Медицинская микробиология, иммунология и вирусология. Бактериофаги, особенности строения и практическое применение Специфическая трансдукция


Трансдукция - это перенос генетического материала из одной бактериальной клетки в другую бактериофагом. Трансдукция была открыта в 1952 г. Н. Циндером и Е. Ледербергом на двух ауксотрофных мутантах Salmonella typhimurium. Опыт проводился в {/-образной трубке, разделенной стеклянным ультратонким пористым фильтром. В одну часть ее помещали гистидин - зависимый штамм 2А, в другую - триптофан - зависимый штамм 22А. Спустя некоторое время в культуре штамма 22А появлялись прототрофы, синтезирующие триптофан. Было установлено, что штамм 22А содержал фаг (Р22), способный лизировать клетки штамма 2А. Проникая через стеклянный фильтр, фаг Р22 лизировал клетки штамма 2А. При этом высвобождался неизвестный агент, названный фильтрующимся. Этот агент проходил через фильтр и сообщал некоторым клеткам штамма 22А способность к синтезу триптофана. Поэтому при высеве культуры 22А на среду, не содержащую триптофан, появлялся рост этой культуры.
Изучение величины (по размерам пор фильтра), скорости седиментации, чувствительности к нагреванию этого фильтрующегося агента показало, что он идентичен таковыми фага Р22. На основании этого было сделано заключение, что содержащийся в культуре 22А фаг проходил через фильтр, инфицировал чувствительные к нему клетки штамма 2А и в процессе репродукции в состав своего генома включал фрагмент хромосомы бактерий этого штамма. Высвободившись из лизированных клеток, фаг проходил обратно в колено трубки, где были клетки штамма 22А. При инфицировании этих клеток фаг передавал им унесенный фрагмент хромосомы клеток штамма 2А, которые были независимы по триптофану. В результате интеграции этого фрагмента в хромосому клеток штамма 22А образовывались прототрофные рекомбинанты. В культуре штамма 2А прототрофы не появлялись, так как клетки лизировались.
Фаг может переносить гены, ответственные за различные свойства клетки: устойчивость к антибиотикам, токсинообразова- ние, прототрофность. При трансдукции, как и при трансформации, переносятся только небольшие фрагменты ДНК - не более 1/100 длины бактериальной хромосомы.
Трансдуцирующими свойствами обладают только некоторые умеренные фаги, а именно: фаги, которые несут в составе своего генома фрагмент бактериальной хромосомы. Эти фаги дефектны: они не содержат полный набор собственных генов. Часть их генов остается в хромосоме бактерий (вместо взятых генов хромосомы).
Различают три типа трансдукции: общую, или неспецифическую, специфическую и абортивную.
Тип трансдукции определяется условиями формирования трансдуцирующих фагов.
Общая трансдукция осуществляется фагами, которые образуются в ходе литического цикла. При внутриклеточном размножении фага происходит разрушение бактериальной хромосомы и отдельные случайные фрагменты ее включаются в созревающие частицы фага. Размер включенного фрагмента определяется емкостью головки фага. Например, трансдуцирующий фаг Р1 включает 2,3 % хромосомы Е. coli, фаг Р22, геном которого в 2,3 раза меньше, чем у Р1 (следовательно, и емкость головки также меньше), включает 1 % хромосомы сальмонелл. У отдельных трансдуцирующих фагов вся их ДНК может быть заменена на бактериальную. Поэтому такие фаги могут переносить любые хромосомные гены и включаться в любой участок хромосомы реципиента. Фаги, обеспечивающие такую трансдукцию, могут переносить гены, контролирующие пищевые потребности бактерий, ферментативные свойства, устойчивость к лекарственным препаратам, серологические и вирулентные свойства, т. е. любые свойства донорной клетки.
Специфическая трансдукция осуществляется фагами, образовавшимися в результате индукции лизогенных бактерий (например, облучением их УФ), либо при спонтанном освобождении профага из хромосомы. В общих случаях формирующийся фаг при исключении из хромосомы может включать в свой геном только рядом расположенный сегмент хромосомы, оставив часть своего генома в хромосоме. В отличие от фагов, осуществляющих общую трансдукцию, в геноме которых преобладает бактериальная ДНК, у фагов специфической трансдукции основную часть генома составляет фаговая ДНК. При лизогенизации чувствительных бактерий геном фага специфической трансдукции соединяется только с определенными участками i хромосомы бактерий, т. е. фаг имеет определенную точку прикрепления на хромосоме. Поэтому при освобождении такой фаг захватывает только рядом расположенную строго определенную область хромосомы бактерий и передает ее реципиентной клетке. Эта способность к специфической трансдукции была установлена у фага X Е. coli, который при лизогенизации клеток всегда фиксируется на бактериальной хромосоме рядом с генами, контролирующими ферментацию галактозы (галактокиназы и галактозилтрансферазы), и трансдуцирует их в клетку реципиента gal-. При специфической трансдукции клетка- реципиент получает строго определенные гены.
Абортивная трансдукция происходит так же, как и неспецифическая, но фрагмент хромосомы донора, привнесенный фагом в реципиентную клетку, не включается в хромосому и не реплицируется, а располагается в цитоплазме клетки. Этот фрагмент при делении клетки передается только одной дочерней клетке, и только эта клетка несет новое свойство, контролируемое привнесенным геном донорной клетки.
Трансдукцию необходимо отличать от фаговой конверсии. При трансдукции любого типа изменения происходят лишь в тех инфицированных фагом клетках, в которые была внесена ДНК бактерий-доноров, т. е. которые были инфицированы трансдуци- рующими фагами. Это весьма небольшое количество бактериальной популяции. Изменения, вызванные трансдуцирующими фагами, очень стойкие, передаются потомству и сохраняются даже тогда, когда клетка теряет фаг.
Фаговая, гаи лизогенная, конверсия - это изменения фенотипа (свойства клетки), обусловленные заражением клетки умеренным фагом. Изменения здесь вызывают гены фага. Они могут непосредственно контролировать синтез отдельного фрагмента или, взаимодействуя с бактериальными, приводить к изменению фенотипа клетки. Чаще всего фаговая конверсия затрагивает синтез или активность ферментов, контролирующих образование клеточных компонентов, что сопровождается изменениями морфологии колоний. Так, лизогенизация шероховатых штаммов микобактерий приводит к образованию гладких колоний. Изменение испытывают все инфицированные фагом клетки (при трансдукции - одиночные). При фаговой конверсии изменения фенотипа бактерий сохраняются до тех пор, пока в клетке присутствует фаг.

Трансдукция была открыта Дж. Ледербергом и Н.Циндером в 1952 г. у Salmonella typhimurium и фага Р22.

Трансдукция – перенос генетической информации (хромосомных генов или плазмид) от клетки-донора к клетке-реципиенту, который осуществляется при участии бактериофагов. При трансдукции фрагменты хромосомы или плазмиды должны упаковаться в головку бактериофага; выйти в составе этой фаговой частицы из клетки-донора в результате ее лизиса и попасть в другую клетку (клетку-реципиент) при новом акте заражения. Белковый капсид фаговой головки предохраняет находящуюся в ней ДНК от разрушения внеклеточными нуклеазами. В этом отношении трансдуцирующая ДНК более «сохранна», чем «голая» ДНК при трансформации. Поскольку адсорбция хвостового отростка фага на рецепторах поверхности клетки видоспецифична, то и перенос генетического материала при трансдукции может происходить, в основном, между близкородственными бактериями.

При трансдукции размеры переносимого фрагмента ДНК определяются размерами головки бактериофага. Различные фаги могут переносить фрагменты ДНК от 20 до 40 т. п. н. Таким образом, при трансдукции передаются как единичные гены, как и сцепленные маркеры. Рекомбинанты, получаемые при данном способе обмена генетической информацией, называются трансдуктантами .

Изучение трансдукции показало, что одни фаги могут переносить разные бактериальные гены, а другие – только определенные. В соответствии с этим принято выделять два типа трансдукции: 1) генерализованная (неспецифическая, или общая); 2) специфическая, или ограниченная.

При генерализованной трансдукции может переноситься любой бактериальный признак с частотой 10 –5 –10 –6 . Количество бактериальной ДНК, которое может переноситься фагом, обычно составляет 1–2 % всей ДНК, содержащейся в клетке. Исключение составляет бактериофаг РBS1 B. subtilis , который может трансдуцировать до 8 % генома хозяина. В осуществлении генерализованной трансдукции бактериальный вирус является только «пассивным» переносчиком генетического материала бактерий. Трансдуцирующие дефектные фаги содержат только фрагменты бактериальной ДНК. А генетическая рекомбинация у трансдуцируемых бактерий происходит по общим закономерностям рекомбинационного процесса.

Характерными особенностями специфической трансдукции являются: 1) каждый трансдуцирующий фаг передает только строго определенную, весьма ограниченную область бактериальной хромосомы; 2) фаг не только переносит генетический материал, но и обеспечивает его включение в бактериальную хромосому; 3) вирус включает ДНК бактерий в свой геном и передает ее, лизогенизируя бактерии-реципиенты.

Наиболее известным примером специфической трансдукции является трансдукция, осуществляемая фагом λ, который способен заражать клетки бактерий E. coli с последующей интеграцией его ДНК в геном бактерий.

Трансдукция имеет практическое использование:

Позволяет трансдуцировать плазмиды и короткие фрагменты хромосомы донора;

Для конструирования штаммов заданного генотипа, в частности изогенных штаммов. Изогенные штаммы, сконструированные при помощи генерализованной трансдукции, различаются только по участку хромосомы, переносимому трансдуцирующим фагом;

Для точного картирования бактериальных генов, установления порядка и их расположения в оперонах.

Вопросы для самоконтроля

1 Какие процессы могут происходить в клетке-реципиенте, после попадания вовнутрь нее донорной ДНК и перехода в состояние мерозиготы?

2 Что такое процесс трансформации? Какие стадии он включает?

3 Перечислите основные стадии процесса конъюгации.

4 Охарактеризуйте процесс трансдукции. Чем отличается специфическая трансдукция от генерализованной?

Практическое занятие 8

Цель: изучение основных способов генетического обмена у бактерий; выявление общих и отличительных особенностей процессов трансформации, конъюгации и трансдукции.

Материалы и оборудование : демонстрационные схемы (рисунки): а) мерозиготы; б) процесса трансформации; в) механизма бактериальной конъюгации; г) F-плазмиды бактерий E. сoli ; д) генерализованной трансдукции; ж) специфической трансдукции; электронная микрофотография конъюгирующих клеток E. сoli ; цветные карандаши.

Ход работы

В протоколе занятия:

1 Дать общую характеристику способам обмена генетической информацией у бактерий: указать три основных способа обмена генетической информацией, их общие особенности.

2 Нарисовать схему мерозиготы и показать два пути ее развития.

3 Охарактеризовать процесс трансформации согласно схеме описания: понятие трансформации, история открытия, этапы процесса трансформации, компетентность, практическое использование трансформации.

4 Составить графологическую схему «Стадии процесса трансформации», отразив в этой схеме по отдельности процесс трансформации: а) плазмидной ДНК; б) бактериальной ДНК.

5 Охарактеризовать процесс конъюгации согласно схеме описания: понятие конъюгации, история открытия, этапы процесса конъюгации, количество переносимой ДНК при конъюгации, практическое использование конъюгации.

6 Составить графологическую схему «Передача генетического материала при конъюгации», отразив в этой схеме по отдельности участие в качестве клеток-доноров: а) F + -доноров; б) доноров Hfr-типа.

7 Охарактеризовать процесс трансдукции согласно схеме описания: понятие трансдукции, история открытия, этапы процесса трансдукции, количество переносимой ДНК при трансдукции, типы трансдукции, практическое использование трансдукции.

8 Составить графологические схемы «Генерализованная трансдукция», «Специфическая трансдукция». Обратить внимание на существенные отличия между этими двумя типами трансдукции.

Специфическая трансдукция

Отличается от неспецифической тем, что в этом случае трансдуцирующие фаги всегда переносят только определенные гены, а именно, те из них, которые располагаются в хромосоме лизогенной клетки слева от attL или справа от attR. Специфическая трансдукция всегда связана с интеграцией умеренного фага в хромосому клетки-хозяина. При выходе (исключении) из хромосомы профаг может захватить ген с левого или правого фланга, например или gal, или bio. Но в этом случае он должен лишиться такого же размера своей ДНК с противоположного конца, чтобы ее общая длина оставалась неизменной (иначе она не может быть упакована в головку фага). Поэтому при такой форме исключения обр

Специфическую трансдукцию у E. coli осуществляет не только фаг лямбда, но и родственные ему лямбдоидные и другие фаги. В зависимости от места расположения сайтов attB на хромосоме они при своем исключении могут включать различные бактериальные гены, сцепленные с профагом, и трансдуцировать их в другие клетки. Встраивающийся в геном материал может замещать до 1 / 3 генетического материала фага.

Трансдуцирующий фаг в случае инфицирования реципиентной клетки интегрируется в ее хромосому и привносит в нее новый ген (новый признак), опосредуя не только лизогенизацию, но и лизогенную конверсию.

Таким образом, если при неспецифической трансдукции фаг является только пассивным переносчиком генетического материала, то при специфической фаг включает этот материал в свой геном и передает его, лизогенизируя бактерии, реципиенту. Однако лизогенная конверсия может произойти и в том случае, если геном умеренного фага содержит такие собственные гены, которые у клетки отсутствуют, но отвечают за синтез существенно важных белков. Например, способностью вырабатывать экзотоксин обладают только те возбудители дифтерии, в хромосому которых интегрирован умеренный профаг, несущий оперон tox. Он отвечает за синтез дифтерийного токсина. Иначе говоря, умеренный фаг tox вызывает лизогенную конверсию нетоксигенной дифтерийной палочки в токсигенную.

Метод агаровых слоев заключается в следующем. Вначале в чашку наливают слой питательного агара. После застывания на этот слой добавляют 2 мл расплавленного и охлажденного до 45 °C агара 0,7 %-ного, в который предварительно добавляют каплю концентрированной суспензии бактерий и определенный объем суспензии фага. После того как верхний слой застынет, чашку помещают в термостат. Бактерии размножаются внутри мягкого слоя агара, образуя сплошной непрозрачный фон, на котором хорошо видны колонии фага в виде стерильных пятен (рис. 84, 2). Каждая колония образуется за счет размножения одного исходного фагового вириона. Применение этого метода позволяет: а) путем подсчета колоний точно определить количество жизнеспособных фаговых вирионов в данном материале;

б) по характерным признакам (размер, прозрачность и др.) изучать наследственную изменчивость у фагов.

По спектру своего действия на бактерии фаги подразделяются на поливалентные (лизируют родственные бактерии, например поливалентный сальмонеллезный фаг лизирует почти все сальмонеллы), монофаги (лизируют бактерии только одного вида, например фаг Vi-I лизирует только возбудителей брюшного тифа) и типоспецифические фаги, которые избирательно лизируют отдельные варианты бактерий внутри вида. С помощью таких фагов производится наиболее тонкая дифференциация бактерий внутри вида, с разделением их на фаговарианты. Например, с помощью набора фагов Vi-II возбудитель брюшного тифа делится более чем на 100 фаговариантов. Поскольку чувствительность бактерий к фагам является относительно стабильным признаком, связанным с наличием соответствующих рецепторов, фаготипирование имеет важное диагностическое и эпидемиологическое значение.

Трансдукция - перенос генов из одной бактериальной клетки в другую при помощи бактериофага. Впервые это явление уста­новили в 1952 г. Н. Зиндер и Дж. Ледерберг. Они проводили исследования на патогенных для мышей бактериях Salmonella typhimurium. Были отобраны два штамма этих бактерий: штамм 22А ауксотрофный, не способный синтезировать триптофан (Т~), и штамм 2А, способный синтезировать триптофан (Т 1 "). Эти штаммы засевали в U-образную трубку, разделенную внизу бак­териальным фильтром (рис. 24). В одно колено трубки засевали штамм 22А (Т~), в другое - штамм 2А (Т 1 "). После определенно­го периода инкубации бактерии штамма 22А при посеве на ми­нимальную питательную среду дали небольшое количество коло­ний (частота появления трансдуцированных клеток была равна Ы0~ 5). Это свидетельствовало о том, что некоторые клетки приобрели способность синтезировать триптофан. Каким же об­разом бактерии могли приобрести это свойство? Исследования

Рис. 24. Схема опыта по трансдукцин

показали, что штамм 22А был лизогенен по фагу Р-22. Этот
фаг освобождался из лизогенной культуры, проходил через
фильтр и лизировал штамм 2А. Присоединив часть генетичес-
кого материала штамма 2А, фаг Бактериальные возвращался обратно и переда­ вал этот генетический материал штамму 22А. Штамм 22А при­
обретал специфические наслед­ственные свойства штамма 2А,
в данном случае свойство син­тезировать триптофан. Анало­гичным образом могут бытьтрансдуцированы и другие при­знаки, в том числе способность
к сбраживанию, устойчивость кантибиотикам и т. д.

Явление трансдукции уста­новлено также у кишечной па-лочки и актиномицетов. Как правило, трансдуцируется один ген, реже два и очень редко три сцепленных гена. При переносе генетического материала заменяется участок молекулы ДНК фага. Фаг при этом теряет свой собственный фрагмент и стано­вится дефектным. Включение генетического материала в хромо­сому бактерии реципиента осуществляется механизмом типа кроссинговера. Происходит обмен наследственным материалом между гомологичными участками хромосомы реципиента и мате­риала, привнесенного фагом.

Различают три вида трансдукции: общую, или неспецифичес­кую, специфическую и абортивную. При неспецифической транс­дукции в период сборки фаговых частиц в их головку вместе с фаговой ДНК может включиться любой из фрагментов ДНК пораженной бактерии. В результате в реципиентные клетки могут переноситься различные гены бактерии донора. Неспеци­фическую трансдукцию могут осуществлять фаги Р-1 и Р-22 у эшерихий, шигелл и сальмонелл. При специфической трансдукции профаг включается в определенное место хромосомы бактерии и трансдуцирует определенные гены, расположенные в хромосоме клетки донора рядом с профагом. Например, фаг "к (лямбда) в состоянии профага всегда включается в одно и то же место в хромосоме кишечной палочки и трансдуцирует локус, обуслов­ливающий способность к сбраживанию галактозы. При отделе­нии профагов от ДНК хозяина прилегающие к профагу бактери­альные гены вместе с ним выщепляются из состава хромосомы, а часть генов профага остается в ее составе. Частота общей трансдукции составляет от 1 на 1 млн до 1 на 100 млн. Специ­фическая трансдукция происходит чаще.

Установлено, что фрагмент хромосомы донора, перенесенный в % клетку реципиента, не всегда включается в хромосому реципи­ента, а может сохраняться в цитоплазме клетки. При делении бактерий он попадает только в одну из дочерних клеток. Такое состояние получило название абортивной трансдукции.

Поведение фагов в бактериальной клетке

Фаги способны к реализации двух путей развития в бактериальной клетке:

  • Литический - после попадания в бактерию ДНК фага сразу же начинается его репликация, синтез белков и сборка готовых фаговых частиц, после чего происходит лизис клетки. Фаги, развивающиеся только по такому сценарию, называют вирулентными.
  • Лизогенный - попавшая в бактериальную клетку ДНК фага встраивается в её хромосому или существует в ней как плазмида , реплицируясь при каждом делении клетки. Такое состояние бактериофага носит название профаг . Система его репликации в этом случае подавлена синтезируемыми им самим репрессорами. При снижении концентрации репрессора профаг индуцируется и переходит к литическому пути развития. Реализующие подобную стратегию бактериофаги называются умеренными. Для некоторых из них стадия профага является обязательной, другие в некоторых случаях способные сразу развиваться по литическому пути.

Перенос фрагментов ДНК бактерии

Общая (неспецифическая) трансдукция

Осуществляется фагом P1, существующим в бактериальной клетке в виде плазмиды, фагами P22 и Mu, встраивающимися в любой участок бактериальной хромосомы. После индуцирования профага с вероятностью в 10 −5 на одну клетку возможна ошибочная упаковка фрагмента ДНК бактерии в капсид фага, ДНК самого фага в нём в этом случае нет. Длина этого фрагмента равна длине нормальной фаговой ДНК, его происхождение может быть любым: случайный участок хромосомы, плазмида, другие умеренные фаги.

Попадая в другую бактериальную клетку, фрагмент ДНК может включаться в её геном, обычно путём гомологичной рекомбинации. Перенесённые фагом плазмиды способны замыкаться в кольцо и реплицироваться уже в новой клетке. В ряде случае фрагмент ДНК не встраивается в хромосому реципиента, не реплицируется, но сохраняется в клетке и транскрибируется . Это явление носит название абортивной трансдукции.

Специфическая трансдукция

Наиболее хорошо изучена специфическая трансдукция на примере фага λ . Этот фаг встраивается только в один участок (att-сайт) хромосомы E. coli с определённой последовательностью нуклеотидов (гомологичной att-участку в ДНК фага). Во время индукции его исключение может пройти с ошибкой (вероятность 10 −3 -10 −5 на клетку): вырезается фрагмент тех же размеров что и ДНК фага, но с началом не в том месте. При этом часть генов фага теряется, а часть генов E. coli захватывается им. Вероятность переноса гена в этом случае падает при увеличении расстояния от него до att-сайта.

Для каждого специфически встраивающегося в хромосому умеренного фага характерен свой att-сайт и, соответственно, расположенные рядом с ним гены, которые он способен передавать. Ряд фагов может встраиваться в любое место на хромосоме и переносить любые гены по механизму специфической трансдукции. Кроме того, в хромосоме обычно есть последовательности, частично гомологичные att-участку ДНК фага. При повреждении полностью гомологичного att-сайта можно добиться включения фага в хромосому по этим последовательностям и передачу в ходе специфической трансдукции генов, соседних уже с ними.

Когда умеренный фаг, несущий бактериальные гены, встраивается в хромосому новой бактерии-хозяина, она содержит уже два одинаковых гена - собственный и принесённый извне. Поскольку фаг лишён части собственных генов, часто он не может индуцироваться и размножиться. Однако при заражении этой же клетки «вспомогательным» фагом того же вида, индуцирование дефектного фага становится возможным. Из хромосомы выходят и реплицируются как ДНК нормального «вспомогательного» фага, так и ДНК дефектного, вместе с переносимыми им бактериальными генами. Поэтому около 50% образующихся фаговых частиц несут бактериальную ДНК. Это явление носит название трансдукции с высокой частотой (HFT от англ. high frequency transduction ).

История изучения

Эстер Ледерберг была первой учёной, кому удалось выделить бактериофаг лямбда, ДНК вирус, из Escherichia coli K-12 в 1950 году.

Собственно открытие трансдукции связано с именем американского учёного Джошуа Ледерберга . В году он совместно с Нортоном Циндером обнаружил общую трансдукцию. В Ледербергом и др. было показано существование абортивной трансдукции, в - специфической.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Трансдукция (генетика)" в других словарях:

    Раздел общей генетики (См. Генетика), в котором объектом исследования служат бактерии, микроскопические грибы, актинофаги, вирусы животных и растений, бактериофаги и др. микроорганизмы. До 40 х гг. 20 в. считалось, что, поскольку у… …

    - [нэ], и; ж. [от греч. genētikos относящийся к рождению, происхождению]. Наука о законах наследственности и изменчивости организмов. Г. человека. Г. растений. Медицинская г. Космическая г. * * * генетика (от греч. génesis происхождение), наука о… … Энциклопедический словарь

    - (от лат. transductio перемещение) перенос генетического материала из одной клетки в другую с помощью вируса (См. Вирусы), что приводит к изменению наследственных свойств клеток реципиентов. Явление Т. было открыто американскими учёными Д … Большая советская энциклопедия

    Раздел генетики (См. Генетика) и молекулярной биологии (См. Молекулярная биология), ставящий целью познание материальных основ наследственности (См. Наследственность) и изменчивости (См. Изменчивость) живых существ путём исследования… … Большая советская энциклопедия

    абортивная трансдукция - Форма трансдукции, при которой фрагмент генома бактерии донора не включается в хромосому бактерии рецепиента и не реплицируется, а вместе с геномом вирусной частицы переносчика остается в цитоплазме в виде эписомы и может передаваться только в… …

    неспецифическая (общая, генерализованная) трансдукция - Перенос от бактерии к бактерии произвольного фрагмента бактериальной хромосомы путем его упаковки в капсид бактериофага вместо фагового генома (обычно такой фрагмент при Н.т. достаточно крупный до 2 % всех генов бактерии); к фагам, способным… … Справочник технического переводчика

    ограниченная (специфическая) трансдукция - Передача от бактериального донора бактериальному реципиенту с помощью бактериофага строго определенного фрагмента бактериальной ДНК, расположенного вблизи сайта интеграции бактериофага (как правило, нескольких генов); к бактериофагам,… … Справочник технического переводчика

    Соматических клеток генетика - * саматычных клетак генетыка * somatic cell genetics изучение наследственности и наследственной изменчивости собственно соматических клеток (см.). Изучение генных мутаций у соматических клеток, открытие явления гибридизации соматических клеток и… … Генетика. Энциклопедический словарь

    У этого термина существуют и другие значения, см. Трансформация. Трансформация процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у такой клетки новых для неё наследуемых… … Википедия

    Эстер Мириам Циммер Ледерберг Эстер Ледерберг читает лекцию в медицинской школе им. Каназавы по приглашению доктора Акабори, 1962 г. Дата рождения: 18 декабря 1922 Место рождения: Бронкс, Нью Йорк Дата смерти: 11 ноября 2006 Место смерти … Википедия

error: Content is protected !!