились из одного общего гена-предшественника, который дуплицировал себя несколько раз, а затем изменил свою аминокислотную последовательность, чтобы получившиеся разные домены выполняли различные функции. Каждый домен обозначают буквой, означающей его принадлежность к легкой или тяжелой цепи, и числом, указывающим его положение.

    Как мы детально рассмотрим далее, первый домен на легкой и тяжелой цепях всех антител крайне вариабелен по последовательности аминокислот; он обозначается как VL и VH соответственно (см. рис. 4.3). Второй и последующие домены на обеих тяжелых цепях гораздо более постоянны по последовательности аминокислот и обозначаются CL или Сн1, Сн2 и Сн3 (см. рис. 4.3). В дополнение к дисульфидным мостикам между цепями глобулярные домены связываются друг с другом в гомологичные пары в основном за счет гидрофобных взаимодействий в следующем порядке: VHVL, Ch1Cl, Сн2Сн2, Сн3Сн3.

    Шарнирная область

    У иммуноглобулинов (возможно, за исключением IgM и IgE) шарнирная область состоит из короткого сегмента аминокислот и обнаруживается между участками Сн1 и Сн2 тяжелых цепей (см. рис. 4.3). Этот сегмент состоит преимущественно из остатков цистеина и пролина. Цистеины вовлечены в формирование дисульфидных мостиков между цепями, а пролиновые остатки предотвращают складывание в глобулярную структуру. Этот участок тяжелой цепи отвечает за важную структурную характеристику иммуноглобулинов.

    Он обеспечивает подвижность между двумя Fab-фрагментами Ү-образной молекулы антитела. Это позволяет Fab-фрагментам открываться и закрываться, чтобы обеспечивать связывание с двумя эпитопами, разделенными фиксированным промежутком, что может наблюдаться на поверхности бактерии. Кроме того, поскольку этот отрезок аминокислот открыт и доступен, как любой другой несвернутый пептид, он может быть расщеплен протеазами для получения Fab- и Fc-фрагментов, описанных ранее (см. рис. 4.2).

    Вариабельная область

    Биологические функции молекулы антитела проистекают из свойств константной области, которая идентична для антител любой специфичности внутри определенного класса. При этом часть молекулы, которая связывается с эпитопом, составляет вариабельную область. Основной проблемой для иммунологов было определение, каким образом вариабельная область может обеспечить такое большое разнообразие индивидуальных специфичностей, которое необходимо для соответствия огромному количеству антигенов.

    Когда была определена последовательность аминокислот у белков с высокой однородностью (например, миеломные белки и белки Бенс-Джонса), обнаружили, что наибольшая вариабельность последовательностей существует для 110 N-терминальных аминокислот как легкой, так и тяжелой цепей. Е.А.Кабат (E.A.Kabat) и Т.Т.Ву (T.T.Wu) сравнили последовательность аминокислот многих Vl- и Vн-областей. Они схематически представили вариабельность аминокислот в каждой позиции цепи и показали, что наибольшая степень вариабельности (определяемая соотношением числа различных аминокислот в данной позиции к частоте наиболее характерных аминокислот в данной позиции) наблюдается в трех областях легкой и трех областях тяжелой цепи.

    Эти участки называются гипервариабельными. Менее вариабельные участки, которые находятся между гипервариабельными участками, называются каркасными. Теперь известно, что гипервариабельные участки принимают участие в связывании антигена и формируют регион, комплементарный по структуре эпитопу антигена. Исходя из этого, гипервариабельные участки называются участками, определяющими комплементарность легких и тяжелых цепей: CDR1, CDR2 и CDR3 (рис. 4.4).


    Рис. 4.4. Вариабельность аминокислот, составляющих N-концевые остатки VHf в молекуле иммуноглобулина

    Гипервариабельные участки, хотя и разделены в линейной двухмерной модели пептидных цепей, в действительности приближены друг к другу в свернутой форме интактной молекулы антитела. Вместе они составляют антигенсвязывающий центр, комплементарный эпитопу (рис. 4.5).


    Рис. 4.5. Комплементарность между эпитопом и анти генсвязывающим центром, состоящим из гипервариабельных участков L- и Н-цепей. Пронумерованные буквы обозначают CDR тяжелой и легкой цепей, номера в кружках - номера аминокислотных остатков в CDR

    Вариабельность этих CDR обеспечивает различия в конфигурации антигенсвязывающего центра, которые необходимы для функционирования антител различной специфичности. Все известные силы, вовлеченные во взаимодействие антиген - антитело, являются слабыми нековалентными взаимодействиями (например, ионные, водородные, ван-дер-ваальсовы силы и гидрофобные взаимодействия). Поэтому необходимо, чтобы между антигеном и антителом был тесный контакт в достаточно большой области, чтобы обеспечить общую связывающую силу, адекватную для устойчивого взаимодействия. В соединении между эпитопом и антителом участвуют и тяжелая, и легкая цепи.

    Теперь должно быть ясно, что две молекулы антитела с разной антигенной специфичностью должны иметь и различную последовательность аминокислот в своих гипервариабельных участках, а те, которые обладают одинаковой последовательностью, обычно имеют и одинаковую специфичность. Однако существует возможность, что два антитела с разной последовательностью аминокислот обладают специфичностью к одному и тому же эпитопу. В этом случае аффинность связывания антител с эпитопом будет, вероятно, различной, поскольку будут существовать различия в числе и типах связывающих сил, доступных для связывания идентичных антигенов с разными связывающими участками двух антител.

    Дополнительный источник вариабельности может заключаться в размере антигенсвязывающего участка на антителе, который обычно (но не всегда) имеет форму углубления или щели. В некоторых случаях, особенно если вовлечены небольшие гидрофобные гаптены, эпитопы занимают не весь антигенсвязывающий участок. Однако при этом достигается достаточная аффинность связывания. Было показано, что антитела, специфичные для таких небольших гаптенов, могут в действительности реагировать с другими антигенами, не обладающими явным сходством с гаптеном (например, динитрофенол и эритроциты барана). Эти большие отличающиеся антигены связываются или с большим участком, или же с другим участком антигенсвязывающего центра на антителе (рис. 4.6).


    Рис. 4.6. Варианты того, как антитело (АТ1) определенной специфичности может проявлять способность к связыванию с двумя различными эпитопами (АГ1 и АГ2)

    Таким образом, способность определенного антигенсвязывающего центра связываться с двумя (или более) действительно различными эпитопами называют избыточностью. Способность одной молекулы антитела перекрестно реагировать с неопределенным числом эпитопов может уменьшить количество антител, необходимых для защиты индивида от широкого спектра агрессивных антигенов.

    Р.Койко, Д.Саншайн, Э.Бенджамини

    Одна из фракций белков крови (гамма-глобулинов), которая синтезируется лимфоцитами для специфической связи с чужеродными для организма молекулами (антигенами). Появление чужеродных антигенов индуцирует синтез антител и запуск механизма иммунной защиты. Физическая антропология

  • антитела - АНТИТЕЛА, иммуноглобулины разных классов, образующиеся в организме под воздействием антигена и обладающие специфич. сродством к нему. Ветеринарный энциклопедический словарь
  • антитела - Глуболярные белки, обладающие способностью специфически связываться с антигенами. См. иммуноглобулины, антиген-антитело реакция. Биологический энциклопедический словарь
  • антитела - Вещества, образующиеся в организме при введении в него путём впрыскивания различных чужеродных белков (антигенов) и нейтрализующие их вредное действие Большой словарь иностранных слов
  • антитела - Анти/тел/а́. Морфемно-орфографический словарь
  • антитела - орф. антитела, -ел, ед. -тело, -а Орфографический словарь Лопатина
  • антитела - -тел, мн. (ед. антитело, -а, ср.). биохим. Вещества, вырабатываемые организмом при введении в него чужеродных веществ и нейтрализующие их вредное действие. Малый академический словарь
  • антитела - Белки группы иммуноглобулинов, образующиеся в организме человека и теплокровных животных в ответ на попадание в него веществ (антигенов) и нейтрализующие их вредное действие. Основные формы проявления активности... Микробиология. Словарь терминов
  • АНТИТЕЛА - АНТИТЕЛА - глобулярные белки (иммуно-глобулины) плазмы крови человека и теплокровных животных, обладающие способностью специфически связываться с антигенами. Большой энциклопедический словарь
  • Антитела - Белки глобулиновой фракции сыворотки крови, образующиеся в ответ на введение в организм человека или теплокровных животных бактерий, вирусов, белковых токсинов и других антигенов (См. Антигены). Большая советская энциклопедия
  • антитела - Специфические белки (иммуноглобулины), образующиеся плазматическими клетками (потомками В-лимфоцитов) в организме человека и животных при попадании антигенов. Осуществляют специфический гуморальный иммунитет. Биология. Современная энциклопедия
  • антитела - АНТИТЕЛА -тел; мн. (ед. антитело, -а; ср.). Белки, вырабатываемые организмом человека или теплокровного животного при попадании в него чужеродных веществ и микроорганизмов (антигенов), нейтрализующие их вредное действие. Толковый словарь Кузнецова
  • антитела - антитела мн. Вещества, образующиеся в организме человека или животного при попадании в него антигенов - чужеродных белков, бактерий и т.п. - и способные нейтрализовать их вредное воздействие. Толковый словарь Ефремовой
  • антитела - АНТИТЕЛА, глобулярные белки, способные специфически связываться с антигенами. Образуются в организме ж-ного плазматич. клетками в ответ на проникновение антигенов (микроорганизмов и их токсинов, гельминтов и т. д.). Сельскохозяйственный словарь
  • антитела - АНТИТЕЛА, ел, ед. антитело, а, ср. (спец.). Сложные белки вещества, образующиеся в организме при введении в него чужеродных веществ и нейтрализующие их вредное действие. Толковый словарь Ожегова
  • По своей молекулярной структуре гамма-глобулинов различные классы антител в принципе подобны друг другу . Каждый мономер состоит из двух длинных (тяжелых) и двух коротких (легких) пептидных цепей, связанных рядом дисульфидных связей. Ферментативное расщепление молекул в различных участках дало возможность проанализировать характеристики различных участков молекул.

    Последовательность аминокислот в Fc-фрагмепте (кристаллизующийся фрагмент тяжелых цепей) характерна для данного класса антител . Структура легких цепей одинакова во всех классах антител и может принадлежать к одному из двух типов: u или X.

    Фрагмент Fc ответствен за биологические свойства молекулы, включая ее способность прилипать к поверхности клеток (цитофильное свойство) или способность взаимодействовать с комплементом. Компонент Fab (фрагмент, связывающий антитела) содержит терминальные последовательности аминокислот, допускающие специфическое взаимодействие с антигеном. Именно эта терминальная последовательность взаимодействует с гаптенами.

    IgG, IgE и IgD присутствуют в циркулирующей крови в виде мономеров (т. е. отдельных молекулярных единиц), IgM является полимером пяти основных молекул, связанных дисульфидными связями. IgA в сыворотке крови человека встречается главным образом в виде мономера, но в бронхиальных выделениях присутствует в виде димера, связанного в фрагменте Fc с секреторным участком и Т-цепями .

    Места образования антител

    IgG и IgM продуцируются в клетках зародышевых фолликулов и в плазматических клетках ретикулоэндотелиальной системы, особенно лимфатических узлов. Стимулированные узлы содержат большие зародышевые фолликулы в корковой части узла, активно образующей антитела наряду с плазматическими клетками, которые особенно скапливаются в мозговом слое.

    IgA образуются в лимфатических узлах , но продуцируются также плазматическими клетками, выстилающими кишечник и слизистую оболочку дыхательных путей, особенно вблизи бронхиальных желез. Предполагалось, что до 80% сывороточного IgA у некоторых видов животных происходит из кишечника . IgE продуцируются главным образом лимфоидной тканью в верхних отделах дыхательных путей, особенно в миндалинах .

    Образование антител . Co временем в зависимости от иолупериода жизни каждого иммуноглобулина уровень его в сыворотке падает до минимума в возрасте около 12-14 нед. Этим объясняется тяжелое течение многих инфекций у маленьких грудных детей, но не у новорожденных, которые более или менее защищены. Скорость созревания зависит от класса иммуноглобулинов. IgG достигает уровня, характерного для взрослых, к 3 годам, IgM - к 6 мес, IgE и IgA - только к 10-летнему возрасту .

    Антитела (иммуноглобулины) - белки плазмы крови, которые об­разуются в организме под влиянием антигенов. Основным свойством антител является специфичность, то есть способность соединяться с тем

    антигеном, который вызвал их образование. Специфичность антител обусловлена активными центрами, то есть участками молекулы иммуноглобулина, которые соединяются с детерминантными группами (эпитопами) антигена. Число активных центров называют валентностью антител.

    Химическая природа антител. Это гликопротеиды. Состоят из двух тяжелых полипептидных цепей - Н-цепей (англ, heavy - тяжелый) и двух легких цепей - L-цепей (англ, light - легкий). Цепи связаны дисульфидными мостиками. Как в легких, так и в тяжелых цепях имеется вариабельная V-обдасть с непостоянной последовательностью амино­кислот, и константная С-область. Аминокислоты в полипептидных це­пях направлены таким образом, что их NН2-концевые группы распо­ложены в вариабельной части, а СООН-концевые группы - в констант­ной.

    При обработке протеолитическим ферментом папаином молекула иммуноглобулина распадается на Fab-фрагменты (англ, fragment an­tigen binding - фрагмент, связывающий антиген) и Fc-фрагмент (англ. fragment cristalline - кристаллизующийся фрагмент). В состав Fab-фрагмента входит целиком легкая цепь и часть тяжелой цепи, концевые их части составляют активный центр. В состав Fc-фрагмента входят остатки двух тяжелых цепей.

    Активный центр молекулы иммуноглобулина по конфигурации со­ответствует конфигурации детерминантной группе антигена. Он очень мал, занимает лишь 2% поверхности антитела. Описанная мономерная молекула иммуноглобулина имеет два активных центра, то есть может связать две молекулы антигена.

    Будучи белками, антитела (иммуноглобулины) обладают анти­генной, видовой специфичностью. Детерминантная группа, определя­ющая специфичность, расположена в области Fc-фрагмента. Наличие антигенной специфичности иммуноглобулинов имеет практическое зна­чение, так как позволяет обнаружить их с помощью антиглобулиновых сывороток.

    Различают пять классов иммуноглобулинов, которые обозначаются IgG, IgM, IgA, IgD, IgE и отличаются между собой по физико-химичес­ким свойствам и биологическим функциям (рис. 17).

    Иммуноглобулины класса G (Ig G) являются мономерами, то есть состоят из двух легких и двух тяжелых цепей, молекулярная масса 160 кД, константа седиментации (скорость осаждения в центрифу­ге) 7S. Составляют основную массу сывороточных иммуноглобули­нов (70-80%). Единственные из всех классов проникают через пла­центу и играют важную роль в защите новорожденного от инфек­ции.

    Иммуноглобу­лины класса М (Ig М) первыми появ­ляются после введе­ния антигена. Мо­лекула IgM состоит из 5 субъединиц, то есть является пентамером. Молеку­лярная масса 300 кД, константа се­диментации 19S. Содержание в сыворотке крови 5-10%.

    Иммуноглобулины класса A (Ig А) синтезируются в селезенке, лимфоузлах и подслизистом слое дыхательных путей и кишечного тракта. По физико-химическим свойствам неодинаковы и могут иметь константы седиментации 7,9,11 и 18S. Часть IgA попадает в кровь - это сывороточные IgA. Большая же часть IgA - это секреторные SIgA, у которых два или три мономера соединены между собой сек­реторным фрагментом, защищающим иммуноглобулин от разруше­ния ферментами. Секреторные SIgA проникают на поверхность сли­зистых оболочек, содержатся в секретах и играют важную роль в защите организма от проникновения возбудителей, например, ви­русов гриппа, полиомиелита.

    Иммуноглобулины класса D (Ig D) - молекулярная масса 180 кД, константа седиментации 7S. Содержание в сыворотке крови около 0,2%. Роль IgD пока неизвестна

    Иммуноглобулины класса Е (Ig E) - молекулярная масса 200 кД, кон­станта седиментации 8S, содержатся в нормальной сыворотке крови в небольших количествах (0,002%). Их называют также реагинами, по­скольку они способны присоединяться к клеткам (цитофильны) и при­нимают участие в реакции анафилаксии

    Форма и размеры иммуноглобулинов G и Мбыли изучены в элект­ронном микроскопе. IgG имеют форму вытянутых эллипсов с тупыми концами, a IgM - форму паучка с пятью ножками.

    67. Местный иммунитет: определение понятия, основные механизмы; особенности структуры секреторных иммуноглобулинов, месте их образования и функции.

    Местный иммунитет - это особый вид защиты против внедрения в организм возбудителей инфекций, главным образом кишечных и воз­душно-капельных. Большую роль здесь играют неспецифические фак­торы и антитела, так называемые секреторные иммуноглобулины клас­са A (SIgA). Иммуноглобулины IgA - белки, представляющие класс антител А, обеспечивающих местный иммунитет. Иммуноглобулины класса A (Ig А) синтезируются в селезенке, лимфоузлах и подслизистом слое дыхательных путей и кишечного тракта. По физико-химическим свойствам неодинаковы и могут иметь константы седиментации 7,9,11 и 18S. Часть IgA попадает в кровь - это сывороточные IgA. Большая же часть IgA - это секреторные SIgA, у которых два или три мономера соединены между собой сек­реторным фрагментом, защищающим иммуноглобулин от разруше­ния ферментами. Секреторные S IgA проникают на поверхность сли­зистых оболочек, содержатся в секретах и играют важную роль в защите организма от проникновения возбудителей, например, ви­русов гриппа, полиомиелита.

    Инфекционная иммунология, определение понятия. Особенности антибактериального, противовирусного иммунитета. Роль системы главного комплекса гистосовместимости (HLA) в формировании инфекционного иммунитета.

    Впервые Эдуард Дженнер провел вакцинацию против оспы путем заражения человека оспой коров. Пастер создал вакцины против бе­шенства и сибирской язвы и научно обосновал принципы получения живых вакцин. Мечников построил фагоцитарную теорию иммуните­та. Бухнер обнаружил бактерицидные свойства сыворотки крови. Эрлихом была предложена гуморальная теория иммунитета. Беринг и Ру создали лечебные антитоксические сыворотки против дифтерии и столбняка. Это направление иммунологии ("инфекционная иммуно­логия") развивалась в дальнейшем и продолжает развиваться. Достиг­нуты значительные успехи в профилактике, лечении и диагностике инфекционных заболеваний.

    HLA-система представляет собой комплекс генов, выполняющих различные биологические функции, и в первую очередь обеспечивающих генетический контроль иммунного ответа и взаимодействие между собой клеток, которые реализуют этот ответ.

    Антибактериальный иммунитет , который может быть стерильным и нестерильным. При стерильном иммунитете микроорганизмы из организма удаляются, а иммунитет сохраняется. При нестерильном иммунитете для поддержания иммунитета необходимо присутствие в организме небольшого количества микроорганизмов (иммунитет к туберкулезу);

    Противовирусный иммунитет обеспечивает нейтрализа­цию вирионов или подавление их образования.

    Неспецифическая противовирусная резистентность обусловлена

    такими механизмами, как:

    Фагоцитоз в отношении вирусов имеет меньшее значение, чем в отношении бактерий и часто бывает незавершенным.

    Специфические противовирусные антитела могут нейтрализо­вать внеклеточные формы - вирионы, препятствуя их проникнове­нию в клетки организма. Против внутриклеточных форм вирусов антитела неэффективны. Существенную роль играют секреторные SIgA, создающие местный иммунитет в воротах инфекции, напри­мер, при гриппе. Сывороточные антитела, циркулирующие в кровя­ном русле, играют защитную роль при вирусемии.

    Роль системы главного комплекса гистосовместимости (HLA) в формировании инфекционного иммунитета:

    В плазматических мембранах клеток разных тканей содер­жатся антигены главного комплекса гистосовместимости, которые играют важнейшую роль в иммунном ответе, иммунорегуляции, реакции отторжения трансплантата и других процессах. Их часто бозначают НLА (англ. Human leucocyte antigenes) в связи тем, что для клинических и экспериментальных целей в качестве антигенов главного комплекса гистосовместимости определяют лейкоцитарные антигены.

    По своей химической природе эти антигены относятся к гликопротеинам клеточных мембран. По химической структуре и функциональному назначению НLА подразделяют на два класса. НLА класса I состоят из двух полипептидных цепей с разной молекулярной массой: тяжелая α-цепь (молекулярная масса 44 000) нековалентно связана с легкой β-цепъю (молекулярная масса 11600). Данные антигены содержатся в мембране почти всех ядросодержащих клеток. Они играют роль трансплантационных анти­генов, варьирующих от человека к человеку и обеспечивающих реакцию отторжения трансплантата. Основная биологическая роль их состоит в том, что НLА-антигены класса I являются маркерами «своего», не подлежащего «атаке» Т-киллеров. При заражении клеток вирусами НLА-антигены класса I в комплексе с вирусными антигенами становятся своеобраз­ными ориентирами для избирательного уничтожения заражен­ных клеток Т-киллерами.

    НLА-антигены, принадлежащие к классу II, состоят из двух микроглобулиновых цепей примерно одной и той же молекуляр­ной массы (34 000 и 28000 соответственно), прикрепленных к поверхностной мембране макрофагов, Т- и В-лимфоцитов. Эти антигены участвуют в иммунорегуляции, служат для распозна­вания антигенных эпитопов Т-хелперами на мембране макрофагов и других клеток.

    Генетический контроль НЬА осуществляется генами, располо­женными на хромосоме 6 в трех сублокусах: НЬА-А, НЬА-В, НЬА-С.

    Один человек не может иметь более 2 разных трансплантационных антигенов в одном сублокусе, т. е. не более 6 антигенов в трех сублокусах. НLА-сублокус находится в I-области хромо­сомы и содержит Ir-гены (англ. immune-иммунный ответ), контролирующие образование 1а- или НLА-DR-антигенов, принадлежащих к классу П.

    69. Противовирусный иммунитет: неспецифические факторы защиты, роль фагоцитоза и антител. Интерферон: условия образования, виды, механизмы противовирусного действия; индукторы интерферона, практическое применение.

    Неспецифическая противовирусная резистентность обусловлена такими механизмами, как:

    1) отсутствие в организме чувствительных клеток к данному вирусу;

    2) наличие неспецифических вирусных ингибиторов;

    3) повышенная температура тела;

    4) интерферон - один из основных противовирусных факторов за­щиты.

    Фагоцитоз в отношении вирусов имеет меньшее значение, чем в отношении бактерий и часто бывает незавершенным.

    Специфические противовирусные антитела могут нейтрализо­вать внеклеточные формы - вирионы, препятствуя их проникнове­нию в клетки организма. Против внутриклеточных форм вирусов антитела неэффективны. Существенную роль играют секреторные SIgA, создающие местный иммунитет в воротах инфекции, напри­мер, при гриппе. Сывороточные антитела, циркулирующие в кровя­ном русле, играют защитную роль при вирусемии.

    В противовирусном иммунитете действует особый механизм. Клет­ки, зараженные вирусом, имеют на своей поверхности антигенные де­терминанты. Поэтому они становятся мишенями для цитотоксических лимфоцитов - Т-киллеров. При этом зараженные клетки погибают вме­сте с вирусом. Например, при вирусном гепатите В происходит гибель гепатоцитов, зараженных вирусом.

    Противовирусный природный антибиотик животного происхожде­ния - интерферон . Это низкомолекулярный белок, образуется в клет­ках организма или в культуре клеток под действием индукторов инерферона и является одним из факторов неспецифнческой противо­вирусной защиты. Индукторами могут быть не только вирусы, но и бактерии, ЛПС бактерий, некоторые лекарственные средства. В нача­ле изучения интерферона было открыто его противовирусное действие , в дальнейшем было обнаружено несколько типов интерферонов и мно­гообразное их действие: противовирусное, противоопухолевое, иммуномодулирующее, радиопротекторное. Интерферон неспецифичен в от­ношении вида вируса, но обладает видовой специфичностью. Поэто­му для лечения человека эффективен интерферон, выделяемый культурой человеческих клеток. Интерферон не оказывает непосредственно­го действия на вирус, но подавляет синтез вирусных белков в клетке и таким образом препятствует образованию вирионов. Известно несколь­ко типов интерферона, из которых в качестве противовирусного сред­ства применяется лейкоцитарный а-интерферон.

    С помощью методов генетической инженерии получен рекомбинантный интерферон - реаферон.

    70. Механизмы соединения антитела с антигеном и реакции иммунитета. Виды антител. Моноклональные антитела: принципиальная схема получения, преимущество и практическое применение.

    Динамика образования антител . Синтез антител протекает в две фазы. Первая - индуктивная, которая длится 3-5 суток от момен­та введения антигена до появления антител в крови. Вторая - продук­тивная, когда антитела появляются в крови, количество их нарастает к 15-30 суткам и затем снижается. Иммунный ответ после первого вве­дения антигена называют первичным. Особенностью его является то, что первоначально синтезируются IgM, затем IgG.

    Вторичный иммунный ответ развивается при повторном введе­нии того же антигена и отличается от первичного следующими особенностями, индуктивная фаза короче (1-2 суток), уровень анти­тел нарастает быстрее, достигает более высоких значений и сохраняется дольше, медленно снижаясь в течение нескольких лет При вторичном иммунном ответе с самого начала образуются IgG. Более быстрая и сильная выработка антител при вторичном иммун­ном ответе объясняется тем, что после первичного введения в орга­низме остаются "клетки памяти", которые при вторичном введении того же антигена быстро размножаются и интенсивно включают про­цесс образования антител.

    В практической медицине учитываются особенности динамики антителообразования:

    1) при составлении рациональных графиков вакцинации с опреде­ленными интервалами;

    2) при экстренной профилактике столбняка людям, получившим травму, если они были ранее привиты столбнячным анатоксином, вво­дят не антитоксическую сыворотку, которая может дать нежелатель­ные аллергические реакции, а анатоксин, - в расчете на быстрый и сильный иммунный ответ;

    3) при серологической диагностике дифференцируют первичное заболевание сыпным тифом от рецидива (болезни Брилля) по наличию в крови больного IgM.

    Виды антител . Принято различать полные и неполные антитела. Полные антитела имеют не менее двух активных центров, поэтому при постановке реакции агглютинации, преципитации и других реакций иммунитета они обусловливают видимый эффект. Неполные антитела способны соединяться с антигеном, но видимой реакции агглютина­ции или преципитации не наблюдается. Причина в том, что неполные антитела имеют только один активный центр, способный соединяться с антигеном (второй блокирован). Неполными являются антитела к резус-антигену эритроцитов. При многих инфекциях они появляются

    наряду с полными антителами. Для выявления неполных антител ис­пользуют реакцию Кумбса.

    По характеру действия антитела разделяют на антимикробные, антитоксические, вируснейтрализующие, гемолизины, аутоантитела и др. Антимикробные антитела вызывают агглютинацию бактерий или преципитацию антигенов, извлеченных из них, лизис бактерий при уча­стии комплемента, усиление фагоцитоза - опсонизацию; антитоксины нейтрализуют токсины; вируснейтрализующие антитела оказывают противовирусное действие. Аутоантитела вырабатываются орга­низмом против собственных белков и клеток при изменении их хими­ческой структуры или при освобождении антигенов из разрушивших­ся органов и тканей, или при утрате естественной нммунологической толерантности к каким-то собственным антигенам.

    Моноклональные антитела . При введении антигена в иммунный от­вет вовлекается множество лимфоцитов. Они могут различаться между собой по специфичности, различия эти могут быть совсем незначитель­ными. Однако при иммунизации даже таким антигеном, который со­держит одну детерминантную группу, образуются антитела, различа­ющиеся по своей специфичности.

    Для получения антител одной специфичности необходимо полу­чить потомство-клон (греч. klon - отпрыск, ветвь) из одного лимфоцита. Но культуру лимфоцитов в искусственной питательной среде получить трудно (вследствие ограниченного числа делений и времени жизни клетки). Только опухолевые клетки могут культивироваться in vitro без ограничения при условии поступления питательных веществ.

    Задачу получения культуры клеток, полученных из одного лимфоцита и способных длительно размножаться в питательной сре­де, решили Г.Келер и К. Мильштейн (1975 г., Нобелевская премия, 1984 г.). Авторы разработали методику получения гибридом (гиб­ридных клеток) от слияния лимфоцитов иммунизированных живот­ных с миеломными (опухолевыми) клетками. Слияние осуществляет­ся с помощью полиэтиленгликоля или электрического разряда. По­лученные гибридомы наследуют от лимфоцита способность синте­зировать специфическое антитело, а от миеломной клетки спо­собность бесконечно размножаться в питательной среде in vitro. Син­тезируемые гибридомами антитела могут быть получены в неогра­ниченном количестве. Антитела идентичны и по специфичности, и по классу иммуноглобулинов. Таким образом, полученный in vitro препарат может служить идеальным по специфичности средством для диагностики и лечения (рис. 19).

    Основные группы серологических реакций. Характеристика реакций для прямого определения антител и антигенов, реакции пассивной агглютинации, методов с применением меченых антител и антигенов.

    Реакция непрямой или пассивной гемагглютинации (РНГА или РПГА) более чувствительна и специфична, чем реакция агглютинации. Эту реакцию также используют в двух направлениях.

    1) Для обнаружения антител в сыворотке крови больного приме­няются эритроцитарные диагностикумы, в которых антиген адсорби­рован на поверхности обработанных танином эритроцитов. В отноше­нии этой реакции чаще употребляют термин РПГА.

    Исследуемую сыворотку разводят в лунках пластмассовых план­шетов и добавляют эритроцитарный диагностикум. При положитель­ной реакции появляется тонкая пленка по стенкам лунки в виде "кру­жевного зонтика», при отрицательной реакции - плотный осадок эрит­роцитов в виде "пуговки".

    2) Для обнаружения токсинов и бактериальных антигенов в исс­ледуемом материале применяют антительные эритроцитарные диагнос­тикумы, полученные путем адсорбции антител на эритроцитах. В от­ношении этой реакции чаще употребляется термин РНГА. Например, с помощью антительных диагностикумов обнаруживают антиген па­лочки чумы, дифтерийный экзотоксин, ботулинический экзотоксин.

    Реакции с участием меченых антигенов или антител основаны на использовании меченых иммунореагентов. Помечены могут быть антигены, антитела или антиглобулиновая сы­воротка. В качестве метки используют флюоресцентные красители (РИФ), ферменты (ИФА), радиоизотопы (РИА), электронноплотные со­единения (ИЭМ).

    Реакция иммунофлюоресценции (РИФ), реакция Кунса. Это метод экспресс-диагностики. Для постановки РИФ применяются иммунные сыворотки, меченные флюорохромными красителями, например, изоти-оцианатом флюоресцеина. Флюорохромы вступают в химическую связь с сывороточными белками, не нарушая их специфичности.

    Прямой метод РИФ. Из исследуемого материала, в котором предполагается наличие антигена (например, холерного вибриона), гото­вят препарат-мазок и обрабатывают его флюоресцирующей сыворот­кой, содержащей антитела к данному антигену (в нашем случае - про­тивохолерной сывороткой). При микроскопии в люминесцентном мик­роскопе наблюдают светящиеся микробы.

    Недостатком прямого метода РИФ является необходимость иметь боль­шой набор флюоресцирующих сывороток против каждого антигена.

    Непрямой метод РИФ. Препарат-мазок обрабатывают иммунной кроличьей антисывороткой к антигену (противохолерной кроличьей сывороткой), а затем - флюоресцирующей антиглобулиновой сыворот­кой, содержащей антитела против глобулинов кролика. Затем наблю­дают в люминесцентном микроскопе светящиеся микробы.

    При использовании этого метода можно иметь одну флюоресци­рующую сыворотку против глобулинов кролика.

    Иммуноферментный анализ (ИФА). Как и другие реакции иммуни­тета, ИФА используется 1) для определения неизвестного антигена с помощью известных антител или 2) для выявления антител в сыворот­ке крови больного с помощью известного антигена. Особенность реак­ции в том, что известный ингредиент реакции соединен с ферментом, и его присутствие определяется с помощью субстрата, который при дей­ствии фермента окрашивается.

    Наиболее широко применяется твердофазный ИФА.

    1) Обнаружение ан­тигена (рис. 20). Первый этап - адсорбция специ­фических антител на твердой фазе, в качестве которой используют по­листироловые или поливинилхлоридные поверхности лунок пла­стиковых панелей.

    Второй этап - добав­ление исследуемого ма­териала, в котором пред­полагается наличие ан­тигена. Антиген связы­вается с антителами. После этого луночки промывают.

    Третий этап - добав­ление специфической сы­воротки, содержащей антитела против данно­го антигена, меченые ферментом. В качестве

    фермента используют пероксидазу или щелочную фосфатазу. Мече­ные антитела присоединяются к антигенам, а их избыток удаляется промыванием. Таким образом, в случае присутствия в исследуемом ма­териале антигена на поверхности твердой фазы образуется комплекс антитело-антнген-антитела, меченные ферментом. Для обнаружения фермента добавляют субстрат. Для пероксидазы субстратом служит ортофенилдиамин в смеси с Н2О2 в буферном растворе. При действии фермента образуются продукты, имеющие коричневую окраску, ин­тенсивность которой позволяет количественно определить результаты опыта фотометрированием.

    2) Обнаружение антител. Первый этап - адсорбция специ­фических антигенов на стенках лунки. Обычно в коммерческих систе­мах антигены уже адсорбированы на поверхности твердой фазы - в лунках или на пластиковых шариках.

    Второй этап - добавление исследуемой сыворотки. При наличии антител образуется комплекс антиген-антитела.

    Третий этап - после отмывания лунок добавляют антиглобулиновые антитела (антитела против глобулинов человека), меченные ферментом.

    Результаты реакции учитывают, как указано выше.

    В качестве контролей используют образцы заведомо положи­тельные и заведомо отрицательные.

    Разрабатываются "безреагентные" системы для ИФА, в которых все компоненты реакции со­единены с поверхностью полимера. Для проведе­ния анализа необходимо внести исследуемый мате­риал и наблюдать измене­ние окраски.

    ИФА применяется при многих инфекционных заболеваниях, в час­тности, при ВИЧ-инфекции, при вирусных гепати­тах.

    Иммуноблоттинг - это вариант ИФА, сочетание электрофореза и ИФА.

    Реакция нейтрализации токсина антитоксином; механизмы и ингредиенты (получение токсина и антитоксической сыворотки, единицы измерения). Применение для определения уровня антитоксического иммунитета (название реакции, постановка), применение с диагностической целью (на примере диагностики ботулизма или столбняка).

    В этой реакции антигеном является экзотоксин, антителами - анти­токсины. При их взаимодействии происходит нейтрализация токсина. Реакцию ставят в пробирках для определения силы антитоксической сыворотки. Внешнее проявление реакции - флоккуляция (помутнение). Для обнаружения токсина с диагностической целью при ботулизме, столбняке, газовой анаэробной инфекции ставят реакцию нейтрали­зации токсина антитоксином в биологическом опыте на животных.

    Реакции нейтрализации (РН) основаны на способности AT связывать различные возбудители и их метаболиты, лишая тем самым их возможности реализовать свои биологические свойства (ины­ми словами, AT нейтрализуют возбудителей). На практике РН применяют для выявления вирусов и различных токсинов. В определённой степени к ним же относят реакции торможения вирусиндуцированной гемагглютинации и иммобилизации.

    РН вирусов . В сыворотке крови переболевших лиц циркулируют AT, нейтрализующие вирусы. Их наличие выявляют смешиванием культуры возбудителя с сывороткой с последующим введением лабораторному животному или заражением культуры клеток. На эффективность нейтрализации указывает выживание животного либо отсутствие гибели клеток в культурах.

    РН токсинов применяется для идентификации бактериальных экзотоксинов по видовой и типовой их принадлежности, а также для определения содержания антитоксинов в исследуемой сыворотке. Принцип основан на способности антитоксинов связывать токсин и блокировать его действие. Для идентификации токсина и определения титра антитоксических АТ их смесь вводят лабораторным животным. При соответствии типа токсина и антисывороткии гибели животных не наблюдают. Нейтрализацию токсинов in vitro определяют в реакции флоккуляции. Для определения антитоксического иммунитета у человека часто применяют кожные пробы (например, пробу Шика).

error: Content is protected !!