Тучные клетки (лаброциты, тканевые базофилы). Тканевые тучные клетки и базофилы крови при аллергии Тканевые базофилы выполняют функцию

Базофилы (базофильные гранулоциты)

Диаметр 9мкм.

Характерные признаки:

    Ядра слабодольчатые, плохо контурируются из-за обилия гранул;

    крупная базофильная зернистость, которая окрашиваеться не в цвет красителя - метахромазия (в мазках пурпурно-красного цвета).

Гранулы базофилов содержат биологически активные вещества (гистамин, гепарин, серотонин и др., а так же ферменты (оксидаза, перексидоза и др.)

Функции базофилов :

Слабая фагоцитарная активность, участие в аллергических реакциях, при которых происходит дегрануляция клеток с выбросом в окружающую среду биологически активных веществ. В частности, гистамин, выделенный из гранул, определяет течение аллергических реакций. Гепарин препятствует свёртыванию крови. Серотонин влияет на сократительную активность гладкой мускулатуры органов. Длительность циркуляции клеток в крови до 1 суток.

Моноциты . Диаметр 10 - 12мкм

Характерные признаки:

1.Цитоплазма слабобазофильная (голубоватого цвета), обильная.

2.Ядра бобовидной формы;

3. Вблизи ядра небольшое количество азурофильных гранул.

Функция моноцитов . Она циркулируют в крови от 1 до 5 суток, а далее мигрируют и превращаются в свободные макрофаги различных органов и тканей. Их функции будут отмечены в разделе « Рыхлая соединительная ткань»

Лимфоциты

В зависимости от степени зрелости различают:

Малые (4 - 6 мкм);

Средние(7-10мкм)

Большие (более 10мкм).

Малые лимфоциты – наиболее зрелая форма. Это основной вид лимфоцитов в циркуляции, имеет плотное, относительное крупное ядро и узкий ободок резко базофильной цитоплазмы. Общие органеллы слабо развиты (небольшое число митохондрий, слабо развитая эндоплазматическая сеть, единичные лизосомы).

Средние лимфоциты имеют больший ободок базофильной цитоплазмы.

Большие лимфоциты – наименее зрелая форма в циркуляции, имеют ещё больший ободок базофильной цитоплазмы.

Различают два вида лимфоцитов:

Т-лимфоциты (тимусзависимые)

В – лимфоциты (от слова – burso Fabricius – фабрициева сумка у птиц)

Они развиваются из общей стволовой клетки в красном костном мозге. В последующем Т-лимфоциты созревают в тимусе, а В-лимфоциты, после дифференцировки в красном костном мозге, оседают в периферических органах лимфопоэза (лимфатических узлах и селезенке).

Функции лимфоцитов

Функционально Т-лимфоциты делят на:

  • супрессоры.

Т-киллеры ответственны за клеточный иммунитет, т.е. (распознают и уничтожают чужеродные клетки (клетки трансплантата, опухолевые клетки и др.).

Т-хелперы передают информацию об антигенах В – лимфоцитам, т.е. определяют начало реакций гуморального иммунитета.

Т-супрессоры угнетают (подавляют) реакции гуморального иммунитета.

В-лимфоциты , получив информацию об антигене от макрофагов и Т-хелперов, превращаются в плазматические клетки, продуцирующие антитела. Таким образом, В-лимфоциты определяют конечный этап реакций гуморального иммунитета.

Рыхлая волокнистая соединительная ткань .

Характерные признаки:

    большое количество межклеточного вещества;

    рыхло расположенные волокна, которые располагаются без определенной ориентации.

Компоненты:

    межклеточное вещество;

Межклеточное вещество имеет волокна и основное аморфное вещество.

Различают волокна:

    коллагеновые;

    эластические

    ретикулярные

Коллагеновые волокна . Это поперечно-исчерченные нитевидные структуры толщиной от 1 до 12 мкм. Состоят из фибрилл толщиной 0,3 – 0,5 мкм (1000 Å), связанных цементирующим веществом. Фибриллы в свою очередь состоят из протофибрилл толщиной – 100 Å. Они состоят из продольно ориентированных молекул белка тропоколлагена , имеющих длину – 2800 Å. Каждая молекула тропоколлагена состоит из спиралевидно закрученных полипептидных цепочек. Поперечная исчерченность волокон объясняется продольным смещением молекул тропоколлагена на расстояние – 640 Å.

Свойства коллагеновых волокон:

    Малая растяжимость и высокая прочность на разрыв;

    Сильно набухают в слабых кислотах и щелочах, а также при длительном кипячении (холодец);

    Перевариваются в кислой среде пепсином (в желудке);

    Красятся кислыми красителями (эозин, фуксин и др.).

Эластические волокна имеют толщину около 1 мкм. Это менее распространенный вид волокон (по сравнению с коллагеновыми). Их много в некоторых органах (полостные органы, легкие, крупные сосуды). Компоненты эластических волокон:

    стержень;

    микрофибриллы.

Стержень располагается в средней части волокна и по химическому составу – белок эластин. Микрофибриллы располагаются на периферии и спиралевидно закручены вокруг стержня.

Свойства эластических волокон :

    Высокая растяжимость и малая прочность на разрыв;

    Переваривается ферментом эластазой;

    Избирательно окрашиваются красителями – орсеином, резорцином.

Следует отметить, что эластические волокна, по сравнению с коллагеновыми, плохо восстанавливаются. Этим объясняется возможность развития эмфиземы, пневмосклероза и др. при хронических заболеваниях легких, что связано с нарушением эластического каркаса альвеол и замещением его коллагеновым.

Эластические волокна образуются в рыхлой соединительной ткани фибробластами, а в стенке сосудов, главным образом, гладкомышечными клетками.

Ретикулярные волокна тоньше коллагеновых. По химическому составу – это белок ретикулин . Субмикроскопическое строение сходно с коллагеновыми. Есть даже мнение, что ретикулярные волокна являются предстадией перехода к коллагеновым.

Свойства ретикулярных волокон:

    По прочности и растяжимости занимают среднее положение между коллагеновыми и эластическими;

    Перевариваются в кислой среде;

    Избирательно окрашиваются солями серебра.

Ретикулярные волокна имеются в составе лишь некоторых органов и структур:

    базальной мембраны;

    синусоидных капилляров;

    нервных волокон;

    стромы кроветворных органов;

    стенки альвеол легких.

Основное аморфное вещество . Это жидкая часть межклеточного вещества; заполняет пространства между клетками и волокнами. Его основными компонентами являются молекулы кислых мукополисахаридов (гликозамингликанов) и тканевая жидкость. Конкретным представителем гликозамингликанов в межклеточном веществе рыхлой соединительной ткани является гиалуроновая кислота . Между ее молекулами имеются щели, каналы, где циркулирует тканевая жидкость вместе с растворенными веществами (питательными, газовыми метаболитами, продуктами обмена и др.).

Тканевая жидкость, в свою очередь, образуется из плазмы крови. Ее компоненты проходят через стенку капилляров и поступают в окружающую ткань – тканевая жидкость. Она циркулирует в промежутках между молекулами гиалуроновой кислоты, а далее поступает обратно в кровь через стенку венул или в лимфатические капилляры.

Основным свойством основного аморфного вещества является изменение проницаемости , т.е. его вязкость может меняться от жидкого до гелеобразного под влиянием различных факторов. Проницаемость основного аморфного вещества повышают : гистамин, фермент – гиалуронидаза , которая расщепляет молекулы гиалуроновой кислоты; понижает проницаемость – гепарин .

Клетки рыхлой соединительной ткани

Перициты (периваскулярные клетки) некоторые авторы их называют адвентициальными. Располагаются вблизи сосудов или е окружают стенку капилляров. Имеют веретенообразную или отростчатую форму, цитоплазма слабо базофильная.

Большая группа исследователей (А. Максимов и его ученики) считают, что это малодифференцированные клетки, т.е. из них, возможно, образование других клеток рыхлой соединительной ткани.

Фибробласты . Это основной клеточный элемент рыхлой соединительной ткани. Имеют веретенообразную или отростчатую форму. Ядра клеток овальные, в них хорошо контурируются крупные ядрышки. Цитоплазма окрашивается базофильно. В ней различают две зоны:

    центральная (эндоплазма), где в основном располагаются органеллы – окрашивается более интенсивно;

    периферическая (эктоплазма) – окрашивается слабо базофильно.

Функции фибробластов . Это секреторные клетки – образуют компоненты межклеточного вещества. В частности в цитоплазме фибробластов синтезируются молекулы: тропоколлагена, эластина, гликозамингликанов и др., т.е. волокнистых структур и основного аморфного вещества.

Фибробластов, закончивших свой цикл и неспособных к делению, называют фиброцитами . Кроме того различают фибробласты выполняющие сократительную функции (миофибробласты ), или функцию макрофагов (фиброкласты ).

Миофибробласты сходны с гладкомышечными клетками. В цитоплазме много сократительных актомиозиновых филаментов. Считают, что важна их роль в ретракции ран.

Фиброкласты способны к фагоцитозу фрагментов межклеточного вещества, в частности, при инволюции органов (матки).

Макрофаги (гистиоциты)

Макрофаги, находящиеся в спокойном состоянии называют гистиоцитами , а подвижном – свободными. Это клетки неправильной веретенообразной или звездчатой формы. Поверхность клеток неровная, характерно наличие отростков, псевдоподий. Цитоплазма окрашивается базофильно; содержит много гранул (лизосом), вакуолей, пиноцитозных пузырьков. Ядра более плотные, чем у фибробластов.

Функции макрофагов:

    Фагоцитоз микробов и продуктов распада тканей. По той причине их называют «чистильщиками» внутренней среды.

    Некоторые их разновидности выполняют функцию антигенпредставляющих клеток в реакциях гуморального иммунитета, т.е. участвуют в кооперации Т – и В – лимфоцитов.

Тканевые базофилы (тучные клетки, лаброциты, гепариноциты). Располагаются в соединительной ткани по ходу мелких сосудов (капилляров, венул). Их много в рыхлой соединительной ткани под эпителием дыхательных путей и кишечника, откуда чаще всего поступают во внутреннюю среду антигены. Клетки имеют округлую или овальную форму. Цитоплазмы содержит большое количество специфических гранул, которые окрашиваются основными красителями в пурпурно-красный цвет. Гранулы содержать гепарин (30%), гистамин (10%), серотонин, гликозамингликаны и др.

Функция тканевых базофилов – защита от инфекции. Они предупреждают организм о повторном поступлении антигенов. В частности, при повторном поступлении антигена во внутреннюю среду происходит дегрануляция (выброс гранул). При этом гистамин попадает в окружающую среду и определяет развитие местной аллергической реакции. Симптоматика последней зависит от действия гистамина :

    Сокращает гладкомышечные клетки бронхиол, что приводит к бронхоспазму (одышка) ;

    Расширяет мелкие сосуды. Результат – падение артериального давления ;

    Повышает проницаемость капилляров и основного аморфного вещества, последствием чего является отек .

Эта реакция развивается, если человек обладает гиперчувствительностью к антигену. У большинства лиц она протекает незаметно, поскольку действия гистамина быстро подавляются эозинофилами, которые поглощают гистамин.

Плазматические клетки имеют округлую или овальную форму. Характерно эксцентрическое расположение ядер, с грубыми глыбками хроматина, локализованными радиально в виде «спиц». Цитоплазма окрашивается резко базофильно, кроме небольшого, просветленного околоядерного участка, который носит название «дворик ». Это место расположения комплекса Гольджи. В цитоплазме исключительно хорошо развита гранулярная эндоплазматическая сеть.

Плазматические клетки развиваются из В – лимфоцитов после их контакта с Т – лимфоцитами и антигенами. Клетки продуцируют антитела (иммуноглобулины), тем самым, определяют конечный этап реакции гуморального иммунитета.

Жировые клетки (аденоциты).

Это крупные клетки округлой формы. Вся средняя часть клетки занята одной крупной каплей жира. Цитоплазма на периферии в виде узкого ободка, где располагаются общие органеллы и ядро. Жировые клетки обычно располагаются группами вблизи сосудов, образуя дольки в составе белой жировой ткани. Во взрослом организме жировые клетки не делятся; их предшественниками считаются перициты .

Функционально жировые клетки являются хранителем запаса энергетического материала . (Более подробно о функциях жировых клеток в составе жировой ткани будет отмечено ниже, в разделе «Соединительные ткани с особыми свойствами»).

Соединительные ткани относятся к тканям внутренней среды и классифицируются на собственно соединительную ткань и скелетную ткань (хрящевая и костная). Собственно соединительная ткань делится на 1) волокнистую, включающую рыхлую и плотную, которая подразделяется на оформленную и неоформленную 2) ткани со специальными свойствами (жировая, слизистая, ретикулярная и пигментная).

В состав рыхлой и плотной соединительной ткани входят клетки и межклеточное вещество. В рыхлой соединительной ткани много клеток и основного межклеточного вещества, в плотной - мало клеток и основного межклеточного вещества и много волокон. В зависимости от соотношения клеток и межклеточного вещества эти ткани выполняют различные функции. В частности рыхлая соединительная ткань в большей степени выполняет трофическую функцию и в меньшей - опорно-механическую, плотная соединительная ткань в большей степени выполняет опорно-механическую функцию.

ОБЩИЕ ФУНКЦИИ соединительной ткани :

  1. трофическая;
  2. функция механической защиты (кости черепа)
  3. опорно-механическая (костная, хрящевая ткани, сухожилия, апоневрозы)
  4. формообразующая функция (склера глаза придает глазу определенную форму)
  5. защитная функция (фагоцитоз и иммунологическая защита);
  6. пластическая функция (способность адаптироваться к новым условиям внешней среды, участие в заживлении ран);
  7. участие в поддержании гомеостаза организма.

РЫХЛАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ (textus connectivus collagenosus laxus) включает клетки и межклеточное вещество, которое состоит из основного межклеточного вещества и волокон: коллагеновых, эластических и ретикулярных. Рыхлая соединительная ткань располагается под базальными мембранами эпителия, сопровождает кровеносные и лимфатичаские сосуды, образует строму органов.

КЛЕТКИ :

q фибробласты,

q макрофаги,

q плазмоциты,

q тканевые базофилы (тучные клетки, лаброциты),

q адипоциты (жировые клетки)

q пигментные клетки (пигментоциты, меланоциты),

q адвентициальные клетки,

q ретикулярные клетки

q лейкоциты крови.

Таким образом, в состав соединительной ткани входят несколько дифферонов клеток.

ДИФФЕРОН ФИБРОБЛАСТОВ : стволовая клетка, полустволовая, клетка предшественник, малодифференцированные фибробласты, дифференцированные фибробласты и фиброциты. Из малодифференцированных фибробластов могут развиваться миофибробласты и фиброкласты. РАЗВИВАЮТСЯ фибробласты в эмбриогенезе из мезенхимных клеток, а в постнатальном периоде - из стволовых и адвентициальных клеток.

МАЛОДИФФЕРЕНЦИРОВАННЫЕ ФИБРОБЛАСТЫ имеют удлиненную форму, длиной около 25 мкм, содержат мало отростков, цитоплазма окрашивается базофильно, так как в ней имеется много РНК и рибосом. Ядро овальное, содержит глыбки хроматина и ядрышко. ФУНКЦИЯ заключается в способности к митотическому делению и дальнейшей дифференцировке, в результате которой превращаются в дифференцированные фибробласты. Среди фибробластов есть долгоживущие и короткоживущие.

ДИФФЕРЕНЦИРОВАННЫЕ ФИБРОБЛАСТЫ (fibroblastocytus) имеют вытянутую, уплощенную форму, длина около 50 мкм, содержат много отростков, слабо базофильную цитоплазму, хорошо развитую гранулярную ЭПС, имеют лизосомы. В цитоплазме обнаружена коллагеназа. Ядро овальное, слабо базофильное, содержит рыхлый хроматин и ядрышки. По периферии цитоплазмы имеются тонкие филаменты, благодаря которым фибробласты способны передвигаться в межклеточном веществе.

ФУНКЦИИ ФИБРОБЛАСТОВ. Основная функция - секреторная. 1) секретируют молекулы коллагена, эластина и ретикулина, из которых полимеризуются соответственно коллагеновые, эластические и ретикулиновые волокна; секреция белков осуществляется всей поверхностью плазмолеммы, которая участвует в сборке коллагеновых волокон; 2) секретируют гликозаминогликаны, входящие в состав основного межклеточного вещества (кератинсульфаты, гепаринсульфаты, хондриатинсульфаты, дерматансульфаты и гиалуроновую кислоту); 3) секретируют фибронектин (склеивающее вещество); 4) белки, соединенные с гликозаминогликанами (протеогликаны). Кроме того фибробласты выпоняют слабо выраженную фагоцитарную функцию. Таким образом, дифференцированные фибробласты являются клетками, которые фактически формируют соединительную ткань. Там где нет фибробластов не может быть соединительной ткани.

Фибробласты активно функционируют при наличии в организме витамина "С", соединений Fe, Cu и Cr. При гиповитаминозе функция фибробластов ослабевает, т.е. прекращается обновление волокон соединительной ткани, не вырабатываются гликозаминогликаны, входящие в состав основного межклеточного вещества, это приводит к ослаблению и разрушению связочного аппарата организма, например, зубных связок. Зубы при этом разрушаются и выпадают. В результате прекращения выработки гиалуроновой кислоты повышается проницаемость капиллярных стенок и окружающей соединительной ткани, что приводит к мелкоточечным кровоизлияниям. Такое заболевание называется цингой.

ФИБРОЦИТЫ образуются в результате дальнейшей дифференцировки дифференцированных фибробластов. Они содержат ядра с грубыми глыбками хроматина, ядрышки в них отсутствуют. Фиброциты уменьшены в размерах, в цитоплазме малочисленные слабо развитые органеллы, функциональная активность снижена.

МИОФИБРОБЛАСТЫ развиваются из мало дифференцированных фибробластов. В их цитоплазме хорошо развиты миофиламенты, поэтому они способны выполнять сократительную функцию. Миофибробласты имеются в стенке матки при наступлении беременности. За счет миофибробластов происходит в значительной степени нарастание массы гладкомышечной ткани стенки матки в ходе беременности.

ФИБРОКЛАСТЫ также развиваются из малодифференцированных фибробластов. В этих клетках хорошо развиты лизосомы, содержащие протеолитические ферменты, принимающие участие в лизисе межклеточного вещества и клеточных элементов. Фиброкласты принимают участие в рассасывании мышечной ткани стенки матки после родов. Фиброкласты встречаются в заживающих ранах, где принимают участие в очищении ран от некротизированных структур тканей.

МАКРОФАГИ (macrophagocytus) развиваются из СКК, моноцитов, они находятся везде в соединительной ткани, в особенности их много там, где богато развита кровеносная и лимфатическая сеть сосудов. Форма макрофагов может быть овальной, округлой вытянутой, размеры - до 20-25 мкм в диаметре. На поверхности макрофагов имеются псевдоподии. Поверхность макрофагов резко очерчена, на их цитолемме имеются рецепторы к антигенам, иммуноглобулинам, лимфоцитам и др. структурам.

ЯДРА макрофагов имеют овальную, круглую или вытянутую форму, содержат грубые глыбки хроматина. Встречаются многоядерные макрофаги (гигантские клетки инородных тел, остеокласты). ЦИТОПЛАЗМА макрофагов слабо базофильна, содержит много лизосом, фагосом, вакуолей. Органеллы общего значения развиты умеренно.

ФУНКЦИИ МАКРОФАГОВ многочисленны. Основная функция - фагоцитарная. При помощи псевдоподий макрофаги захватывают антигены, бактерии, чужеродные белки, токсины и др. вещества и при помощи ферментов лизосом переваривают, осуществляя внутриклеточное пищеварение. Кроме того, макрофаги выполняют секреторную функцию. Они выделяют лизоцим, разрушающий оболочку бактерий, пироген, повышающий температуру тела, интерферон, тормозящий развитие вирусов, секретируют интерлейкин 1, под влиянием которого повышается синтез ДНК в В- и Т-лимфоцитах, фактор, стимулирующий образование антител в В-лимфоцитах, фактор, стимулирующий дифференцировку Т- и В-лимфоцитов, фактор, стимулирующий хемотаксис Т-лимфоцитов и активность Т-хелперов, цитотоксический фактор, разрушающий клетки злокачественных опухолей. Макрофаги принимают участие в иммунных реакциях. Они представляют антигены лимфоцита.

В общей сложности макрофаги способны к прямому фагоцитозу, фагоцитозу, опосредованному антителами, секреции биологически активных веществ, представлению антигенов лимфоцитам.

МАКРОФАГИЧЕСКАЯ СИСТЕМА включает все клетки организма, обладающие тремя основными признаками: 1) выполняют фагоцитарную функцию, 2) на поверхности их цитолеммы имеются рецепторы к антигенам, лимфоцитам, иммуноглобулинам и т.д., 3) все они развиваются из моноцитов. Примером таких макрофагов являются:

q 1)макрофаги (гистиоциты) рыхлой соединительной ткани; 2) купферовские клетки печени; 3) легочные макрофаги; 4) гигантские клетки инородных тел; 5) остеокласты костной ткани; 6) ретроперитониальные макрофаги; 7) глиальные макрофаги нервной ткани.

Основоположником теории о системе макрофагов в организме является И.И.Мечников. Он впервые понял роль макрофагической системы в защите организма от бактерий, вирусов и других вредных факторов.

ТКАНЕВЫЕ БАЗОФИЛЫ (тучные клетки, лаброциты)

вероятно развиваются из стволовых клеток крови, но точно это не установлено. Форма лаброцитов овальная, круглая, вытянутая и т.д. ЯДРА компактные, содержат грубые глыбки хроматина. ЦИТОПЛАЗМА слабо базофильная, содержит базофильные гранулы диаметром до 1,2 мкм. В гранулах содержатся: 1) кристаллоидные, пластинчатые, сетчатые и смешанные структуры; 2) гистамин; 3) гепарин; 4) серотонин, 5) хондриатинсерные кислоты; 6) гиалуроновая кислота. В цитоплазме содержатся ферменты:

1) липаза; 2) кислая фосфатаза; 3) щелочная фосфатаза; 4) аденозинтрифосфатаза (АТФ-аза); 5) цитохромоксидаза и 6) гистидиндекарбоксилаза, являющаяся маркерным ферментом для лаброцитов. ФУНКЦИИ

тканевых базофилов заключаются в том, что они, выделяя гепарин, снижают проницаемость капиллярной стенки и процессы воспаления, выделяя гистамин - повышают проницаемость капиллярной стенки и основного межклеточного вещества соединительной ткани, т.е. регулируют местный гомеостаз, усиливают воспалительные процессы и вызывают аллергические реакции. Взаимодействие лаброцитов с аллергеном приводит к их дегрануляции, т.к. на их плазмолемме есть рецепторы к иммуноглобулинам типа Е. Лаброциты играют ведущую роль в развитии аллергических реакций.

ПЛАЗМОЦИТЫ развиваются в процессе дифференцировки В-лимфоцитов, имеют круглую или овальную форму, диаметр - 8-9 мкм, цитоплазма окрашивается базофильно. Однако около ядра имеется участок, который не окрашивается и называется "перинуклеарный дворик", в которм находится комплекс Гольджи и клеточный центр. Ядро круглое или овальное, перинуклеарным двориком смещено к периферии, содержит грубые глыбки хроматина, располагающиеся в виде спиц в колесе. В цитоплазме хорошо развита гранулярная ЭПС, много рибосом. Остальные органеллы развиты умеренно. ФУНКЦИЯ плазмоцитов заключается в выработке иммуноглобулинов, или антител.

АДИПОЦИТЫ (жировые клетки) располагаются в рыхлой соединительной ткани в виде отдельных клеток или группами. Одиночные адипоциты имеют круглую форму, всю клетку занимает капля нейтрального жира, состоящая из глицерина и жирных кислот. Кроме того там имеются холестерин, фосфолипиды, свободные жирные кислоты. Цитоплазма клетки вместе с уплощенным ядром оттеснена к цитолемме. В цитоплазме имеются малочисленные митохондрии, пиноцитозные пузырьки и фермент глицеролкиназа.

ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ адипоцитов заключается в том, что они являются источниками энергии и воды. Развиваются адипоциты чаще всего из малодифференцированных адвентициальных клеток, в цитоплазме которых начинают накапливаться капельки липидов. Всосавшиеся из кишечника в лимфатические капилляры, капельки липидов, называемые хиломикронами, транспортируются в те места, где находятся адипоциты и адвентициальные клетки. Под влиянием липопротеидлипаз, выделяемых эндотелиоцитами капилляров, хиломикроны расщепляются на глицерин и жирные кислоты, которые поступают либо в адвентициальную, либо в жировую клетку. Внутри клетки глицерин и жирные кислоты соединяются в нейтральный жир под действием глицеролкиназы.

В том случае, если в организме возникла необходимость в энергии, из мозгового вещества надпочечников выделяется адреналин,который захватывается рецептором адипоцита. Адреналин стимулирует аденилатциклазу, под действием которой синтезируется сигнальная молекула, т.е. циклический аденозинмонофосфат (цАМФ). цАМФ стимулирует липазу адипоцита, под влиянием которой нейтральный жир расщепляется на глицерин и жирные кислоты, которые выделяются адипоцитом в просвет капилляра, где соединяются с белком и в виде липопротеида транспортируются в те места, где необходима энергия.

Инсулин стимулирует отложение липидов в адипоцитах и препятствует выходу их из этих клеток. Поэтому, если в организме недостаточно инсулина (диабет), то адипоциты теряют липиды, при этом больные худеют.

ПИГМЕНТНЫЕ КЛЕТКИ (меланоциты) находятся в соединительной ткани, хотя они не являются собственно соединительнотканными клетками, развиваются из нервного гребня. Меланоциты имеют отростчатую форму, светлую цитоплазму, бедную органеллами, содержащую гранулы пигмента меланина.

АДВЕНТИЦИАЛЬНЫЕ КЛЕТКИ раполагаются вдоль кровеносных сосудов, имеют веретеновидную форму, слабобазофильную цитоплазму, содержащую рибосомы и РНК.

ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ их заключается в том, что они являются малодифференцированными клетками, способными к митотическому делению и дифференцировке в фибробласты, миофибробласты, адипоциты в процессе накопления в них капилек липидов.

В соединительной ткани много ЛЕЙКОЦИТОВ , которые циркулируют в крови несколько часов, затем мигрируют в соединительную ткань, где выполняют свои функции.

ПЕРИЦИТЫ входят в состав стенки капилляров, имеют отростчатую форму. В отростках перицитов имеются сократительные филаменты, при сокращении которых суживается просвет капилляра.

МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО рыхлой соединительной ткани включает коллагеновые, эластические и ретикулярные волокна, а также основное (аморфное) вещество.

КОЛЛАГЕНОВЫЕ ВОЛОКНА

(fibra collagenica) состоят из белка коллагена, имеют толщину 1-10 мкм, неопределенной величины длину,извилистый ход. Коллагеновые белки имеют 14 разновидностей (типов).

q КОЛЛАГЕН 1 типа имеется в волокнах костной ткани, сетчатом слое дермы.

q КОЛЛАГЕН II тип входит в состав гиалинового и волокнистого хрящей и в стекловидное тело глаза.

q КОЛЛАГЕН III типа входит в состав ретикулярных волокон.

q КОЛЛАГЕН IV типа имеется в волокнах базальных мембран, капсулы хрусталика.

q КОЛЛАГЕН V типа располагается вокруг тех клеток, которые его вырабатывают (гладкие миоциты, эндотелиоциты), образуя вокругклеточный, или перицеллюлярный скелет.

Остальные типы коллагена мало изучены.

ФОРМИРОВАНИЕ КОЛЛАГЕНОВЫХ ВОЛОКОН осуществляется в процессе четырех уровней организации. I Уровень называется молекулярный, или внутриклеточный; II - надмолекулярный, или внеклеточный; III - фибриллярный и IV - волоконный.

v I УРОВЕНЬ ОРГАНИЗАЦИИ характеризуется тем, что на гранулярной ЭПС фибробластов ситезируются молекулы коллагена (тропоколлаген) длиной 280 нм и диаметром 1,4 нм. Состоят молекуы из 3 цепочек аминокислот, чередующихся в определенном порядке. Эти молекулы выделяются из фибробластов всей поверхностью их цитолеммы.

v II УРОВЕНЬ организации, характеризуется тем, что молекуллы коллагена (тропоколлаген) соединяются своими концами, в результате чего образуются протофибриллы. 5-6 протофибрилл соединяются своими боковыми поверхностями и образуются фибриллы диаметром около 10 нм.

v III УРОВЕНЬ (фибриллярный) характеризуется тем, что образовавшиеся фибриллы соединяются своими боковыми поверхностями, в результате чего образуются микрофибриллы диаметром 50-100 нм. В этих фибриллах видны светлые и темные полосы (поперечная исчерченность) шириной около 64 нм.

v IV УРОВЕНЬ организации (волоконный) заключается в том, что микрофибриллы соединяются своими боковыми поверхностями, в результате чего образуются коллагеновые волокна диаметром 1-10 мкм.

ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ коллагеновых волокон заключается в том, что они придают механическую прочность соединительной ткани. Например, на коллагеновой нити диаметром 1 мм можно подвесить массу, равную 70 кг. Коллагеновые волокна набухают в растворах кислот и щелочей. Они анастомозируют друг сдругом.

ЭЛАСТИЧЕСКИЕ ВОЛОКНА

более тонкие, имеют прямой ход, соединяясь друг с другом, образуют широкопетлистую сеть, состоят из белка эластина. Формирование эластических волокон претерпевает 4 уровня организации: 1) молекулярный, или внутриклеточный; 2) надмолекулярный или внеклеточный; 3) фибриллярный; 4) волоконный.

v 1 УРОВЕНЬ характеризуется образованием на гранулярной ЭПС фибробластов шаров, или глобул диаметром около 2,8 нм, которые выделяются из клетки.

v II УРОВЕНЬ (надмолекулярный) характеризуется соединением глобул в цепочки (протофибриллы) диаметром около 3,5 нм.

v III УРОВЕНЬ (фибриллярный) в результате которого протеогликаны наслаиваются на протофибриллы в виде оболочки и образуются фибриллы диаметром 10 нм.

v IV УРОВЕНЬ (волоконный) в результате которого фибриллы, соединяясь, образуют пучок, или трубочку. Эти трубочки называются окситалановыми волокнами. Затем в просвет этих трубочек внедряется аморфное вещество. Когда количество аморфного вещества в формирующихся волокнах увеличится до 50% по отношению к фибриллам, эти волокна превратятся в элауниновые, когда количестов аморфного вещества достигнет 90% - эти волокна и есть зрелые, эластические волокна. Окситалановые и элауниновые - незрелые эластические волокна.

ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ эластических волокон заключается в том, что они придают эластичность соединительной ткани. Эластические волокна менее прочны на разрыв по сравнению с кологеновыми волокнами, но зато более растяжимы.

РЕТИКУЛЯРНЫЕ ВОЛОКНА состоят из белка коллагена III типа. Эти белки также вырабатываются фибробластами. Формирование ретикулиновых волокон тоже претерпевает 4 уровня организации точно также, как и коллагеновые волокна. В фибриллах ретикулярных волокон имеется исчерченность в виде светлых и темных полос шириной 64-67 нм (как и в коллагеновых волокнах). Ретикулярные волокна менее прочны, но более растяжимы, чем коллагеновые волокна, но зато они более прочны и менее растяжимы, чем эластичесикие волокна. Ретикулиновые волокна, переплетаясь, образуют сеть.

ОСНОВНОЕ (АМОРФНОЕ) МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО

(sustantia fundamentalis) имеет полужидкую консистенцию. Оно формируется частично за счет плазмы крови, из которой поступают вода, минеральные соли, альбумины, глобулины и др. вещества; частично за счет функциональной деятельности фибробластов и тканевых базофилов. В частности, фибробласты выделяют в межклеточное вещество гликозаминогликаны сульфатированные (хондриотинсульфаты, кератинсульфаты, гепаринсульфаты, дерматансульфаты) и несульфатированные (гиалуроновую кислоту); гликопротеины (белки, соединенные с короткими сахаридными цепями). От количества гиалуроновой кислоты в основном зависит консистенция и проницаемость основного межклеточного вещества. Наиболее жидкое основное межклеточное вещество располагается около кровеносных и лимфатических сосудов. На границе с эпителиальной тканью основное межклеточное вещество более плотное и находится в большем количестве.

ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ основного межклеточного вещества заключается в том, что через него происходит обмен веществ между кровеносным руслом капилляров и паренхимными клетками. В основном межклеточном веществе происходит полимеризация коллагеновых, эластических и ретикулиновых волокон. Основное вещество обеспечивает жизнедеятельность клеток соединительной ткани.

Интенсивность обмена веществ зависит от проницаемости основного межклеточного вещества. Проницаемость зависит от количества свободной воды, гиалуроновой кислоты, активности гиалуронидазы, концентрации гликозаминогликанов и гистамина. Чем больше гликозаминогликанов (гиалуроновой кислоты), тем меньше проницаемость. Гиалуронидаза разрушает гиалуроновую кислоту и тем самым повышает проницаемость. Гистамин также повышает проницаемость основного межклеточного вещества. В регуляции проницаемости основного вещества соединительной ткани принимают участие базофильные гранулоциты и тучные клетки, выделяя то гепарин, то гистамин, а также эозинофильные гранулоциты, разрушающие гистамин при помощи фермента гистаминазы.

Гиалуронидаза содержится в бактериях и вирусах. Благодаря гиалуронидазе эти микроорганизмы повышают проницаемость базальных мембран, основного межклеточного вещества и стенки капилляров и проникают во внутреннюю среду организма,вызывая различные заболевания.

ПЛОТНАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ характеризуется наименьшим количеством клеточных элементов и основного межклеточного вещества, в ней преобладают волокна, в основном коллагеновые.

Плотная соединительная ткань подразделяется на неоформленную и оформленную. Примером неоформленной соединительной ткани является сетчатый слой дермы.

ПЛОТНАЯ ОФОРМЛЕННАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ представлена сухожилиями, связками, апоневрозами мышц, капсулами суставов, оболочками некоторых органов, белочными оболочками глаза, мужской и женской половых желез, твердой мозговой оболочкой, надкостницами и надхрящницами.

СУХОЖИЛИЯ (tendo) состоит из параллеьно расположенных волокон, образующих пучки I, II и III порядков. Пучки I порядка отделены друг от друга сухожильными клетками, или фиброцитами, несколько пучков I порядка складываются в пучки II порядка, которые отделены друг от друга прослойкой рыхлой соединительной ткани, называемой эндотенонием (endotendium); несколько пучков II порядка складываются в пучки III порядка.Пучком III порядка может быть само сухожилие. Пучки III порядка окружены прослойкой рыхлой соединительной ткани, называемой перитенонием (peritendium).

В прослойках рыхлой соединительной ткани эндотенония и перитенония проходят кровеносыные и лимфатические сосуды и нервные волокна, заканчивающиеся в нервносухожильных веретенах, т.е. чувтвительных нервных окончаниях сухожилий.

ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ сухожилий заключается в том, что с их помощью мышцы прикрепляются к костному скелету.

СОЕДИНИТЕЛЬНОТКАННЫЕ ПЛАСТИНКИ (фасции, апоневрозы, сухожильные центры и др.) характеризуются параллельным послойным расположением коллагеновых волокон. Коллагеновые волокна одного слоя пластинки располагаются под углом по отношению к волокнам другого слоя. Волокна из одного слоя могут переходить в соседний слой. Поэтому слои апоневрозов, фасций и т.д. разделить довольно трудно. Таким образом, соединительнотканные пластинки отличаются от сухожилий тем, что коллагеновые волокна располагаются в них не пучками, а слоями. Между слоями коллагеновых волокон располагаются фиброциты и фибробласты.

СВЯЗКИ (ligamentum) по своему строению похожи на сухожилия, но отличаются от сухожилий менее строгим расположением волокон. Среди связок выделяется выйная связка (ligamentum nuche), которая отлича- ется тем, что вместо коллагеновых волокон содержит эластические волокна.

В капсулах, белочных оболочках, надкостницах, надхрящницах, твердой мозговой оболочке в отличии от фасций и апоневрозов отстутсвует строгое расположение коллагеновых волокон.

ПЛОТНАЯ НЕОФОРМЛЕННАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ, расположенная в сетчатом слое кожи,отличается неправильным (разнонаправленным) расположением коллагеновых и эластических волокон, развивается из дерматома мезодермальных сомитов. ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ этой ткани заключается в обеспечении механической прочности кожи.

ТКАНИ СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ включают жировую, ретикуляр-ную, слизистую и пигментную. Особенностью этих тканей является преобладание какого-то одного вида клеток. Так, например, в жировой ткани преобладают адипоциты, пигментной - меланоциты и т.д.

РЕТИКУЛЯРНАЯ ТКАНЬ (textus reticularis) является стромой органов кроветворения за исключением тимуса, в котором стромой является эпителиальная ткань. Ретикулярная ткань состоит из ретикулярных клеток и тесно связанных с этими клетками ретикулиновых волокон и основного межклеточного вещества. РЕТИКУЛЯРНЫЕ КЛЕТКИ подразделяются на 3 разновидности: 1) фибробластоподобные клетки, выполняющие такую же функцию, как и фибробласты рыхлой соединительной ткани, т.е. вырабатывают коллаген III типа, из которого состоят ретикулиновые волокна, и секретируют основное межклеточное вещество; 2) макрофагические ретикулоциты, выполняющие фагоцитарную функцию, и 3) малодифференцированные клетки, которые в процессе дифференцировки превращаются в фибробластоподобные ретикулоциты.

Ретикулиновые волокна вплетаются в отростки фибробластоподобных ретикулоцитов и вместе с ними образуют сеть (reticulum), в петлях которой располагаются гемопоэтические клетки. Ретикулярные волокна окрашиваются серебром, поэтому называются аргентофильными. Преколлагеновые (незрелые коллагеновые) волокна тоже окрашиваются серебром и тоже называются аргентофильными, но к ретикулиновым волокнам они никакого отношения не имеют.

ЖИРОВАЯ ТКАНЬ делится на белую и бурую жировую ткани. БЕЛАЯ ЖИРОВАЯ ТКАНЬ находится в подкожной жировой клетчатке. Ее особенно много в области кожи живота, бедер, ягодиц, в малом и большом сальниках, ретроперитониально (забрюшинно). Она состоит из жировых клеток-адипоцитов, цитоплазма которых заполнена каплей нейтрального жира. Адипоциты в жировой ткани образуют дольки, окруженные прослойками рыхлой соединительной ткани, в которых проходят кровеносные и лимфатические капилляры и нервные волокна.

При длительном голодании липиды выделяются из адипоцитов, которые приобретают звездчатую форму, человек при этом худеет. При возобновлении питания в адипоцитах появляются сначала включения гликогена, затем капли липидов, которые соединяются в одну большую каплю, оттесняющую ядро с цитоплазмой на периферию клетки.

Однако не во всех местах тела при голодании быстро исчезают липиды из адипоцитов. Так, например, жировая ткань подкожно-жировой клетчатки ладонной поверхности кистей рук, подошв стоп ног, а также орбит глаза сохраняется после длительного голодания, потому что эта ткань выполняет опорно-механическую (амортизационную) функцию.

БУРАЯ ЖИРОВАЯ ТКАНЬ в организме новорожденных располагается в подкожно-жировой клетчатке в области шеи, лопаток, вдоль позвоночного столба и за грудиной. Адипоциты этой ткани характеризуются тем, что имеют полигональную форму, сравнительно небольшие размеры, их круглые ядра располагаются в центре, капельки липидов диффузно рассеяны в цитоплазме. В цитоплазме много митохондрий, в которых имеются железосодержащие бурые пигменты-цитохромы.

ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ бурой жировой ткани заключается в том, что она обладает высокой окислительной способностью, при этом выделяется много тепловой энергии, согревающей тело грудного ребенка.

При воздействии адреналина и норадреналина на адипоциты жировой ткани происходит расщепление липидов. При голодании организма бурая жировая ткань изменяется менее значительно, чем белая. Между адипоцитами бурой жировой ткани прохоят многчисленные капилляры.

СЛИЗИСТАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ находится в пупочном канатике плода. В ее состав входят мукоциты (фибробластоподобные клетки), коллагеновых волокон сравнительно мало, много основного межклеточного вещества, содержащего большое количество гиалуроновой кислоты. Функция мукоцитов: вырабатывают много гиалуроновой кислоты и мало молекул коллагена. Благодаря богатому содержанию гиалуронвой кислоты слизистая ткань (textus mucosus) обладает высокой упругостью.

ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ слизистой ткани заключается в том, что благодаря ее упругости, не сдавливаются кровеносные сосуды пупочного канатика при его сжатии или сгибе.

ПИГМЕНТНАЯ ТКАНЬ у представителей белой рассы представлена слабо. Она находится в радужной оболочке, вокруг сосков молочных желез, анального отверстия и в мошонке. Основными клетками этой ткани являются пигментоциты, развивающиеся из нервного гребня.

СОЕДИНИТЕЛЬНЫЕ ТКАНИ.

Из соединительной ткани построены скелет, кожа, хрящи, сухожил­ья и связки, основа органов.

К соединительным тканям относятся: собственно соединительная, скелетная и соединительные ткани со специальными свойствами. В свою очередь собственно соединительная ткань разделяется на рыхлую и плотную, а последняя на оформленную и неоформленную.

Скелетная состоит из костной и хрящевой. Со специальными свойствами есть ретикулярная, жировая, пигментная та слизистая ткани.

По происхождению соединительные ткани относятся к мезенхимальной группе, а по функции к группе опорно-трофических тканей или тканей внутренней среды.

Соединительная ткань (textus connectivus ) - очень распространена в организме: в целом она составляет около 50 % массы тела.

Среди всех упомянутых в класси­фикации разновидностей соединительной ткани наиболее распространенной и такой, что содержит все виды элементов, является рыхлая волокнистаяя соединительная ткань. Она находится почти во всех внутренних орга­нах, образует их оболочки, замещает промежутки между органами, сопрово­ждает сосуды и нервы.

Она выполняет все функции, какие свойственны тканям внутренней среды, а именно: трофическую, защитную, опорно-механическую. Кроме того, рыхлая соединительная ткань выполняет также заместительную функцию (при повреждении замещает, заполняет собой дефект в органах).

Рыхлая соединительная ткань (textus connectivus laxus ) построена из клеток и межклеточного вещества. Последняя, в свою очередь, включает волокнистые структуры (коллагеновые, эластич­еские и ретикулярные волокна) и основное межклеточное вещество.

Аналогичный план строения характерный и для всех других разновидностей соединительной ткани. К клеточным элементам рыхлой соединительной ткани принадлежат: фибробласты, макрофаги, плазмоциты , тканневые базофилы, адипоциты , пигментоциты , адвентиционные клетки, а также лейкоциты, которые мигрируют из крови.

Клеточные элементы соединительной ткани.

Среди клеток рыхдой соединительной ткани различают много типов клеток. Однако за определенными признаками их возможно объединить в три следующие группы:

Клетки фибробластического ряда - это фибробласты различного степеня зрелости, фиброциты, миофибробласты и фиброкласты

Фибробласты - это клетки-продуценты межклеточного вещества. Именно они синтезируют как волокнистые структуры, так и основные компоненты аморфного вещества. В сущности фибробласты строят соединительную ткань. Благодаря их способностям строить основные опорные структу­ры организма фибробласты часто называют механоцитами . О способности создавать волокна свидетельствует их название («фибра» - волокно и «бластос » - зача­ток). Деятельность этих клеток обеспечивает заживления ран, развивтие рубца, образования капсулы вокруг чужеродного тела и тому подобное. К фибробластам принадлежит многочис­ленная группа клеток, разных за степенью дифференциации, которые образуют так называемый фибробластический ряд (или диферон ): стволовые клетки - полустволовые клетки-предшественники - малоспециализированные фибробласты – зре­лые фибробласты - фиброциты. Кроме того, к этому же ряду принадлежат миофибробласты и фиброкласты .

Малоспециализированные , или юные, фибробласты округлой или веретенообразной формы с базофильной цитоплаз­мой содержат большое количество свободных рибосом. Другие органелы (эндоплазматическая сетка, митохондрии, комплекс Гольджи ) развиты слабо. Способны к митотическому размножению.

На пленочном препарате можно увидеть распределение клеточного тела фибробласта на две зоны - внутреннюю эндоплазму, которая окрашивается интенсивнее, и внешнюю эктоплазму, окраска которой значительно слабее; она не имеет четких границ и сливается с окружающим межклеточным веществом. Цитоплазма фибробласта содержит все общие органелы . Особенно хорошо розвита гранулярная эндоплазматич­еская сетка, которая занимает до 35% объема клетки; здесь происходит синтез проколагена , эластина. Хорошо развит также и комплекс Гольджи , который составляет около 10 % объема клетки, в виде цистерн и пузырьков, разбросанных по всей клетке; здесь синтезируются гликозаминогликаны . Последние, как и фибрилярные белки, секретируются в межкле­точное вещество и входят в состав волокон и аморфного вещества. Фибробласты также син­тезируют фибрилярный гликопротеин внеклеточного матрикса - фибронектин , который обеспечивает связывание клеток с их микроокружением и регулирует продвижение клеток. Митохондрии большие, количество их умеренное, как и лизосом.

На периферии цито­плазмы расположены микрофиламенты толщиной 5-6 нм, которые содержат сократительные белки типа актина и миозина и обеспечивают способность этих клеток к движению. Считают, что среди фибробла­стов существуют две популяции: с коротким жизненным циклом (несколько недель) и с длинным жизненным циклом (несколько месяцев).

Фиброциты - это дефини­тивные (конечные) формы развития фибробластов. Форма их вере­тенообразная, они могут иметь крыловидные отростки. Содержат небольшое количество органел . Син­тетические процессы у них сни­жены.

Миофибробласты - это вид клеток, в которые могут превращаться фибробласты. Они функционально схожи с глад­кими мышечными клетками, но, в отличии от последних, имеют хорошо развитую эндоплазматическую сетку. Такие клетки можно наблюдать в матке во время беременности, а также в грануляционной тка­ни (при заживлении ран).

Фиброкласты - еще один вид клеток, производных фибробла­стов. Они имеют высокую фаго­цитарную активность, содержат значительное количество лизосом. Принимают участие в лизисе межклеточного вещества: их можно наблюдать в матке при завершении беременности.

Иммигрирующие клетки – клетки, которые мигрировали с крови и лимфы, - это моноциты, которые превратились в макрофаги, плазмоциты , базофилы (тканевые базофилы) и лейкоциты – лимфоциты и нейтрофилы.

Макрофаги (макрофагоциты ). Эти клетки также называют гистиоцитами. По количественному содержанию в рыхлой соединительной ткани макрофаги занимают второе место после фиб­робластов. В сравнении с последними они имеют меньшие размеры клеточного тела (10-15мкм), которое хорошо отграничено от ос­новного вещества. Форма разная: округлая, вытянутая или непра­вильная. Ядро тоже имеет меньшие размеры, не такую правильную фор­му, как у фибробласта, содержит больше гетерохроматина , выглядит плотным, окрашивается достаточно интенсивно. Цитоплазма макрофагов базофильная , неоднородная, пятнистая, содержит много лизосом, фагосом , пиноцитозных пузырьков. Другие органелы (митохондрии, гранулярная эндоплаз­матическаяна сетка, комплекс Гольд­жи ) развиты умеренно.

Плазмолема макрофагов образует глубокие складки и длинные микроворсинки, с помощью которых эти клетки захватывают чужеродные частички. На поверхности плазмолемы макрофага находятся ре­цепторы для опухолевых клеток, эритроцитов, Т- и В-лимфоцитов, антигенов, имуноглобулинов . Наличие рецепторов к иммуногло­булинам обеспечивает участие в имунных реакциях.

Макрофаги играют важную роль как в естественном, так и в приобретенном иммунитете организма. Участие макрофагов в естественном иммунитете проявляется в их способности к фагоцитозу и в син­тезе ряда активных веществ - фагоцитина , лизоцима, интерфе­рона, пирогена , компонентов сис­темы комплемента и других факторов естественного иммунитета. Их роль в приобретенном иммунитете состоит в пе­редаче антигена иммунокомпетентным клеткам (лимфоцитам) после его переработки из кор­пускулярной формы в молекуляр­ную (участие в кооперативной три-клеточной системе иммунного ответа вместе с Т- и В-лимфоцита­ми). Кроме того, макрофаги секретируют медиаторы-монокины , которые обеспечивают специфическую реакцию на антигены, и цитолитические фак­торы, которые избирательно разрушают опухолевые клетки.

Походят макрофаги из промоноцитов красного костного мозга, то есть из стволовой гемопоэтической клетки, и завершают собой моноцитарный гистогенетический ряд.

Развивая концепцию фагоцитоза И.И.Мечников обосновал целесообразность объединения фагоцитирующих клеток в одну систему, которую назвал макрофагической . Поэтому макрофагическая система организма является системой всех клеток, которые способны захватывать из тканевой жидкости чужеродные частицы, бактерии, антигены, погибшие клетки, их остатки и тому подобное.

Благодаря особенностям своего строения эти клетки ликвидируют вредные для организма агенты, которые попадают. Перечислим эти клетки: макрофаги-гистиоциты, фибробласты, остеокласты, свободные и фиксированные макрофаги кроветворных органов, звездчатые клетки сосудов печенки, альвеолярные макрофаги легких, глиальные макрофаги (микроглиоциты ) нервной ткани. Все эти клетки способны к фагоцитозу, имеют на поверхности плазмолемы рецепторы к иммуноглобулинам, поэтому способные к иммунному фагоцитозу.

К макрофагической системе принадлежит совокупность всех клеток, которые способны захватывать из тканевой жидкости чужеродные частицы,погибшие клетки и неклеточные структуры, бактерии и тому подобное. Фагоцитированый материал внутри клетки поддается ферментативному расщеплению в лизосомном аппарате. Та­ким образом, ликвидируются вредные для организма агенты. Эти клетки можно иден­тифицировать посредством мето­да витальной расцветки, используя прижизненное введение в организм трипанового си­него, коллоидного серебра или ки­тайской туши. Все указанные ко­лоидные вещества фагоцитируются макрофагами благодаря тому, что образуют макромолекулярные агрегаты, а клетки становятся хорошо заметными на препарате. К таким клеткам принадлежат гистиоциты-макрофаги рыхлой соединительной ткани, свободные и фиксированные макрофаги кроветворных органов, звездчатые клетки сину­соидных сосудов печенки, альвео­лярные макрофаги легких, перитонеальные макрофаги, глиальные макрофаги нервной ткани (микроглия ), остеокласты, гигантские клетки сторонних тел. Все они способны к активному фагоцитозу, имеют на поверхности рецепторы к иммуноглобулинам (благодаря чему способны к иммун­ному фагоцитозу), происходят из промоноцитов красного костного мозга и моноцитов крови. В отличие от макрофагов, которые И. И. Мечников назвал «профессиональными фагоцитами», способность к факультативному фагоцитозу имеют другие виды клеток - фиб­робласты, ретикулярные клетки, эндотелиоцити , нейтрофильные лейкоциты. Но эти клетки не принадлежат к макрофагической сис­теме, потому что они не могут осуществлять специфического иммун­ного фагоцитоза, а также отличаются своим происхождением.

Концепция фагоцитоза была впервые выдвинута И.И. Мечниковим . Он пришел к выводу, что фагоцитоз, который возник в эволю­ции как внутриклеточное переваривание и закрепился за многими клетками, одновременно является важным защитным механизмом. Он обосновал целесообразность объединения таких клеток в одну систе­му и предложил назвать ее макрофагической . В 30-50-х гг.. эту защитную систему называли ретикулоэндотелиальной (РЕС), ошибочно относя к ней некоторые виды факультативных фа­гоцитов. В последнее время ее назы­вают системой мононуклеарных фагоцитов, что, однако, не совсем точно, поскольку среди клеток этой системы есть и многоядерные (остеокласты и гигантские клетки сторонних тел).

Макрофагическая система - сильный защитный аппарат, который принимает участие как в общих, так и местных защитных реакциях ор­ганизма. В целостном организме макрофагическая система регулируется местными механизмами, а также нервной и эндокрин­ной системами.

Плазматические клетки (плазмоциты ) имеют размеры 7-10мкм, хотя могут быть несколько большими. Форма их округ­лая или многоугольная, если они давят одна на другую. Ядро не­большое, круглое, расположенное эксцентрически, содержит главным образом конденсируемый хрома­тин, комочки которого образуют характерный для плазмоцита рисунок - колеса со спицами или цифры на циферблате часов. Цитоплазма интенсивно базофильная , на фоне которой возле ядра хорошо видно «светлый двор», или перинуклеарную зону с более слабой расцветкой. Ультра­структура этих клеток характе­ризируется наличием в цитоплаз­ме хорошо развитой гранулярной эндоплазматической сетки, которая расположена концентрически и занимает большую часть клетки. Большое количество рибосом (РНК) определяет базофилию цитоплазмы. В участке «светлого двора» лока­лизированы центриоли, окруженные цис­тернами комплекса Гольджи , В цистернах гранулярной эндо­плазматической сетки плазмоцитов происходит синтез иммуноглобу­линов (антител). Часть углеродного компонента иммуногло­булинов синтезируется в комплек­се Гольджи . Эта органела , которая достаточно хорошо развитая в плазмоцитах , отвечает также за секрецию синтезированных иммуно­глобулинов за пределы клетки; дальше они попадают через лимфу в кровь.

Таким образом, плазмоциты обеспечивают гумораль­ный иммунитет, то есть продукцию специфических белков-антител, реагируя на проникновение в организм антигена, который им будет обезврежен. Происходят плазматические клетки из стволовой кроветворной клетки, а именно с В-лимфоцитов. Плазматические клетки в основном встречаются в рыхлой соединительной ткани собственного слоя слизистой оболочки кишки и дыхательных путей, в лимфатических узлах, селезенке, в интерстиционной соединительной ткани разных желез.

Тканевые базофилы имеют много названий, которые целесообразно привести, чтобы помочь ориентироваться в литературе: мастоциты , лаброциты , тучные клетки. Последнее название дал этим клеткам П. Эрлих, который в 1877г. впервые описал клетки, которые были переполнены гранулами. Это название очень распространено в литературе. Название «тканевые базофилы» отвечает современной международной гистологической но­менклатуре и свидетельствует о том, что клетки имеют зернистость, по­добную к гранулам базофильных лейкоцитов крови. Тканевые ба­зофилы часто локализуются по ходу кровеносных сосудов микроциркуляторного русла, образуя периваскулярные влагалища. Большое количество этих клеток встречается в стенке органов желудочно-кишечного тракта, в матке, молочной железе, тимусе, мигдаликах .

Форма тканевых базофилов разнообразная так же, как и размеры. Они круглые, овальные, с широкими отростка­ми. Размеры колеблются от 10-20 до 35 и даже до 100мкм. Ядра сравнительно небольшие, круглые, обычного строения. В цитоплазме содержится большое количество митохондрий, немного грануляр­ной, а также агранулярной эндо­плазматической сетки; комплекс Гольджи развит хорошо. Основная особенность этих клеток - наличие большого количества ха­рактерных гранул размерами 0,2-0,8мкм, каждая из которых окружена мембраной. За электронномикроскопическим строением грану­лы тканевых базофилов человека кристалоидные или пластинчатые (наблюдаются видовые отличия структуры гранул). Окрашивается зернистость базофильно , метахроматически . Гранулы содержат вещества, которые имеют большое физиологичное значение. Первым из таких веществ есть гепа­рин, который составляет 30 %содержания гранул и, главным образом, предопределяет их базофилию и метахромазию . Второе вещество - гистамин, который составляет 10% их содержания. Матрикс гранулы состоит из белка (химаза тучных клеток) и гепарина, которые фор­мируют стабильную сетку; к ней ионными связями присоединен гистамин. Гранулы также содержат хондроитинсульфат , гиалуроновую кислоту, у некоторых животных находят также серотонин, но у человека его нет.

Гепарин - этосульфатированный гликозаминогликан , который впервые был выделен из печени (этим обусловлено его название) и который предотвращает коагуляции крови. Обнаружено, что тканевые базофилы синтезируют гепарин в комплексе Гольджи . Они могут терять свои гранулы (процес дегрануляции ), и тогда гепарин выделяется вмежклеточное вещество. Ге­парин имеет противовоспалительное действие, есть анти­коагулянтом. Кроме того, гепа­рин стимулирует активность фер­мента липопротеинлипазы и, та­ким образом, помогает распаду хиломикронов плазмы.

Гистамин синтезируется в тканевых базофилах при уча­стии гистидиндекарбоксилазы (маркерный фермент этих клеток), которая осуществляет преобразование гистидина в гистамин, который действует на гладкие мышцы, вызывая их сокращение, а также способствует выходу плазмы из венул и капиля­ров за счет расширения и повышения проницательности их стен­ки. В результате выхода плазмы в рыхлой соединительной ткани под эпидермисом образуются волдыри. Этот симптом получил название крапивницы. Описанное действие гистами­на можно наблюдать во время анафилактического шока или алер­гии . Развитие этих процессов и участие в них тканевых базофилов объясняется так. В ответ на проникновение в организм некоторых антигенов, которые называются алергена­ми , образуются специфические антитела, которые принадлежат к классу IgE .

Тканевые базофилы, как и базофильные лейкоциты, имеют ре­цепторы для антител этого типа и связывают их так, что вариабель­ные участки для связывания анти­генов остаются свободными. При повторном введении антигена он быстро соединяется со специ­фическими антителами на поверхности тучных клеток. После образования комплекса антиген-антитело гистамин высвобождается из гранул этих клеток. Симптомы аллергии или анафилаксии можно устранить введением антигистаминных пре­паратов. В нормальных условиях такие реакции гиперчувствительности, которые происходят при участии тка­невых базофилов, имеют тен­денцию к самоограничению вследствии выделения этими клетками хемотаксического фактора привлечения эозинофилов. Фер­менты эозинофилов гистаминаза , арилсульфатаза разрушают вещества, которые выделяют тканевые базофилы во время иммунных реак­ций.

Известно, что тканевые базофилы происходят от стволовой крово­творной клетки. Недифференцированные предшественники тучных клеток мигрируют через кровь в соединительную ткань, где пролиферируют и дифференцируются в зрелые клетки. В этих процессах принимают участие Т-лимфоциты. Мито­тическое деление тучных клеток наблюдается достаточно редко. Поскольку есть данные о способности тканевых базофилов к синтезу ДНК, то возможно митозы случаются у них чаще, но их трудно увидеть из-за большого количества гранул, которые содержатся в цитоплазме этих клеток.

Группа необязательных, непостоянных клеток адипоциты (жировые клетки), пигментоциты , адвентиционные клетки и перициты.

Адипоциты (жировые клетки).

Раньше они назывались липоцитами . Эти клетки способны накапливать в своей цитоплазме резервный жир, который принимает участие в трофике, энергообразовании и метаболизме воды. В рыхлой соединительной ткани они располагаются группами, реже по одной клетки, и, в большей части, возле кро­веносных сосудов. Когда их накапливается большое количество, они образуют жировую тка­нь.

Форма одиночного адипоцита шаровидная, а когда их много, о­ни жмут один на другого и преобретают многоугольную форму. Зрелая жировая клетка содержит одну большую каплю жира, которая растягивает всю клетку так, что цитоплазма лишь тонким слоем окружает жир. Ядро изменяет свою форму, становится сплющенным. Диа­метр жировой клетки может до­стигать 120мкм. Такая клетка па поперечном срезе напоминает перстень с печатью: ядро - это печать, а перстень - тонкий слой цитоплазмы, что окружает жир. Липиды хорошо окрашиваются суданом ІІІ в оранжевый цвет или осмиевой кислотой в черный цвет.

Органелы расположены в основном вокруг ядра, где боль­ше цитоплазмы. В жировой клетки есть свободные рибосомы, оба типа эндоплазматической сетки, комплекс Гольджи и митохондрии. Скопление таких жировых клеток образует белую жировую ткань.

Жировые капельки, которые поступают в лимфу, а затем в кровь с эпителиоцитов тонкого кишечника, размерами около 1мкм имеют название хиломикронов (от греческого «хилос » - сок, «мик­рон» - малый). В этих частицах содержатся триглицериды, а также фосфолипиды, эфир холестерина и небольшое количество белков, которые образуют с липидами липопротеины. Под действием ферментов липопротеинлипаз , которые вырабатывает эндотелий сосудов, триглицериды хиломикронов расщепляются на жирные кислоты и глицерин, которые могут поглощаться жировой клеткой. Под действием глицерокиназы , которая образуется в этой клетке в процессе углеводного обмена, из жирных кислот и глицерина ресинтезируются триглицериды. Депонируемый в адипоцитах жир метаболизируется под действием липолитических гормонов (адреналин, инсулин) и тканевого фермента липазы, который расщепляет триглицериды ло глицери­на и жирных кислот. Последние связываются с альбумином крови и транспортируются к другим тка­ням, которым нужны питательные вещества.

По происхождению жировые клетки, очевидно, являются отдельной клеточной линией. Жировые клетки живут долго. Митозы в клетках-предшественниках адипоцитов оканчиваются через две-три недели после рождения. У взрослых жировые клетки не делятся, но есть данные о том, что новые адипоциты у взрослых могут образовываться из адвентиционных клеток путем накопления в них жира.

Пигментоциты (пигментные клетки, меланоциты ) содержат в своей цитоплазме пигмент меланин. Встречаются не только в соединительной ткани, но и в составе эпителия, в частности, в базально­м слое эпидермиса. Меланоциты соединительной ткани, как правило, не продуцируют меланин, а лишь фагоцитируют его (о чем свидетельствует отрицательная ДОФА-реакция).

Единственное исключение - люди мон­голоидного типа, у них в соединительной ткани дермы копчикового участка встречаются меланин-синтезирующие пигментные клетки, которые формируют здесь так называемое мон­гольськое пятно. Меланоциты , в отличие от других клеточных по­пуляций соединительной ткани, происходят из клеток нервного гре­бня, а не с мезенхимы.

Адвентиционные клетки это популяция малоспециализированных клеток, которые располагаются вдоль кровеносных сосудов. О­ни имеют плоскую или веретенообразную форму, слабо базофильную цитоплазму, овальное ядро и сла­бо развитые органелы . В проце­ссе дифференциации эти клетки могут, очевидно, переходить в фибробласты и адипоциты . Многие авторы отрицают существование адвентиционных клеток.

Волокнистые структуры .

Колла­геновые волокна.

В рыхлой соединительной ткани коллагеновые волок­на расположены в разных направлениях и имеют вид волновых, спиральных, покрученных, круглых или плоских тяжей толщиной 1-10 мкм. Они способны образовывать пучки, толщина которых может достигать 150 мкм. В нативном виде коллагеновые волокна бесцветны, на гистологическом препа­рате окрашиваются оксифильно , при импрегнации серебром стают буровато-желтого цвета­. Эти волокна не ветвятся и не анастомозируют между собой.

Коллагеновое волокно построено из пучков фибрил , сцементированных гликозаминогликанами и гликопротеинами. Толщина фибрил 50-100 нм. Фибрилы имеют харак­терную поперечную исчерченность в виде светлых и темных полос, которые чередуются между собой с периодом повторяемости 64 нм. Фибрилы состоят из микрофибрил толщиной около 10 нм, их можно увидеть в электрон­ном микроскопе в виде нитей, похожих на волны. Микрофибрилы построены из еще более тонких элемен­тов - протофибрил , а последние - из молекул коллагена. Молекулы белка коллагена имеют длину около 280 нм и толщину 1,4 нм. Они построены из трех полипептидных цепочек предшественника коллагена - проколагена . Синтез коллагена, а также гликозаминогликанов и гликопротеинов происходит в клетках рыхлой соединительной ткани - фибробластах. Дальше эти вещества секретируются в межклеточное вещество. Вне клетки из молекул коллагена образуются протофибрилы и т.д. Маркерными аминокислотами зрелого коллагена есть гидроксипролин и гидроксилизин .

Существует 12 типов коллагена, которые различаются по молекулярной организации, органной и тка­нневой принадлежностью. Коллаген І типа есть в соединительной ткани кожи, костей, в роговице глаза, склере, стенке артерий и тому подобное; II типа - в гиалиновом и фиброзном хря­щах, в стекловидном теле; ІІІ ти­па - в дерме кожи плода, в стенке больших кровеносных сосудов, в ретикулярных волокнах; IV ти­па - в базальных мембранах, капсуле хрусталика; V типа – вокруг клеток, которые его синте­зируют в виде экзоцитоскелета . Колагены VI, VII типов микрофибрилярные ; кола­гены НІ, ІХ, X, XI типов - так называемые малые, найдены в небольших количествах в эндотелии, хрящах, стекловидном теле.

Коллагеновые волокна содержат 65 %воды. Они способны притягивать воду и опухать как в составе организма, так и вне его. В про­точной воде их толщина увеличивается на 50% в результате отека, а в подкисленной среде - в 500 раз; длина волокон при этом не растет. Такие свойства коллагеновых волокон предопределяют их функ­цию в организме - быть депо воды. Этим свойством колаге­новых волокон обусловлено появление отеков при патологии. При потере крови они отдают воду, пополняя объем крови. При обшпаривании коллагеновые волокна создают клей (отсюда происходит их название, «кола»-клей, «гено » - рожаю, продуцирую). Они имеют небольшую резистент­ность к действию кислот, щелочей и про­теолитических ферментов. Коллаге­новые волокна очень крепкие, но имеют низкую эластичность, их модуль упругости 60-70кг/мм. Это наиболее прочные структуры в орга­низме, основная их функция - опорно-механическая.

Эластические волокна , в отличии от коллагеновых, имеют в нативном виде желтоватый цвет, ветвятся и анастомозмруют между собой, всегда расположенны по­одиночке, не образуют пучков. Тонщина их от 0,3 до 10-18 мкм.

Основным химическим составляющим эластических волокон есть глобу­лярний белок эластин, который синтезируют фибробласты. В элас­тине содержится большое количество аминокислот пролина и глицина, отсутствует цистин . Кроме того, ха­рактерно наличие двух производных аминокислот - десмозина и изодесмозина , что предопределяют его эластичность. Молекулы эластина имеют форму глобул диаметром 2,8 нм. Вне клетки они соединяются в цепочки толщиной 3-3,5 нм, которые назы­ваются эластическими протофибрилами , и в комплексе с гликопротеинами, образуют микрофибрилы толщиной 8-10 нм. Эластическое волокно по данным электронной микроскопии построено из двух компонентов - в центре содержится аморфный ком­понент, а на периферии - микрофибрилярный . В разных типах эластических волокон соотношение этих двух компонентов разное. Наиболее зрелые эластические волокна содержат около 90% эластина в виде аморфного компонента. Микрофибрилярный компонент сильнее развит там, где требования к механической прочности больше, чем к эластич­ности. Кроме зрелых эластических волокон, различают близкие к ним, так называемые элауниновые и окситалановые волокна. В элауниновых волокнах соотношение микрофибрил и аморфного компонента приблизительно одинаковое, а окситалановые состоят только из микрофибрил .

Эластические волокна беднее водой сравнительно с коллагеновы­ми (содержат 47% воды). Они стойкие к кипячению, действию кислот, щелочей, мацерации, гниении, дольше сохраняются в трупном мате­риале, их прочность намного меньше, чем в коллагеновых воло­кон, но им свойственна высокая эластичность. Это прекрасные амор­тизаторы, которые обеспечивают возвращение структур к исходному положению. С возрастом эластичность этих волокон снижается, они распадаются на фрагменты. Эластические волокна плохо окрашиваются гистологическими красителями, их можно определить посредством орсеина или резорцин-фуксина.

Ретикулярные волокна можно наблюдать в препаратах, импрегнированых серебром, поэтому их называют еще аргирофильными . Среди последних различают два типа волокон: собственно ретику­лярные - это дефинитивные образования, которые построены из коллагена III ти­па; преколлагеновые - начальная стадия при образовании колагено­вих волокон в период эмбриоге­неза, а также при регенерации.

Содержание основного вещества не­одинаково в разных видах соединительной ткани. За физико-химическим свойствами это гель непостоянной вязкости и химического состава. В образовании основного вещества принимают участие клетки соединительной ткани и, в первую очередь, фиб­робласты. Химический состав аморфного компонента характе­ризируется наличием воды, бел­ков, липидов, полисахаридов, минеральных веществ. Содержание полисахаридов 0,5..,5%. К ним принадлежат гликозаминогликаны (ГАГ): сульфатированные - гепаринсульфат , хондроитин -сульфат, хондроитин-6-сульфат, дерматансульфат , а также несульфатированные , представителем которых является гиалуроновая кис­лота. Сульфатированные ГАГ соединяются с белками, образовывая протеогликаны .

Гликозаминогликаны определяют консистенцию аморфного вещества и ее функ­циональные свойства. В свою очередь, функциональные особенности соединительной ткани в целом зависят от физико-химического состава основного вещества. Чем она плотнее, тем более выраженная механическая, опорная функция. Чем меньше плотность основного вещества, тем лучше обеспечивается тро­фическая функция. Гистамин и гиалуронидаза увеличивают проницаемость аморфного компонента (есть многие микроорганизмы, которые содержат гиалуронидазу , которая помогает им продвигаться в соединительной ткани). Повышение концентрации ГАГ (в частности гиалуроновой кислоты), напротив, снижает проницаемость основного межклеточного вещества.

Основное вещество создает предпосылки для передвижения клеток, способных к движению путем транспорта питательных веществ и продуктов метаболизма.

Плотная волокнистая соединительная ткань (textus connectivus fibrosus compactus ). Для этого вида соединительной ткани характерным есть подавляющее развитие волок­нистих структур и, в первую очередь, коллагеновых волокон. Эта особенность обеспечивает высокие амор­тизационно-механические свойства. В зависимости от способа ориен­тации коллагеновых волокон в пространстве различают оформленную плотную волокнистую соединительную ткань и неоформленную плотную волокнистую соединительную ткань.

Оформленная плотная волокнистая соединительная ткань расположена в составе фиброзных мембран, связок, су­хожильев . Последние, соединяя мышцы с костями, испытывают действие век­тора силы преимущественно в одном направлении. Указанный фактор обуславливает строго параллельную ориентацию пучков коллагеновых волокон в пространстве. Между отдельными пуч­ками волокон размещены высокодифференцированные клетки фиб­робластического ряда (фиброци­ты), которые в результате своей син­тетической деятельности обеспечивают физиологичную регенерацию сухо­жильних пучков. Пучок коллаге­новых волокон, окруженный слоем фиброцитов, называется сухо­жильным пучком. Несколько сухо­жильных пучков первого поряд­ка в своей совокупности образуют сухожильные пучки второго по­рядка, последние размежеванные про­слойками соединительной тка­ни, и носят название эндотендиния . В составе больших сухожилий пучки второго поряд­ка, объединяясь, образуют су­хожильные пучки третьего и даже четвертого порядков. Снаружи сухо­жилие окруженно перитендинием , образованным рыхлой соединительной тканью.

Примером неоформленной волокнистой соединительной ткани может быть сетчатый слой дермы кожи. В его составе толстые пучки коллагеновых волокон идут в разных направлениях, что обеспечивает резистентность кожи при самых разнообразных на­правлениях действия механических факто­ров. Между пучками коллагеновых волокон размещены фибробласты и макрофаги, сосудисто-нервные пучки и основное межклеточное вещество.

Лимфоциты – небольшие мононуклеарные клетки, координирующие и осуществляющие иммунный ответ за счет продуцирования воспалительных цитокинов и антигенспецифических связывающих рецепторов. Одной из групп лимфоцитов являются В-л. В-л. и их наиболее зрелые формы - плазматические клетки - продуцируют иммуноглобулины (антитела), то есть осуществляют синтез

эффекторов гуморального иммунитета. Специфическими рецепторами В-лимфоцитов являются молекулы иммуноглобулинов. На В-лимфоцитах lg-рецепторы нековалентно ассоциированы с двумя трансмембранными белками - Iga и Igp или Iga и Igy. Молекулы lg и полипептидные цепи,входящие в состав В-клеточного рецептора, являются наиболее надежными маркерами В-линейной принадлежности.


В-л. Осуществляют экспрессию уникальных антигенных рецепторов – иммуноглобулинов – и запрограммированы на продукцию их в большом количестве в ответ на антигенную стимуляцию. В-л. Образуются из стволовых клеток костного мозга, созревание В-д. у человека происходит в основном в костном мозге. ИС содержит большую популяцию отдельных клонов В-л., каждый из которых экспрессирует уникальный антигенный рецептор. Разнообразие клонов В-л. Обеспечивает разнообразие вырабатываемых ими антител.

Дифференцировка .B-клетки все стадии антигеннезависимой дифференцировки проходят в костном мозге. На поверхности предшественников B-лимфоцитов, про-В- лимфоцитов, обнаруживают ряд CD , однако данные об их экспрессии противоречивы. Наиболее ранние про-В-клетки часто определяют как CD19плюсCD10плюс-клетки, не экспрессирующие генов тяжелых цепей иммуноглобулинов, но экспрессирующие антигены MHC класса II . Возможными кандидатами для определения про-В-клеток являются CD9 , а также CD24: экспрессия CD24 (как и CD10) не ограничена клетками B-ряда, но ее уровень на ранних этапах дифференцировки повышен. CD19 является наиболее универсальным маркером клеток B-лимфоцитарного ряда (так называемый пан- B) - он обнаруживается уже на поверхности B-клеток эмбриональной печени и не экспрессируется только терминально дифференцированными плазматическими клетками. Аналогично CD19 экспрессируется другой пан-В- маркер - CD72 , являющийся контррецептором CD5 , но он пока мало изучен.

Следующий этап дифференцировки - пре-В-лимфоциты - определяется, главным образом, по цитоплазматической экспрессии мю-цепи иммуноглобулина. На этом же этапе начинается экспрессия (слабая) CD20 и, по-видимому, CDw78 . CD20 - еще один пан-В-маркер, как и CD19 , часто использующийся для идентификации B-клеток. Параллельно появляется CD21 . Начало поверхностной экспрессии IgM свидетельствует о появлении незрелых B-клеток. Одновременно начинается поверхностная экспрессия CD22 , на предыдущих этапах обнаруживающегося только в цитоплазме. Примерно в это же время на поверхности B-клеток появляется еще несколько антигенов - CD37 , CD39 , CD40 . На поверхности незрелых B-клеток обнаруживается также ряд дифференцировочных антигенов: CD73 , CD74 , CDw75 и CD76 . Следующий этап - зрелые или покоящиеся B-клетки характеризуются одновременной экспрессией поверхностных IgM и IgD . Параллельно с IgD экспрессируется CD23 .

Дальнейшая дифференцировка проходит в периферических клетках крови или лимфоидных органах и вызывается антигеном. Она характеризуется увеличением размеров B-клеток и повышением уровня экспрессии антигенов MHC класса II . Это стадия активированных B-клеток. Антигензависимая дифференцировка вызывает замену поверхностных IgM/IgD другим изотипом (который будет позднее секретироваться) и деление, что свидетельствует о вступлении в стадиюB-бластов, или пролиферирующих B-клеток. Последние могут дифференцироваться либо в плазматические клетки, либо в B-клетки памяти. Плазматические клетки теряют поверхностную экспрессию большинства специфических B-клеточных маркеров (в том числе поверхностный Ig). Однако они опять начинают экспрессировать CD38 и, кроме того, сильно отличаются от B-клеток морфологически.

Процесс созревания и дифференцировки B-клеток, особенно последние его стадии, не всегда одинаково подразделяется на этапы.

В-л. Образующиеся в костном мозге иммунологически незрелые, поскольку они еще не поверглись воздействию АГ. Начальные этапы сохревания В-л. Не зависят от АГ. Пре-В-клетка временно продуцирует терминальную дезоксинуклеотидтрансферазу и общий АГ острого лейкоза(ОАОЛ;CD10). Несколько позднее экспрессирует характерные поверхностные АГ CD19, CD20[CD19 (В4) - это гликопротеин, молекулярная масса которого равна 95 кДа. Полипептидная цепь состоит из 540 аминокислот. СD19 - экспрессируется на В-клетках; мол. масса 95 кД; выполняет функцию корецептора.СТРУКТУРНАЯ ХАРАКТЕРИСТИКА . Внеклеточная область состоит из двух Ig-подобных доменов, разделенных областью, содержащей два остатка Cys. Эта область не имеет гомологии в аминокислотной последовательности с какими-либо известными белками. Большой цитоплазматический участок консервативен у разных видов млекопитающих и содержит несколько потенциальных мест фосфорилирования и пять потенциальных мест N- гликозилирования.ФУНКЦИИ . CD19 экспрессирован на всех В-лимфоцитах человека и на предшественниках В-клеток, но не на плазматических клетках. CD19 встречается также на фолликулярных дендритных клетках. CD19 включен в регуляцию В-клеточной пролиферации. Перекрестное связывание CD19 молекул без участия Ig ингибирует повышение концентрации свободных ионовкальция в цитоплазме и пролиферацию, индуцируемую антииммуноглобулиновыми антителам. CD20 (В1 , Рр35 ) - это фосфопротеин, молекулярная масса которого равна 33 - 37 кДа. Полипептидная цепь состоит из 297 аминокислот. CD20 экспрессируется на В-клетках; возможно участвует в активации В-клеток. СТРУКТУРНАЯ ХАРАКТЕРИСТИКА . Молекула содержит четыре трансмембранных сегмента. С и N-концы молекулы расположены внутри клетки. Фосфорлирование CD20 увеличивается в активированных клетках. CD20 обнаруживает гомологию с бета-цепью Fc-эпсилон-R1 . Общая организация структуры CD20 подобна структуре каналобразующих белков. ФУНКЦИИ . CD20 экспрессирован у человека и мышей только на В- лимфоцитах. У человека он встречается как на покоящихся, так и на активированных В-лимфоцитах, но отсутствует на плазматических клетках. CD20 принимает участие в В-клеточной активации и В-клеточной пролиферации. Ряд моноклональных антител к CD20 ингибирует клеточную пролиферацию, вызванную анти-Ig. В клетках Jurkat , трансфецированных геном CD20, этот белок непосредственно регулирует вход кальция в цитоплазму. Предполагают, что он формируеткальциевый канал.] и образует интрацитоплазматические μ-цепи иммуноглобулина. Когда В-л. Созревают, они экспрессируют на своей поверхности целые молеулы АТ. Последующие этапы созревания В-л. Зависят от АГ. С помощью Т-хелперов и специализированных макрофагов, антигенперзентующих, В-кл пролиферируют и созревают. Образующиеся в результате этих процессов плазматические клетки продуцируют большое количество иммуноглобулиновых молекул строго определенной специфичности. Характерный внешний вид: эксцентричное ядро с распредеоенным по периферии хроматином, базофильная цитоплазма, светлая чистая перинуклеарная зона с активным комплексом Гольджи. Другие стимулированные В-л. Становятся клетками долговременной памяти, сохраняющими информацию о ранее встречавшемся АГ, они быстро пролиферируют и продуцируют юольшое количество иммуноглобулина при повторной ыстрече с известным АГ.

Существуют 5 основных классов иммуноглобулинов IgG, IgA, IgM, IgD, IgE. Наиболее распространены IgG, есть 1,2,3 и 4. IgA имеет 2 подтипа: сывороточная и сереторная – находится в секретах слизистых и подслизистых, Ig D и IgE- минорные группы иммуноглобулинов, учавствующие в аллергических реакциях и реакциях гиперчувствительности замедленного типа. IgM полимеризуется, формируя большие пентамерные структуры.

Активация B-клеток вызывается либо неспецифическими поликлональными активаторами, либо перекрестным связыванием иммуноглобулиновых рецепторов одновременно с получением сигнала от макрофага или T-хелпера, распознающего номинальный антиген в комплексе с молекулами MHC класса II . Таким образом, B-лимфоциты реагируют на три различных типа антигенов:

Антигены тимус-независимые типа 1 Некоторые антигены, такие, как бактериальный липополисахарид, при достаточно высокой концентрации способны к поликлональной активации значительной части популяцииB-лимфоцитов, т.е. для такой активации антигенная специфичность поверхностных рецепторов клетки роли не играет.При низкой концентрации подобных антигенов, не приводящей к поликлональной активации, те B-лимфоциты, у которых иммуноглобулиновые рецепторы специфичны по отношению к данным антигенам, будут пассивно фокусировать их на своей поверхности. При этом за счет собственной митогенной активности эти антигены будут стимулироватьпролиферациюклеток.Таким образом, тимус-независимые антигены типа 1 стимулируют деление B-клеток, взаимодействуя не с иммуноглобулиновыми рецепторами, а с другими структурами поверхностной мембраны.Тимус-независимые антигены вызывают преимущественный синтезIgM, и индуцируемый ими иммунный ответ практически не сопровождается формированиемклеток памяти.

Антигенны тимуснезависимые 2 типа.Некоторые линейные антигены, медленно распадающиеся в организме и имеющие часто повторяющуюся, определенным образом организованную детерминанту, например, полисахарид пневмококков или полимеры D- аминокислот способны непосредственно без участия T-клеток стимулировать B-лимфоциты, т.е. относятся к тимус-независимым антигенам. Они длительное время персистируют на поверхности специализированных макрофагов краевого синусалимфатического узла и маргинальной зоны селезенки. Связывание этих антигенов с антигенспецифическими B-клетками происходит с высокой авидностью и обусловлено как перекрестным взаимодействием антигенных детерминант с иммуноглобулиновыми рецепторами (рис.6.13б), так и вспомогательными факторами, выделяемымыми макрофагами. Таким образом, тимус-независимые антигены типа 2, по-видимому, вызывают деление клеток как за счет перекрестного связывания иммуноглобулиновых рецепторов, так и с помощью вспомогательных факторов, выделяемых макрофагами. Тимус-независимые антигены вызывают преимущественный синтез IgM , и индуцируемый ими иммунный ответ практически не сопровождается формированием клеток памяти.

TD (антигены тимусзависимые) Антигены T-зависимые (или тимус-зависимые) - это антигены, не способные непосредственно, без участия T-клеток стимулировать B- лимфоциты. Большинство природныхантигеновявляется тимусзависимыми. Это означает, что полноценное развитие специфического иммунного ответа к таким антигенам начинается только после подключенияT-лимфоцитов. Эти антигены в отсутствиеT-лимфоцитовлишены иммуногенности: они могут быть одновалентными в отношении специфичности каждойдетерминанты, подвергаться быстрой деградации фагоцитирующими клетками, наконец, не обладать собственной митогенной активностью. Связавшись с B-клеточными рецепторами, они, так же как игаптены, не способны активировать B- клетку. Гаптены приобретают иммуногенность при соединении с подходящимбелком-носителем. В настоящее время известно, что функция носителя заключается в стимуляцииT-хелперов, помогающих B-клеткам реагировать на гаптен, стимулируя последние дополнительными сигналами (рис. 6.10). Подобные представления сложились на основании опытов как in vivo, так и in vitro.

Адипоциты . Жировые клетки - адипоциты, - развиваются из адвентициаль ных клеток. Это крупные шаровидные клетки диаметром 30-50 мкм. В цитоплазме адипоцитов накапливаются липидные включения в виде мелких капель, которые позднее сливаются в одну большую каплю. Ядро при этом оттесняется на периферию, и цитоплазма составляет лишь узкий ободок. Обезжиренная клетка на гистологическом срезе напоминает по виду перстень. Под электронным микроскопом в жировых клетках определяются слабо развитые цитоплазматическая сеть, комплекс Гольджи и митохондрии. Адипоциты накапливают жир как трофический резервный материал. Жировые клетки могут освобождаться от включений. При этом они становятся трудно отличимыми от клеток фибробластического ряда.

Жировые клетки встречаются среди фибробластов рыхлой соединительной ткани в незначительном количестве. В тех случаях, когда они образуют большие скопления, то говорят уже не об отдельных клетках, а о жировой ткани.

Пигментоциты . В рыхлой волокнистой соединительной ткани обнаруживаются клетки, цитоплазма которых содержит зерна пигмента - меланина. Среди этих клеток различают синтезирующие пигмент - меланоциты и фагоцитирующие готовый пигмент, например, фибробласты и макрофаги. Ткань с большим количеством меланоцитов встречается у человека в радужке и сосудистой оболочке глаза, в соединительнотканных слоях сильно пигментированных участков кожи, а также в родимых пятнах. Меланоциты являются производными нервного гребня, имеют отростчатую или веретеновидную форму, подвижны, функция и форма клеток может меняться в зависимости от гуморальных и нервных факторов. Клетки могут втягивать свои отростки или вытягивать их, соответственно меняется окраска органа или, например, в органе зрения происходит защита фоточувствительного отростка нейрона от воздействия света.
Сказанным не исчерпывается все разнообразие клеточных форм, имеющихся в составе рыхлой соединительной ткани.

В рыхлой соединительной ткани постоянно находятся клетки, являющиеся потомками стволовой кроветворной клетки. Это гистиоциты-макрофаги, антигенпредставляющие клетки, тканевые базофилы (тучные клетки), плазмоциты, клетки крови (гранулоциты, моноциты, лимфоциты).

Гистиоциты-макрофаги . Они составляют 10-20% от всего клеточного состава рыхлой соединительной ткани. Размер клеток - 12-25 мкм. Макрофаги, находящиеся в спокойном состоянии, называют гистиоцитами, оседлыми макрофагами или блуждающими клетками в покое (рис.51). Подвижные макрофаги, не имеющие определенной локализации в ткани, называют свободными макрофагами. Ядро макрофагов - темное, округлое, содержит крупные глыбки хроматина. Цитоплазма макрофагов четко контурирована. В ней содержатся большое количество вакуолей - фагосом и лизосом, комплекс Гольджи, многочисленные пиноцитозные пузырьки. Остальные органеллы развиты умеренно. Хорошо развитая опорно-двигательная система способствует миграции клеток и фагоцитозу инородних частиц. По характеру и количеству ультраструктур выделяются макрофаги секреторного и фагоцитарного видов. У первых в цитоплазме преобладают секреторные вакуоли, у вторых - лизосомальный аппарат. Источником образования макрофагов являются моноциты крови.

Особая разновидность макрофагов принимает участие в качестве антигенпредставляющей клетки и тем самым являются участниками кооперации Т- и В-лимфоцитов при иммунном ответе на чужеродные вещества. Макрофаги нейтрализуют токсины, могут накапливать витальные красители при введении их в кровь. Они проявляют антибактериальные свойства, выделяя лизоцим, кислые гидролазы, лактоферрин и др., обладают антиопухолевой активностью, выделяя фактор некроза опухолей. Факторы роста макрофагов влияют на пролиферацию эпителиальных клеток, пролиферацию и дифференцировку фибробластов, новообразование кровеносных сосудов и др.

Способность к фагоцитозу является общебиологическим свойством многих тканевых клеток. Однако только те клетки, которые способны захватывать и ферментативно перерабатывать в своей цитоплазме бактерии, инородние частицы, токсины и др., следует относить к макрофагической системе организма. Учение о макрофагической системе заложил И.И. Мечников (1882), который в экспериментах на беспозвоночных обнаружил подвижные клетки, накапливающиеся около инороднего тела. Именно эти клетки были названы макрофагами. Кроме макрофагов-гистиоцитов в состав макрофагической системы организма входят макрофаги печени (звездчатые макрофагоциты, остеокласты, глиальные макрофаги, макрофаги кроветворных органов, макрофаги легкого и др.). Регуляция макрофагической системы осуществляется как местными так и центральными (нервная и эндокринная системы) механизмами.

Тканевые базофилы (тучные клетки, лаброциты, гепариноциты) - развиваются из стволовых кроветворных клеток. Клетки округлой или овальной формы размером от 20 до 30-100 мкм, располагаются преимущественно вдоль мелких кровеносных сосудов. Они имеют небольшое плотное ядро и зернистую цитоплазму (рис. 52). Наиболее характерный признак тучных клеток - это наличие в цитоплазме многочисленных гранул, диаметр которых 0,3-0,7 мкм, обладающих свойством метахромазии (окрашиваться не в цвет красителя). В гранулах содержатся гепарин, гистамин, хондроитинсульфаты, гиалуроновая кислота, серотонин, хемотаксические факторы для эозинофильных и нейтрофильных гранулоцитов и др. При дегрануляции тучных клеток выделяется гепарин, препятствующий свертыванию крови. Выход биогенных аминов сопровождается изменением проницаемости гематотканевого барьера. Кроме того, тучные клетки вырабатывают цитокины, участвующие в иммунных процессах. Тучные клетки размножаются крайне редко.

error: Content is protected !!