Как строится атомная станция. Россия занимает первое место в мире по строительству атомных электростанций за рубежом

Основная масса энергоблоков АЭС России была заложена и построена еще во времена СССР. Однако несколько российских реакторов были построены в постсоветский период и даже несколько новых АЭС были заложены или находятся в стадии строительства именно в период с девяностых годов прошлого века, после распада Советского Союза. Мы представим Вашему вниманию список всех российских АЭС на карте страны.

Список всех АЭС России на 2017 год

№1. Обнинская АЭС

Обнинская атомная электростанция – первая АЭС в мире, была запущена 27 июня 1954 года. Обнинская АЭС была расположена, как видно на карте АЭС России в Калужской области, недалеко от Московской области, поэтому именно ее вспоминают в первую очередь, говоря об . На Обнинской АЭС действовал единственный реактор мощностью 5 МВт. А 29 апреля 2002 года станция была остановлена.

№2. Балаковская АЭС

Балаковская атомная электростанция – крупнейшая АЭС России – расположена в Саратовской области. Мощность Балаковской АЭС, запущенной в 1985 году, составляет 4 000 МВт, что позволяет ей входить в .

№3. Билибинская АЭС

Билибинская атомная электростанция – самая северная АЭС на карте России и всего мира. Билибинская АЭС действует с 1974 года. Четыре реактора, общей мощностью в 48 МВт обеспечивают электроэнергией и теплом замкнутую систему города Билибино и близлежащих районов на севере России, включая местные золотоносные рудники.

№4. Ленинградская АЭС

Ленинградская атомная электростанция расположена под Санкт-Петербургом. Отличительной особенностью ЛАЭС, действующей с 1973 года, является то, что на станции установлены реакторы типа РБМК – аналогичные реакторам на .

№5. Курская АЭС

Курская атомная электростанция также носит неофициальное имя Курчатовской АЭС, так как рядом расположен город атомщиков Курчатов. На станции, запущенной в 1976 году, также установлены реакторы типа РБМК.

№6. Нововоронежская АЭС

Нововоронежская атомная электростанция расположена в Воронежской области России. Нововоронежская АЭС одна из старейших в России, действует с 1964 года и уже находится в стадии постепенного вывода из эксплуатации.

№7. Ростовская АЭС

Ростовская атомная электростанция (ранее носила имя Волгодонской АЭС) – одна из новейших в России. Первый реактор станции был запущен в 2001 году. С тех пор на станции запустили три реактора и четвертый находится в стадии строительства.

№8. Смоленская АЭС

Смоленская атомная электростанция действует с 1982 года. На станции установлены «чернобыльские реакторы» – РБМК.

№9. Калининская АЭС

Калининская атомная электростанция расположена близ города Удомля в 260 километрах от Москвы и 320 километрах от Санкт-Петербурга.

№10. Кольская АЭС

Кольская атомная электростанция – еще одна северная АЭС России, расположенная, как видно на карте АЭС России, в Мурманской области. Станция фигурировала в романах Дмитрия Глуховского «Метро-2033» и «Метро-2034».

№11. Белоярская АЭС

Белоярская атомная электростанция, расположенная в Свердловской области, единственная АЭС России с реакторами на быстрых нейтронах.

№12. Нововоронежская АЭС 2

Нововоронежская АЭС 2 – строящаяся атомная электростанция, на замену выводимым из эксплуатации мощностям первой Нововоронежской АЭС. Первый реактор станции запущен в декабре 2016 года.

№13. Ленинградская АЭС 2

ЛАЭС 2 – строящаяся атомная электростанция, на замену выводимой из эксплуатации первой Ленинградской АЭС.

№14. Балтийская АЭС

Балтийская атомная электростанция расположена на карте России в Калининградской области. Станция была заложена еще в 2010 году и планировалась к запуску в 2016 году. Но процесс строительства был заморожен на неопределенный срок.

Давно, ребята, ох давно мы с вами не погружались в мир высоких технологий. Но сегодня мы заглянем прямо в действующий энергоблок атомной электростанции и пройдемся такими "тропами", что не каждый атомщик хаживал. Не спрашивайте, как я и несколько моих коллег попали в столь охраняемое место, сколько раз я проверил серийники камеры, объективов и даже флешек, боясь ошибиться хоть в одной цифре, сколько людей осуществляет досмотр и сопровождение визитеров с фотокамерами, сколько пропущенных звонков было на моем телефоне, который пришлось сдать на входе и даже сколько фотографий удалила служба безопасности на выходе... Главное - я внутри машинного зала и ощущаю себя каким-то маленьким муравьишкой, ползающим по материнской плате компьютера.


02 . Конец апреля этого года. Нововоронежская АЭС, проходная пятого энергоблока. Введён в эксплуатацию в мае 1980 года, на 100% мощности выведен в феврале 1981 года.

03 . Общий вид со стороны пруда-охладителя. Пруд был заполнен донской водой в 1978 году и является источником технического водоснабжения циркуляционной системы пятого энергоблока. Замечу, что пруд используется не только для нужд НВ АЭС, но и населением Нововоронежа для рыбохозяйственных, рекреационных и других целей. Мой батя в свое время часто туда на рыбалку ездил. Да и меня с собой таскал. Но я больше любил в нем купаться. Очень уж теплая в нем вода. Парное молоко, да и только. Но не важно. Обратите внимание, что на заднем плане видны два округлых "пупыря". Это купола гермооболочек строящихся 6 и 7 энергоблоков. На их примере я уже расказывал вам в целом.

04 . Более примечательные в фотографическом плане, нежели пруд-охладитель, башенные градирни, часто встречающиеся на иллюстрациях различных статей о Нововоронежской АЭС, прямого отношения к 5 энергоблоку, увы, не имеют. Они относятся к 3 и 4 энергоблокам, поэтому мы с коллегами по фотоцеху только облизывались на них.

05 . Кстати, многие несознательные граждане искренне считают градирни чуть ли не гигантскими печами, исторгающими радиоактивный дым в атмосферу. Между тем, это не более чем устройство для охлаждения воды. Высокая башня создает тягу воздуха, которая необходима для эффективного охлаждения циркулирующей воды. Благодаря высоте башни одна часть испарений горячей воды возвращается в цикл, а другая уносится ветром. То есть, это самый обычный пар. Впрочем, в радиусе до 50 км вокруг Нововоронежской АЭС организовано 33 стационарных дозиметрических поста, на которых контролируются радиоактивность осадков, почвы и растительности, а также наиболее значимой в рационе жителей сельскохозяйственной продукции. Их показания можно посмотреть лично (в Нововоронеже мы проезжали мимо одного), а так же на сайте russianatom.ru.

06 . Но вернемся к 5 энергоблоку. А точнее к его гермооблочке. Или контейнменту. Имено там внутри находится ядерный реактор серии ВВЭР (Водо-Водяной Энергетический Реактор). А вот, к примеру, на Смоленской, Курской, Ленинградской АЭС используются реакторы серии РБМК (Реактор Большой Мощности Канальный). Такие применялись и на Чернобыльской АЭС. Главное преимущество реакторов типа ВВЭР перед РБМК состоит в их большей безопасности, которая определяется тремя основными причинами. ВВЭР принципиально не имеет так называемых положительных обратных связей, т.е. в случае потери теплоносителя и потери охлаждения активной зоны цепная реакция горения ядерного топлива затухает, а не разгоняется, как в РБМК. Активная зона ВВЭР не содержит горючего вещества (графита), которого в активной зоне РБМК содержится около 2 тыс.тонн. И, наконец, реакторы ВВЭР обязательно имеют гермооболочку из предварительно напряжённого железобетона, не допускающую выхода радиоактивности за пределы АЭС даже при разрушении корпуса реактора. Такой реактор останавливают раз в год для перезагрузки топлива и планово-предупредительных работ. Это я сразу поясняю тем, кто уже собрался написать комментарий с вопросом почему это нам не показали реакторный зал.

07 . Поэтому переходим в машинный. Кто на этом фото разглядит человека, тому сразу переходящее звание "соколиный глаз".

08 . Масштабы просто потрясают. Стоишь и диву даешься какого "зверя" смог приручить человек, да еще и заставил работать на свое благо. Ну да не буду особо философствовать и растекаться мыслью по древу, а то нам еще кучу всего нужно посмотреть.

09 . Турбины. На 5-м энергоблоке их две с мощностью по 500 МВт каждая. По своему принципу действия турбина напоминает работу ветряной мельницы. Насыщенный водяной пар из второго (не радиоактивного) контура попадает в турбину и с бешенной скоростью вращает лопатки ротора, расположенные по кругу.

10. А ротор турбины непосредственно связан с ротором генератора, который уже, собственно, и вырабатывает электрический ток.

11 . А сделавший свое дело пар снова переводят в жидкое состояние. Видите зелененькую емкость на фото? Это конденсатор. Точнее часть конденсаторной установки. В ней пар отдает свою тепловую энергию воде, которая поступает из того самого пруда-охладителя и возвращается обратно.

12 . Понятно, что принцип работы я объясняю на пальцах для простоты читательского понимания. И тем более понятно, что вся эта куча оборудования в машинном зале установлена неспроста. Различные насосы, подогреватели, баки технической воды, мостовой кран, пожарные гидранты и, конечно же, километры труб.

13 . Ну, и различные датчики, опять же.

14. И пусть "аналоговость" датчиков на фото никого не смущает. Цифровые системы я покажу ниже, но сразу оговорюсь, что в 2010-2011 гг. в модернизацию 5-го энергоблока было вложено 14 млрд. рублей. Заменили 95% оборудования систем электроснабжения, систем безопасности, 100% оборудования систем радиационного контроля, 95% оборудования систем управления и защиты и систем контроля управления. Так же дополнительно смонтировали второй комплект оборудования систем управления и защиты. Одного кабеля заменили и вновь проложили более двух тысяч километров. Огромный объем работ провели по тепломеханическому оборудованию и оснащению энергоблока системами диагностики. Кстати, до модернизации, при гипотетическом масштабном пожаре или затоплении, еще существовала некоторая вероятность потерять энергоснабжение каналов систем безопасности ввиду того, что аварийные дизель-генераторы и аккумуляторные батареи не были разделены. Теперь такая даже гипотетическая возможность исключена. Кроме того, в период модернизации 5 энергоблока был проанализирован и учтен опыт недавней аварии на "Фукусиме": помимо системы индустриальной антисейсмической защиты энергоблока смонтирована система дожигания водорода в гермоболочке. При том, что Воронежская область по умолчанию сейсмичски безопасна, да и от морей-океанов далекото будет, но раз положено, то учли и сделали всё в соответствии с рекомендациями МАГАТЭ. В результате сейчас 5-ый энергоблок по уровню безопасности соответствует блокам третьего поколения.

15 . Ну, а мы тем временем переходим в Блочный щит управления (БЩУ). Внушает не меньше машзала, не так ли?

16 . Здесь неустанно бдят ведущий инженер по управлению реактором, ведущий инженер по управлению турбинами, ведущий инженер по управлению блоком и начальник смены. При этом, почти всю работу делает автоматика. Люди по большей части наблюдают. Приглядывают, так сказать.

17 . Конечно же, мы сразу захотели нажать посмотреть на Большую Красную Кнопку. По-научному она называется кнопкой срабатывания аварийной защиты. При её срабатывании (автоматическом, при получении системой определённых сигналов от датчиков, или вручную) отключается питание электромагнитов и специальные поглощающие стержни, которые прекращают цепную ядерную реакцию под собственным весом падают в активную зону реактора, переводя его в подкритическое состояние менее чем за 10 секунд. Кроме того включаются насосы борного концентрата, которые через систему продувки-подпитки вводят борную кислоту в 1-й контур. В случае некоторых особо серьёзных сигналов, говорящих о течах 1-го контура, вместе со срабатыванием АЗ запускаются высокопроизводительные аварийные насосы, напрямую закачивающие всё большее количество раствора борной кислоты в 1-й контур по мере снижения в нём давления. При еще более серьёзных сигналах всё оборудование внутри гермооболочки отсекается от обстройки специальной защитной арматурой, способной закрываться за несколько секунд.

18 . Шкафы релейной защиты, притаившиеся в боковых от БЩУ помещениях.

20 . Помимо основного БЩУ в процессе модернизации энергоблока был установлен и резервный БЩУ. Вот его-то видели немногие. Если не считать пары первых лиц государства, экскурсию сюда привели впервые. По сути, резервный БЩУ - это уменьшенная копия главного щита управления. Функционал несколько урезан, но главная его задача, в случае непредвиденного отказа основного блока, отключить все системы.

21 . Но и это еще не всё. В пятом энергоблоке есть еще один БЩУ. Это учебный тренажер, точная копия основного блока управления, стоимостью 10 миллионов долларов. Для чего он нужен? Для обучения сотрудников и моделирования, анализа и отработки нештатных ситуаций.

22 . Вот, например, моделирование аварии на Фукусиме. Воет сирена, все моргает, свет отключается... Ужас, да и только! Я от неожиданности с трудом успел куда-то там нажать на кнопку спуска затвора камеры! К слову сказать, инженер, который даже в совершенстве освоит этот тренажер, сможет работать только на этом же пятом энергоблоке, так как БЩУ на всех АЭС отличаются. Кроме того, после основного курса обучения сотрудники, дополнительно повышают здесь же квалификацию по 90 часов каждый год.

23 . На этом обзорную экскурсию по пятому энергоблоку Нововоронежской АЭС можно считать законченной. Впрочем, для понимания многоуровневости защиты заглянем ещё в отдельно стоящее здание, где "притаился" аварийный питательный насос, который в случае невозможности подачи воды в парогенератор штатным способом автоматически включится и подаст воду из собственных баков запаса.

24 . Сам же насос тут же у стеночки оберегают специальные автоматические низкотемпературные генераторы аэрозольного пожаротушения.

26 . Ну и на десерт глянем одним глазком на сам город атомщиков. Понятно, что АЭС является градообразующим предприятием Нововоронежа. Объем налогов, которые платит Нововоронежская АЭС, составляет около 1,85 млрд рублей. Из них на долю Нововоронежа стабильно приходится более ста миллионов. Значительная часть этих средств расходуется на инфраструктуру. Ремонт фасадов, дорог, школ, реконструкция стадиона, которые делались в последние годы в Нововоронеже, фактически были выполнены на средства Росэнергоатома. Город чист и ухожен. Единственным слабым местом была и остается неблагоустроенная набережная, но, надеюсь, это временно.

27 . Тем более, что совсем рядом с ней расположен воинский мемориал "Звезды славы", а у нас нынче как никак 70-летие Победы.

Кстати, 30 мая у пятого энергоблока тоже юбилей! Целых 35 лет. От всей души поздравляю всех причастных и желаю всего самого наилучшего! Ура!

PS Персональное ку принимающей стороне и всем сопровождающим нас лицам. Безусловные профессионалы своего дела, открытые для диалога с блогосферой региона. В самое ближайшее время соберу в один пост ссылки на все-все отчеты участников блогтура. Если что-то осталось непонятно у меня, прочитаете у них.

Ядерная физика, возникшая как наука после открытия в 1986 году явления радиоактивности учеными А. Беккерелем и М. Кюри, стала основой не только ядерного оружия, но и атомной промышленности.

Начало ядерных исследований в России

Уже в 1910 году была создана Радиевая комиссия в Петербурге, в состав которой вошли известные физики Н. Н. Бекетов, А. П. Карпинский, В. И. Вернадский.

Изучение процессов радиоактивности с выделением внутренней энергии проводилось на первом этапе развития атомной энергетики России, в период с 1921 по 1941 гг. Тогда была доказана возможность захвата нейтрона протонами, теоретически обоснована возможность ядерной реакции путем

Под руководством И. В. Курчатова сотрудники институтов разных ведомств проводили уже конкретные работы по осуществлению цепной реакции при делении урана.

Период создания атомного оружия в СССР

К 1940 году был накоплен огромный статистический и практический опыт, позволивший ученым предложить руководству страны технически использовать огромную внутриатомную энергию. В 1941 году в Москве был построен первый циклотрон, позволивший систематически исследовать возбуждение ядер ускоренными ионами. В начале войны оборудование перевезли в Уфу и Казань, следом отправились и сотрудники.

К 1943 году появилась спецлаборатория атомного ядра под руководством И. В. Курчатова, целью которой стало создание ядерной урановой бомбы или топлива.

Применение атомных бомб Соединенными Штатами в августе 1945 года в Хиросиме и Нагасаки создало прецедент монопольного владения этой страной супероружием и, соответственно, вынудило СССР ускорить работы по созданию собственной атомной бомбы.

Результатом организационных мероприятий стал запуск первого в России уран-графитового ядерного реактора в поселке Саров (Горьковская область) в 1946 году. На испытательном реакторе Ф-1 и была проведена первая ядерная управляемая реакция.

Промышленный реактор по обогащению плутония построили в 1948 г. в Челябинске. В 1949 г. было проведено испытание ядерного плутониевого заряда на полигоне в Семипалатинске.

Этот этап стал подготовительным в истории отечественной атомной энергетики. И уже в 1949 г. были начаты проектные работы по созданию ядерной электростанции.

В 1954 г. в Обнинске осуществили запуск первой в мире (демонстрационной) атомной установки сравнительно небольшой мощности (5 МВт).

Промышленный двухцелевой реактор, где помимо получения электроэнергии еще и нарабатывался оружейный плутоний, был пущен в Томской области (Северск) на Сибирском химическом комбинате.

Российская атомная энергетика: типы реакторов

Атомная электроэнергетика СССР изначально была ориентирована на использование реакторов большой мощности:

  • Канальный реактор на тепловых нейтронах РБМК (реактор большой мощности канальный); топливо - слабообогащенный диоксид урана (2%), замедлитель реакции - графит, теплоноситель - кипящая вода, очищенная от дейтерия и трития (легкая вода).
  • Реактор на тепловых нейтронах, заключенный в корпус под давлением, топливо - диоксид урана с обогащеним 3-5%, замедлитель - вода, она же и теплоноситель.
  • БН-600 - реактор на быстрых нейтронах, топливо - обогащенный уран, теплоноситель - натрий. Единственный в мире промышленный реактор такого типа. Установлен на Белоярской станции.
  • ЭГП - реактор на тепловых нейтронах (энергетический гетерогенный петлевой), работает только на Билибинской АЭС. Отличается тем, что перегрев теплоносителя (воды) происходит в самом реакторе. Признан неперспективным.

В общей сложности в России на десяти АЭС сегодня в эксплуатации находятся 33 энергоблока общей мощностью более 2300 МВТ:

  • с реакторами ВВЭР - 17 блоков;
  • с реакторами РМБК - 11 блоков;
  • с реакторами БН - 1 блок;
  • с реакторами ЭГП - 4 блока.

Список АЭС России и союзных республик: период ввода с 1954 по 2001 гг.

  1. 1954 год, Обнинская, г. Обнинск Калужской области. Назначение - демонстрационно-промышленное. Тип реактора - АМ-1. Остановлена в 2002 г.
  2. 1958 год, Сибирская, г. Томск-7 (Северск) Томской обл. Назначение - выработка оружейного плутония, дополнительное тепло и горячая вода для Северска и Томска. Тип реакторов - ЭИ-2, АДЭ-3, АДЭ-4, АДЭ-5. Окончательно остановлена в 2008 году по соглашению с США.
  3. 1958 год, Красноярская, г. Красноярск-27 (Железногорск). Типы реакторов - АДЭ, АДЭ-1, АДЭ-2. Назначение - выработка тепла для Красноярского горнообогатительного комбината. Окончательная остановка произошла в 2010 году по соглашению с США.
  4. 1964 год, Белоярская АЭС, г. Заречный Свердловской обл. Типы реакторов - АМБ-100, АМБ-200, БН-600, БН-800. АМБ-100 остановлен в 1983 г., АМБ-200 - в 1990 г. Действующая.
  5. 1964 год, Нововоронежская АЭС. Тип реакторов - ВВЭР, пять блоков. Первый и второй остановлены. Статус - действующая.
  6. 1968 год, Димитровоградская, г. Мелекесс (Димитровоград с 1972 г.) Ульяновской обл. Типы установленных исследовательских реакторов - МИР, СМ, РБТ-6, БОР-60, РБТ-10/1, РБТ-10/2, ВК-50. Реакторы БОР-60 и ВК-50 вырабатывают дополнительно электричество. Постоянно продлевается срок остановки. Статус -- единственная станция с исследовательскими реакторами. Предположительное закрытие - 2020 год.
  7. 1972 год, Шевченковская (Мангышлакская), г. Актау, Казахстан. Реактор БН, остановлен в 1990 году.
  8. 1973 год, Кольская АЭС, г. Полярные Зори Мурманской области. Четыре реактора ВВЭР. Статус - действующая.
  9. 1973 год, Ленинградская, Город Сосновый бор Ленинградской обл. Четыре реактора РМБК-1000 (такие же, как и на Чернобыльской АЭС). Статус - действующая.
  10. 1974 год. Билибинская АЭС, г. Билибино, Чукотский автномный край. Типы реакторов - АМБ (сейчас остановлен), БН и четыре ЭГП. Действующая.
  11. 1976 год. Курская, г. Курчатов Курской обл. Установлены четыре реактора РМБК-1000. Действующая.
  12. 1976 год. Армянская, г. Мецамор, Армянской ССР. Два блока ВВЭР, первый остановлен в 1989 году, второй действует.
  13. 1977 год. Чернобыльская, г. Чернобыль, Украина. Установлены четыре реактора РМБК-1000. Четвертый блок разрушен в 1986 г., второй блок остановлен в 1991 г., первый - в 1996 г., третий - в 2000 г.
  14. 1980 год. Ровенская, г. Кузнецовск, Ровенская обл., Украина. Три блока с реакторами ВВЭР. Действующая.
  15. 1982 год. Смоленская, г. Десногорск Смоленской области , два блока с реакторами РМБК-1000. Действующая.
  16. 1982 год. Южноукраинская АЭС, г. Южноукраинск, Украина. Три реактора ВВЭР. Действующая.
  17. 1983 год. Игналинская, г. Висагинас (ранее Игналинский р-н), Литва. Два реактора РМБК. Остановлена в 2009 году по требованию Евросоюза (при вступлении в ЕЭС).
  18. 1984 год. Калининская АЭС, г. Удомля Тверской обл. Два реактора ВВЭР. Действующая.
  19. 1984 год. Запорожская, г. Энергодар, Украина. Шесть блоков на реактора ВВЭР. Действующая.
  20. 1985 год. Саратовской обл. Четыре реактора ВВЭР. Действующая.
  21. 1987 год. Хмельницкая, г. Нетешин, Украина. Один реактор ВВЭР. Действующая.
  22. 2001 год. Ростовская (Волгодонская), г. Волгодонск Ростовской обл. К 2014 году работают два блока на реакторах ВВЭР. Два блока в стадии строительства.

Атомная энергетика после аварии на Чернобыльской АЭС

1986 год стал роковым для этой отрасли. Последствия техногенной катастрофы оказались настолько неожиданными для человечества, что естественным побуждением стало закрытие многих атомных станций. Количество АЭС во всем мире сократилось. Были остановлены строящиеся по проектам СССР не только отечественные станции, но и зарубежные.

Список АЭС России, строительство которых было законсервировано:

  • Горьковская АСТ (теплоцентраль);
  • Крымская;
  • Воронежская АСТ.

Список АЭС России, отмененных на этапе проектирования и подготовительных земляных работ:

  • Архангельская;
  • Волгоградская;
  • Дальневосточная;
  • Ивановская АСТ (теплоцентраль);
  • Карельская АЭС и Карельская-2 АЭС;
  • Краснодарская.

Заброшенные атомные электростанции России: причины

Нахождение площадки строительства на тектоническом разломе - эту причину указывали официальные источники при консервации строительства АЭС России. Карта сейсмически напряженных территорий страны вычленяет Крым-Кавказ-Копетдагскую зону, Байкальскую рифтовую, Алтайско-Саянскую, Дальневосточную и Приамурскую.

С этой точки зрения строительство Крымской станции (готовность первого блока - 80%) было начато действительно необоснованно. Реальной причиной консервации остальных энергообъектов как дорогостоящих стала неблагоприятная ситуация - экономический кризис в СССР. В тот период были законсервированы (буквально брошены для разворовывания) многие промышленные объекты, несмотря на высокую готовность.

Ростовская АЭС: возобновление строительства наперекор мнению общественности

Строительство станции было начато еще в 1981 г. А в 1990 г. под давлением активной общественности областной Совет принял решение о консервации стройки. Готовность первого блока на тот момент была уже 95%, а 2-го - 47%.

Через восемь лет, в 1998 году, был скорректирован первоначальный проект, количество блоков уменьшено до двух. В мае 2000 г. строительство было возобновлено, и уже в мае 2001 г. первый блок включили в энергосистему. Со следующего года возобновилось строительство второго. Окончательный пуск переносился несколько раз, и только в марте 2010 года состоялось его подключение в энергосистему РФ.

Ростовская АЭС: 3 блок

В 2009 году было принято решение о развитии Ростовской атомной электростанции с установкой на ней еще четырех блоков на базе реакторов ВВЭР.

С учетом сложившейся в настоящее время ситуации поставщиком электроэнергии на Крымский полуостров должна стать Ростовская АЭС. 3 блок в декабре 2014 года был подключен к энергосистеме РФ пока с минимальной мощностью. К середине 2015 г. планируется начало его промышленной эксплуатации (1011 МВт), что должно снизить опасность недопоставок электричества из Украины в Крым.

Атомная энергетика в современной РФ

К началу 2015 года все России (действующие и строящиеся) являются филиалами концерна «Росэнергоатом». Кризисные явления в отрасли с трудностями и потерями были преодолены. К началу 2015 года в РФ работает 10 АЭС, в стадии строительства - 5 наземных и одна плавучая станция.

Список АЭС России, действующих на начало 2015 года:

  • Белоярская (начало эксплуатации - 1964 г.).
  • Нововоронежская АЭС (1964 г.).
  • Кольская АЭС (1973 г.).
  • Ленинградская (1973 г.).
  • Билибинская (1974 г.).
  • Курская (1976 г.).
  • Смоленская (1982 г.).
  • Калининская АЭС (1984 г.).
  • Балаковская (1985 г.).
  • Ростовская (2001 г.).

Строящиеся российские АЭС

  • Балтийская АЭС, г. Неман Калининградской области. Два блока на базе реакторов ВВЭР-1200. Строительство начато в 2012 году. Пуск - в 2017 г., выход на проектную мощность - в 2018 г.

Планируется, что Балтийская АЭС будет экспортировать электроэнергию в страны Европы: Швецию, Литву, Латвию. Продажа электричества в РФ будет производиться через литовскую энергосистему.

Мировая атомная энергетика: краткий обзор

В Европейской части страны построены почти все АЭС России. Карта планетарного расположения ядерных энергоустановок показывает сосредоточение объектов в четырех следующих районах: Европа, Дальний Восток (Япония, Китай, Корея), Ближний Восток, Центральная Америка. По данным МАГАТЭ, в 2014 году работали около 440 ядерных реакторов.

Атомные станции сосредоточены в следующих странах:

  • в США АЭС вырабатывают 836,63 млрд. кВт·ч./год;
  • во Франции - 439,73 млрд. кВт·час/год;
  • в Японии - 263,83 млрд. кВт·час/год;
  • в России - 160,04 млрд. кВт·час/год;
  • в Корее - 142,94 млрд. кВт·час/год;
  • в Германии - 140,53 млрд. кВт·час/год.

Обеспечение энергетической безопасности - одна из ключевых задач любого современного государства. На сегодняшний день одним из самых передовых вариантов добычи электроэнергии является использование ядерных реакторов. В связи с этим строится атомная электростанция в Беларуси. Об этом промышленном объекте мы поговорим в статье.

Основная информация

Белорусская возводится в Гродненской области страны буквально в 50 километрах от столицы соседней Литвы - Вильнюса. Строительство началось в 2011 году, а завершиться по плану должно в 2019 году. Проектная мощность агрегата составляет 2400 МВт.

Островецкая площадка - место, где строится станция, - курируется российскими специалистами из компании "Атомстройэкспорт".

Несколько слов о проектировании

В Беларуси обойдётся государственному бюджету в 11 миллиардов американских долларов.

Сам же вопрос монтажа объекта в стране возник ещё в 1990-х годах, но окончательное решение о начале строительства было принято лишь в 2006 году. Основным местом для станции выбрали город Островец.

Влияние политики

Возводить АЭС, анализируя плюсы и минусы атомной энергетики, были готовы начать сразу же несколько иностранных держав: Китай, Чехия, США, Франция, Россия. Однако в итоге главным подрядчиком стала Российская Федерация. Хотя изначально считалось, что это строительство будет невыгодно РФ, которая планировала ввести в эксплуатацию свою АЭС в Калининградской области. Но все же в октябре 2011 года между россиянами и белорусами был подписан контракт на поставку оборудования в Белорусский город Островец.

Законодательный аспект

В Беларуси строится в соответствии с законом, регламентирующим показатели радиационной безопасности населения страны. В этом акте прописаны условия, обязательные для их обеспечения, которые позволят людям сохранить жизнь и здоровье в условиях эксплуатации АЭС.

Денежный займ

С самого начала разработки проекта окончательная стоимость его варьировалась, так как рассматривались различные типы реакторов. Изначально требовалось 9 миллиардов долларов, 6 из которых должны было пойти на само строительство, а 3 на создание всей необходимой инфраструктуры: линий ЛЭП, жилых домов для работников станции, железнодорожных путей и прочего.

Уже сразу стало понятно, что всей необходимой суммы у Белоруссии просто нет. И потому руководство страны планировало взять кредит у России, причём в виде "живых" денег. При этом сразу же белорусы сказали, что если денег они не получат, то строительство окажется под угрозой срыва. В свою очередь российские власти озвучили свои опасения по поводу того, что их соседи окажутся неспособными вернуть долг или используют полученные средства для поддержания экономики своей страны.

В связи с этим российские чиновники вынесли предложение сделать так, чтобы атомная электростанция в Беларуси стала совместным предприятием, однако белорусская сторона на это ответила отказом.

Точка в этом споре была поставлена 15 марта 2015 года, когда Путин посетил Минск и предоставил Беларуси 10 миллиардов для строительства станции. Ориентировочный срок окупаемости проекта около 20 лет.

Строительный процесс

Выемка грунта на объекте началась в 2011 году. А через два года Лукашенко подписал указ, дающий право российскому генподрядчику начать строительство такого огромного промышленного объекта, как атомная электростанция в Беларуси.

В конце мая 2014 года был полностью готов котлован, и стартовали работы по заливке фундамента здания второго В декабре 2015 года на станцию завезли корпус для первого реактора.

Чрезвычайные происшествия

В мае 2016 года в СМИ просочилась информация о том, что на строительной площадке АЭС якобы произошло обрушение металлоконструкции. Белорусский МИД в свою очередь передал официальный ответ литовцам, что никаких нештатных ситуаций на стройке не произошло.

Но к октябрю 2016 года количество официальных несчастных случаев во время возведения станции достигло десяти, три из которых оказались летальными.

Скандал

Как сообщил один из гражданских активистов Белоруссии, по его данным, 10 июля 2015 года во время репетиции установки корпуса реактора произошло его падение на землю. Планировалось, что на следующий день монтаж должен был пройти в присутствии журналистов и телевидения.

26 июля Министерство энергетики страны подтвердило факт ЧП, указав, что инцидент произошёл на площадке хранения корпуса во время его строповки для последующего перемещения в горизонтальном направлении. Данная вызвала мгновенную и крайне острую реакцию со стороны Литвы. 28 июля министр энергетики этой прибалтийской страны подал ноту белорусскому послу с просьбой уточнить все детали происшедшего и уведомить о них.

1 августа монтажные работы по установке корпуса были приостановлены и тогда же главный конструктор этого агрегата сказал, что проведенные теоретические расчёты, показали: реактор не получил серьёзных повреждений от падения. Такого же мнения придерживался и глава "Росатома", указавший на отсутствие оснований для запрета эксплуатации корпуса.

Однако совсем другого мнения придерживались физики-ядерщики и прочие технические специалисты. Все они в один голос говорили: применять упавший корпус в дальнейшем нельзя. Это объяснялось тем, что, учитывая вес изделия, сварочные швы и покрытие могли получить критические повреждения. Все эти дефекты впоследствии могли проявиться из-за непрерывного воздействия потока нейтронов и привести к окончательному разрушению всей конструкции. Кроме того, инженеры отмечали отсутствие полноценного опыта производства подобных корпусов у завода-изготовителя, расположенного в Волгодонске, который не выпускал подобные узлы более тридцати лет.

В итоге 11 августа министр энергетики Беларуси заявил, что реактор все-таки заменят. В результате, сроки окончания монтажных операций сдвинутся на неопределённый срок. В качестве решения проблемы "Росатом" вынес предложение использовать корпус реактора второго блока.

Протестные акции

В самой республике неоднократно были проведены многочисленные народные выступления против постройки АЭС. Также негативное отношение к возведению станции высказали чиновники высших рангов в Литве и Австрии. Оба этих государства отметили неготовность проекта к реализации по целому ряду причин.

Достоинства и недостатки атомной энергетики

Рассматривая плюсы и минусы атомной энергетики, стоит заметить, что за счет специфики протекания ядерных реакций, затраты потребляемого топлива достаточно малы. Это и является основным положительным моментом данного вида производства электричества. Также, как это ни странно звучит, но является экологически чистым. Даже ТЭС делает больше вредных выбросов в атмосферу, чем АЭС.

Из отрицательных моментов атомных реакторов можно отметить проблематичность процесса утилизации отходов и высокую опасность техногенных аварий, которые потенциально способны нанести вред миллионам людей.

error: Content is protected !!