Угол между плоскостями заданными точками. Как найти угол между двумя плоскостями

Величину угла между двумя различными плоскостями можно определить для любого взаимного расположения плоскостей.

Тривиальный случай если плоскости параллельны. Тогда угол между ними считается равным нулю.

Нетривиальный случай если плоскости пересекаются. Этому случаю и посвящено дальнейшее обсуждение. Сначала нам понадобится понятие двугранного угла.

9.1 Двугранный угол

Двугранный угол это две полуплоскости с общей прямой (которая называется ребром двугранного угла). На рис. 50 изображён двугранный угол, образованный полуплоскостями и; ребром этого двугранного угла служит прямая a, общая для данных полуплоскостей.

Рис. 50. Двугранный угол

Двугранный угол можно измерять в градусах или радианах словом, ввести угловую величину двугранного угла. Делается это следующим образом.

На ребре двугранного угла, образованного полуплоскостями и, возьмём произвольную точку M. Проведём лучи MA и MB, лежащие соответственно в данных полуплоскостях и перпендикулярные ребру (рис. 51 ).

Рис. 51. Линейный угол двугранного угла

Полученный угол AMB это линейный угол двугранного угла. Угол " = \AMB как раз и является угловой величиной нашего двугранного угла.

Определение. Угловая величина двугранного угла это величина линейного угла данного двугранного угла.

Все линейные углы двугранного угла равны друг другу (ведь они получаются друг из друга параллельным сдвигом). Поэтому данное определение корректно: величина " не зависит от конкретного выбора точки M на ребре двугранного угла.

9.2 Определение угла между плоскостями

При пересечении двух плоскостей получаются четыре двугранных угла. Если все они имеют одинаковую величину (по 90), то плоскости называются перпендикулярными; угол между плоскостями тогда равен 90 .

Если не все двугранные углы одинаковы (то есть имеются два острых и два тупых), то углом между плоскостями называется величина острого двугранного угла (рис. 52 ).

Рис. 52. Угол между плоскостями

9.3 Примеры решения задач

Разберём три задачи. Первая простая, вторая и третья примерно на уровне C2 на ЕГЭ по математике.

Задача 1. Найдите угол между двумя гранями правильного тетраэдра.

Решение. Пусть ABCD правильный тетраэдр. Проведём медианы AM и DM соответствующих граней, а также высоту тетраэдра DH (рис. 53 ).

Рис. 53. К задаче 1

Будучи медианами, AM и DM являются также высотами равносторонних треугольников ABC и DBC. Поэтому угол " = \AMD есть линейный угол двугранного угла, образованного гранями ABC и DBC. Находим его из треугольника DHM:

1 AM

Ответ: arccos 1 3 .

Задача 2. В правильной четырёхугольной пирамиде SABCD (с вершиной S) боковое ребро равно стороне основания. Точка K середина ребра SA. Найдите угол между плоскостями

Решение. Прямая BC параллельна AD и тем самым параллельна плоскости ADS. Поэтому плоскость KBC пересекает плоскость ADS по прямой KL, параллельной BC (рис. 54 ).

Рис. 54. К задаче 2

При этом KL будет также параллельна прямой AD; следовательно, KL средняя линия треугольника ADS, и точка L середина DS.

Проведём высоту пирамиды SO. Пусть N середина DO. Тогда LN средняя линия треугольника DOS, и потому LN k SO. Значит, LN перпендикуляр к плоскости ABC.

Из точки N опустим перпендикуляр NM на прямую BC. Прямая NM будет проекцией наклонной LM на плоскость ABC. Из теоремы о трёх перпендикулярах следует тогда, что LM также перпендикулярна BC.

Таким образом, угол " = \LMN является линейным углом двугранного угла, образованного полуплоскостями KBC и ABC. Будем искать этот угол из прямоугольного треугольника LMN.

Пусть ребро пирамиды равно a. Сначала находим высоту пирамиды:

SO = p

Решение. Пусть L точка пересечения прямых A1 K и AB. Тогда плоскость A1 KC пересекает плоскость ABC по прямой CL (рис.55 ).

A C

Рис. 55. К задаче 3

Треугольники A1 B1 K и KBL равны по катету и острому углу. Следовательно, равны и другие катеты: A1 B1 = BL.

Рассмотрим треугольник ACL. В нём BA = BC = BL. Угол CBL равен 120 ; стало быть, \BCL = 30 . Кроме того, \BCA = 60 . Поэтому \ACL = \BCA + \BCL = 90 .

Итак, LC ? AC. Но прямая AC служит проекцией прямой A1 C на плоскость ABC. По теореме о трёх перпендикулярах заключаем тогда, что LC ? A1 C.

Таким образом, угол A1 CA линейный угол двугранного угла, образованного полуплоскостями A1 KC и ABC. Это и есть искомый угол. Из равнобедренного прямоугольного треугольника A1 AC мы видим, что он равен 45 .

Тип задания: 14
Тема: Угол между плоскостями

Условие

Дана правильная призма ABCDA_1B_1C_1D_1, M и N — середины ребер AB и BC соответственно, точка K — середина MN .

а) Докажите, что прямые KD_1 и MN перпендикулярны.

б) Найдите угол между плоскостями MND_1 и ABC , если AB=8, AA_1=6\sqrt 2.

Показать решение

Решение

а) В \triangle DCN и \triangle MAD имеем: \angle C=\angle A=90^{\circ}, CN=AM=\frac12AB, CD=DA.

Отсюда \triangle DCN=\triangle MAD по двум катетам. Тогда MD=DN, \triangle DMN равнобедренный. Значит, медиана DK — является также высотой. Следовательно, DK \perp MN.

DD_1 \perp MND по условию, D_1K — наклонная, KD — проекция, DK \perp MN.

Отсюда по теореме о трех перпендикулярах MN\perp D_1K.

б) Как было доказано в а) , DK \perp MN и MN \perp D_1K, но MN — линия пересечения плоскостей MND_1 и ABC , значит \angle DKD_1 — линейный угол двугранного угла между плоскостями MND_1 и ABC .

В \triangle DAM по теореме Пифагора DM= \sqrt {DA^2+AM^2}= \sqrt {64+16}= 4\sqrt 5, MN= \sqrt {MB^2+BN^2}= \sqrt {16+16}= 4\sqrt 2. Следовательно, в \triangle DKM по теореме Пифагора DK= \sqrt {DM^2-KM^2}= \sqrt {80-8}= 6\sqrt 2. Тогда в \triangle DKD_1, tg\angle DKD_1=\frac{DD_1}{DK}=\frac{6\sqrt 2}{6\sqrt 2}=1.

Значит, \angle DKD_1=45^{\circ}.

Ответ

45^{\circ}.

Тип задания: 14
Тема: Угол между плоскостями

Условие

В правильной четырёхугольной призме ABCDA_1B_1C_1D_1 стороны основания равны 4 , боковые рёбра равны 6 . Точка M — середина ребра CC_1, на ребре BB_1 отмечена точка N , такая, что BN:NB_1=1:2.

а) В каком отношении плоскость AMN делит ребро DD_1?

б) Найдите угол между плоскостями ABC и AMN .

Показать решение

Решение

а) Плоскость AMN пересекает ребро DD_1 в точке K , являющейся четвёртой вершиной сечения данной призмы этой плоскостью. Сечением является параллелограмм ANMK , потому что противоположные грани данной призмы параллельны.

BN =\frac13BB_1=2. Проведём KL \parallel CD, тогда треугольники ABN и KLM равны, значит ML=BN=2, LC=MC-ML=3-2=1, KD=LC=1. Тогда KD_1=6-1=5. Теперь можно найти отношение KD:KD_1=1:5.

б) F — точка пересечения прямых CD и KM . Плоскости ABC и AMN пересекаются по прямой AF . Угол \angle KHD =\alpha — линейный угол двугранного угла (HD\perp AF, тогда по теореме, обратной теореме о трех перпендикулярах, KH \perp AF ) , и является острым углом прямоугольного треугольника KHD , катет KD=1.

Треугольники FKD и FMC подобны (KD \parallel MC), поэтому FD:FC=KD:MC, решая пропорцию FD:(FD+4)=1:3, получим FD=2. В прямоугольном треугольнике AFD (\angle D=90^{\circ}) с катетами 2 и 4 вычислим гипотенузу AF=\sqrt {4^2+2^2}=2\sqrt 5, DH= AD\cdot FD:AF= \frac{4\cdot 2}{2\sqrt 5}= \frac4{\sqrt 5}.

В прямоугольном треугольнике KHD найдём tg \alpha =\frac{KD}{DH}=\frac{\sqrt 5}4, значит, искомый угол \alpha =arctg\frac{\sqrt 5}4.

Ответ

а) 1:5;

б) arctg\frac{\sqrt 5}4.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 14
Тема: Угол между плоскостями

Условие

Дана правильная четырёхугольная пирамида KMNPQ со стороной основания MNPQ , равной 6 , и боковым ребром 3\sqrt {26}.

а) Постройте сечение пирамиды плоскостью, проходящей через прямую NF параллельно диагонали MP , если точка F — середина ребра MK .

б) Найдите величину угла между плоскостью сечения и плоскостью KMP .

Показать решение

Решение

а) Пусть KO — высота пирамиды, F — середина MK ; FE \parallel MP (в плоскости PKM ) . Так как FE — средняя линия \triangle PKM, то FE=\frac{MP}2.

Построим сечение пирамиды плоскостью, проходящей через NF и параллельной MP , то есть плоскостью NFE . L — точка пересечения EF и KO . Так как точки L и N принадлежат искомому сечению и лежат в плоскости KQN , то точка T , полученная как пересечение LN и KQ , является также точкой пересечения искомого сечения и ребра KQ . NETF — искомое сечение.

б) Плоскости NFE и MPK пересекаются по прямой FE . Значит, угол между этими плоскостями равен линейному углу двугранного угла OFEN , построим его: LO \perp MP, MP \parallel FE, следовательно, LO \perp FE; \triangle NFE — равнобедренный (NE=NF как соответствующие медианы равных треугольников KPN и KMN ) , NL — его медиана (EL=LF, так как PO=OM, а \triangle KEF \sim \triangle KPM ) . Отсюда NL \perp FE и \angle NLO — искомый.

ON=\frac12QN=\frac12MN\sqrt 2=3\sqrt 2.

\triangle KON — прямоугольный.

Катет KO по теореме Пифагора равен KO=\sqrt {KN^2-ON^2}.

OL= \frac12KO= \frac12\sqrt{KN^2-ON^2}= \frac12\sqrt {9\cdot 26-9\cdot 2}= \frac12\sqrt{9(26-2)}= \frac32\sqrt {24}= \frac32\cdot 2\sqrt 6= 3\sqrt 6.

tg\angle NLO =\frac{ON}{OL}=\frac{3\sqrt 2}{3\sqrt 6}=\frac1{\sqrt 3},

\angle NLO=30^{\circ}.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 14
Тема: Угол между плоскостями

Условие

Все рёбра правильной треугольной призмы ABCA_{1}B_{1}C_{1} равны 6 . Через середины рёбер AC и BB_{1} и вершину A_{1} проведена секущая плоскость.

а) Докажите, что ребро BC делится секущей плоскостью в отношении 2:1, считая от вершины C .

б) Найдите угол между плоскостью сечения и плоскостью основания.

Показать решение

Решение

а) Пусть D и E — середины ребер AC и BB_{1} соответственно.

В плоскости AA_{1}C_{1} проведем прямую A_{1}D, которая пересекает прямую CC_{1} в точке K , в плоскости BB_{1}C_{1} — прямую KE , которая пересекает ребро BC в точке F . Соединие точки A_{1} и E , лежащие в плоскости AA_{1}B_{1}, а также D и F , лежащие в плоскости ABC , получим сечение A_{1}EFD.

\bigtriangleup AA_{1}D=\bigtriangleup CDK по катету AD=DC и острому углу.

\angle ADA_{1}=\angle CDK — как вертиальные, отсюда следует, что AA_{1}=CK=6. \bigtriangleup CKF и \bigtriangleup BFE подобны по двум углам \angle FBE=\angle KCF=90^\circ, \angle BFE=\angle CFK — как вертикальные.

\frac{CK}{BE}=\frac{6}{3}=2, то есть коэффициент подобия равен 2 , откуда следует, что CF:FB=2:1.

б) Проведём AH \perp DF. Угол между плоскостью сечения и плоскостью основания равен углу AHA_{1}. Действительно, отрезок AH \perp DF (DF — линия пересечения этих плоскостей) и является проекцией отрезка A_{1}H на плоскость основания, следовательно, по теореме о трёх перпендикулярах, A_{1}H \perp DF. \angle AHA_{1}=arctg\frac{AA_{1}}{AH}. AA_{1}=6.

Найдём AH . \angle ADH =\angle FDC (как вертикальные).

По теореме косинусов в \bigtriangleup DFC:

DF^2=FC^2+DC^2- 2FC \cdot DC \cdot \cos 60^\circ,

DF^2=4^2+3^2-2 \cdot 4 \cdot 3 \cdot \frac{1}{2}=13.

FC^2=DF^2+DC^2- 2DF \cdot DC \cdot \cos \angle FDC,

4^2=13+9-2\sqrt{13} \cdot 3 \cdot \cos \angle FDC,

\cos \angle FDC=\frac{6}{2\sqrt{13} \cdot 3}=\frac{1}{\sqrt{13}}.

По следствию из основного тригонометрического тождества

\sin \angle FDC=\sqrt{1-\left (\frac{1}{\sqrt{13}}\right)^2}=\frac{2\sqrt{3}}{\sqrt{13}}. Из \bigtriangleup ADH найдём AH :

AH=AD \cdot \sin \angle ADH, (\angle FDC=\angle ADH). AH=3 \cdot \frac{2\sqrt{3}}{\sqrt{13}}=\frac{6\sqrt{13}}{\sqrt{13}}.

\angle AHA_{1}= arctg\frac{AA_{1}}{AH}= arctg\frac{6 \cdot \sqrt{13}}{6\sqrt{3}}= arctg\frac{\sqrt{39}}{3}.

Ответ

arctg\frac{\sqrt{39}}{3}.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 14
Тема: Угол между плоскостями

Условие

Основанием прямой призмы ABCDA_{1}B_{1}C_{1}D_{1} является ромб с тупым углом B , равным 120^\circ. Все ребра этой призмы равны 10 . Точки P и K — середины ребер CC_{1} и CD соответственно.

а) Докажите, что прямые PK и PB_{1} перпендикулярны.

б) Найдите угол между плоскостями PKB_{1} и C_{1}B_{1}B.

Показать решение

Решение

а) Будем использовать метод координат. Найдём скалярное произведение векторов \vec{PK} и \vec{PB_{1}}, а затем косинус угла между этими векторами. Направим ось Oy вдоль CD , ось Oz вдоль CC_{1}, и ось Ox \perp CD . C — начало координат.

Тогда C (0;0;0); C_{1}(0;0;10); P(0;0;5); K(0;5;0); B(BC \cos 30^\circ; BC\sin 30^\circ; 0), то есть B(5\sqrt{3}; 5;0), B_{1}(5\sqrt{3}; 5;10).

Найдём координаты векторов: \vec{PK}=\{0;5;-5\}; \vec{PB_{1}}=\{5\sqrt{3}; 5;5\}.

Пусть угол между \vec{PK} и \vec{PB_{1}} равен \alpha.

Получаем \cos \alpha=\frac{\vec{PK} \cdot \vec{PB_{1}}}{|\vec{PK}| \cdot |\vec{PB_{1}}|}= \frac{0 \cdot 5\sqrt{3} + 5 \cdot 5-5 \cdot 5}{|\vec{PK}| \cdot |\vec{PB_{1}}|}=0.

\cos \alpha =0, значит, \vec{PK} \perp \vec{PB_{1}} и прямые PK и PB_{1} перпендикулярны.

б) Угол между плоскостями равен углу между ненулевыми векторами, перпендикулярными этим плоскостям (или, если угол тупой, смежному с ним углу). Такие векторы называют нормалями к плоскостям. Найдём их.

Пусть \vec{n_{1}}=\{x; y; z\} перпендикулярен плоскости PKB_{1}. Найдем его, решив систему \begin{cases} \vec{n_{1}} \perp \vec{PK}, \\ \vec{n_{1}} \perp \vec{PB_{1}}. \end{cases}

\begin{cases} \vec{n_{1}} \cdot \vec{PK}=0, \\ \vec{n_{1}} \cdot \vec{PB_{1}}=0; \end{cases}

\begin{cases} 0x+5y-5z=0, \\ 5\sqrt{3}x+5y+5z=0; \end{cases}

\begin{cases}y=z, \\ x=\frac{-y-z}{\sqrt{3}}. \end{cases}

Возьмем y=1; z=1; x=\frac{-2}{\sqrt{3}}, \vec{n_{1}}=\left \{ \frac{-2}{\sqrt{3}}; 1;1 \right \}.

Пусть \vec{n_{2}}=\{x; y; z\} перпендикулярен плоскости C_{1}B_{1}B. Найдем его, решив систему \begin{cases} \vec{n_{2}} \perp \vec{CC_{1}}, \\ \vec{n_{2}} \perp \vec{CB}. \end{cases}

\vec{CC_{1}}=\{0;0;10\}, \vec{CB}=\{5\sqrt{3}; 5; 0\}.

\begin{cases} \vec{n_{2}} \cdot \vec{CC_{1}}=0, \\ \vec{n_{2}} \cdot \vec{CB}=0; \end{cases}

\begin{cases} 0x+0y+10z=0, \\ 5\sqrt{3}x+5y+0z=0; \end{cases}

\begin{cases}z=0, \\ y=-\sqrt{3}x. \end{cases}

Возьмем x=1; y=-\sqrt{3}; z=0, \vec{n_{2}}=\{1; -\sqrt{3};0\}.

Найдем косинус искомого угла \beta (он равен модулю косинуса угла между \vec{n_{1}} и \vec{n_{2}} ).

\cos \beta= \frac{|\vec{n_{1}} \cdot \vec{n_{2}}|}{|\vec{n_{1}}| \cdot |\vec{n_{2}}|}= \frac{\left |-\dfrac{2}{\sqrt{3}}\cdot 1+1 \cdot (-\sqrt{3})+1 \cdot 0 \right |}{\sqrt{\dfrac{4}{3}+1+1} \cdot \sqrt{1+3+0}}= \frac{\dfrac{5}{\sqrt{3}}}{2\sqrt{\dfrac{10}{3}}}= \frac{\sqrt{10}}{4}.

\cos \beta =\frac{\sqrt{10}}{4}, \beta=\arccos\frac{\sqrt{10}}{4}.

Ответ

\arccos\frac{\sqrt{10}}{4}

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

ABCD — квадрат и боковые грани — равные прямоугольники.

Так как плоскость сечения проходит через точки M и D параллельно диагонали AC , то для её построения в плоскости A_{1}AC через точку M проведём отрезок MN параллельный AC . Получим AC \parallel (MDN) по признаку параллельности прямой и плоскости.

Плоскость MDN пересекает параллельные плоскости A_{1}AD и B_{1}BC, тогда, по свойству параллельных плоскостей, линии пересечения граней A_{1}ADD_{1} и B_{1}BCC_{1} плоскостью MDN параллельны.

Проведём отрезок NE параллельно отрезку MD .

Четырехугольник DMEN — искомое сечение.

б) Найдём угол между плоскостью сечения и плоскостью основания. Пусть плоскость сечения пересекает плоскость основания по некоторой прямой p , проходящей через точку D . AC \parallel MN, следовательно, AC \parallel p (если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна этой прямой). BD \perp AC как диагонали квадрата, значит, BD \perp p. BD — проекция ED на плоскость ABC , тогда по теореме о трех перпендикулярах ED \perp p, следовательно, \angle EDB — линейный угол двугранного угла между плоскостью сечения и плоскостью основания.

Установим вид четырехугольника DMEN . MD \parallel EN, аналогично ME \parallel DN, значит, DMEN — параллелограмм, а так как MD=DN (прямоугольные треугольники MAD и NCD равны по двум катетам: AD=DC как стороны квадрата, AM=CN как расстояния между параллельными прямыми AC и MN ), следовательно, DMEN — ромб. Отсюда, F — середина MN .

По условию AM:MA_{1}=2:3, тогда AM=\frac{2}{5}AA_{1}=\frac{2}{5} \cdot 5\sqrt{6}=2\sqrt{6}.

AMNC — прямоугольник, F — середина MN , O — середина AC . Значит, FO\parallel MA, FO \perp AC, FO=MA=2\sqrt{6}.

Зная, что диагональ квадрата равна a\sqrt{2}, где a — сторона квадрата, получим BD=4\sqrt{2}. OD=\frac{1}{2}BD=\frac{1}{2} \cdot 4\sqrt{2}=2\sqrt{2}.

В прямоугольном треугольнике FOD\enspace tg \angle FDO=\frac{FO}{OD}=\frac{2\sqrt{6}}{2\sqrt{2}}=\sqrt{3}. Следовательно, \angle FDO=60^\circ.

Мерой угла между плоскостями является острый угол, образованный двумя прямыми, лежащими в этих плоскостях и проведенными перпендикулярно линии их пересечения.

Алгоритм построения

  1. Из произвольной точки K проводят перпендикуляры к каждой из заданных плоскостей.
  2. Способом вращения вокруг линии уровня определяют величину угла γ° с вершиной в точке K.
  3. Вычисляют угол между плоскостями ϕ° = 180 – γ° при условии, что γ° > 90°. Если γ° < 90°, то ∠ϕ° = ∠γ°.

На рисунке представлен случай, когда плоскости α и β заданы следами. Все необходимые построения выполнены согласно алгоритму и описаны ниже.

Решение

  1. В произвольном месте чертежа отмечаем точку K. Из неё опускаем перпендикуляры m и n соответственно к плоскостям α и β. Направление проекций m и n следующее: m""⊥f 0α , m"⊥h 0α , n""⊥f 0β , n"⊥h 0β .
  2. Определяем действительный размер ∠γ° между прямыми m и n. Для этого вокруг фронтали f поворачиваем плоскость угла с вершиной K в положение, параллельное фронтальной плоскости проекции. Радиус поворота R точки K равен величине гипотенузы прямоугольного треугольника O""K""K 0 , катет которого K""K 0 = y K – y O .
  3. Искомый угол ϕ° = ∠γ°, поскольку ∠γ° острый.

На рисунке ниже показано решение задачи, в которой требуется найти угол γ° между плоскостями α и β, заданными параллельными и пересекающимися прямыми соответственно.

Решение

  1. Определяем направление проекций горизонталей h 1 , h 2 и фронталей f 1 , f 2 , принадлежащих плоскостям α и β, в порядке, указанном стрелками. Из произвольной точки K на пл. α и β опускаем перпендикуляры e и k. При этом e""⊥f"" 1 , e"⊥h" 1 и k""⊥f"" 2 , k"⊥h" 2 .
  2. Определяем ∠γ° между прямыми e и k. Для этого проводим горизонталь h 3 и вокруг неё поворачиваем точку K в положение K 1 , при котором △CKD станет параллелен горизонтальной плоскости и отразится на ней в натуральную величину – △C"K" 1 D". Проекция центра поворота O" находится на проведенном к h" 3 перпендикуляре K"O". Радиус R определяется из прямоугольного треугольника O"K"K 0 , у которого сторона K"K 0 = Z O – Z K .
  3. Значение искомого ∠ϕ° = ∠γ°, так как угол γ° острый.
error: Content is protected !!