Генная терапия ex vivo и in vivo. Генная терапия против рака

Миодистрофия Дюшенна — одно из нечасто встречающихся, но все же относительно распространенных генетических заболеваний. Болезнь диагностируется в трех-пятилетнем возрасте, обычно у мальчиков, проявляясь поначалу лишь в затрудненных движениях, к десяти годам страдающий такой миодистрофией уже не может ходить, к 20−22 годам его жизнь заканчивается. Она вызвана мутацией гена дистрофина, который находится в Х-хромосоме. Он кодирует белок, соединяющий мембрану мышечной клетки с сократительными волокнами. Функционально это своеобразная пружина, обеспечивающая плавное сокращение и целостность клеточной мембраны. Мутации в гене приводят к дистрофии скелетных мышечных тканей, диафрагмы и сердца. Лечение заболевания носит паллиативный характер и позволяет лишь немного облегчить страдания. Однако с развитием генной инженерии появился свет в конце тоннеля.

О войне и мире

Генная терапия — это доставка внутрь клетки конструкций на основе нуклеиновых кислот для лечения генетических заболеваний. С помощью такой терапии можно исправить генетическую проблему на уровне ДНК и РНК, меняя процесс экспрессии нужного белка. Например, в клетку можно доставить ДНК с исправленной последовательностью, с которой синтезируется функциональный белок. Или, напротив, возможны удаления определенных генетических последовательностей, что также поможет уменьшить вредные последствия мутации. В теории это просто, однако на практике генная терапия базируется на сложнейших технологиях работы с объектами микромира и представляет собой совокупность передовых ноу-хау в области молекулярной биологии.


Инъекция ДНК в пронуклеус зиготы — одна из самых ранних и наиболее традиционных технологий создания трансгенов. Инъекция производится вручную с помощью сверхтонких игл под микроскопом с 400-кратным увеличением.

«Ген дистрофина, мутации которого порождают миодистрофию Дюшенна, огромный, — рассказывает директор по развитию биотехнологической компании «Марлин Биотех», кандидат биологических наук Вадим Жерновков. — Он включает в себя 2,5 млн пар нуклеотидов, что можно было бы сравнить с количеством букв в романе «Война и мир». И вот представим себе, что мы вырвали из эпопеи несколько каких-то важных страниц. Если на этих страницах описываются существенные события, то понимание книги было бы уже затруднено. Но с геном все сложнее. Найти другую копию «Войны и мира» несложно, и тогда недостающие страницы можно было бы прочитать. Но ген дистрофина находится в X-хромосоме, а у мужчин она одна. Таким образом, в половых хромосомах у мальчиков при рождении хранится лишь одна копия гена. Другую взять негде.


Наконец, при синтезе белка из РНК важно сохранение рамки считывания. Рамка считывания определяет, какая группа из трех нуклеотидов считывается как кодон, что соответствует одной аминокислоте в белке. Если произошло удаление в гене фрагмента ДНК, не кратное трем нуклеотидам, происходит сдвиг рамки считывания — кодировка изменяется. Это можно было бы сравнить с ситуацией, когда после вырванных страниц во всей оставшейся книге все буквы заменятся на следующие по алфавиту. Получится абракадабра. Вот то же самое происходит с неправильно синтезируемым белком».

Биомолекулярный пластырь

Один из эффективных методов генной терапии для восстановления нормального синтеза белка — пропуск экзонов с помощью коротких нуклеотидных последовательностей. В «Марлин Биотех» уже отработана технология работы с геном дистрофина с помощью такого метода. Как известно, в процессе транскрипции (синтеза РНК) сначала формируется так называемая прематричная РНК, заключающая в себе как кодирующие белок участки (экзоны), так и некодирующие (интроны). Далее начинается процесс сплайсинга, в ходе которого интроны и экзоны разъединяются и формируется «зрелая» РНК, состоящая только из экзонов. В этот момент некоторые экзоны можно заблокировать, «залепить» с помощью особых молекул. В итоге в зрелой РНК не окажется тех кодирующих участков, от которых мы предпочли бы избавиться, и таким образом восстановится рамка считывания, белок будет синтезироваться.


«Эту технологию мы отладили in vitro, — рассказывает Вадим Жерновков, то есть на клеточных культурах, выращенных из клеток пациентов с миодистрофией Дюшенна. Но отдельные клетки — это не организм. Вторгаясь в процессы клетки, мы должны наблюдать последствия вживую, однако привлечь к испытаниям людей не представляется возможным по разным причинам — от этических до организационных. Поэтому возникла необходимость получения модели миодистрофии Дюшенна с определенными мутациями на основе лабораторного животного».

Как уколоть микромир

Трансгенные животные — это полученные в лаборатории животные, в геном которых целенаправленно, осознанно внесены изменения. Еще в 70-е годы прошлого века стало понятно, что создание трансгенов — это важнейший метод исследования функций генов и белков. Одним из самых ранних методов получения полностью генно-модифицированного организма стала инъекция ДНК в пронуклеус («предшественник ядра») зигот оплодотворенных яйцеклеток. Это логично, так как модифицировать геном животного проще всего в самом начале его развития.


На схеме продемонстрирован процесс CRISPR/Cas9, в котором участвуют субгеномная РНК (sgRNA), ее участок, работающий как РНК-гид, а также белок-нуклеаза Cas9, который рассекает обе нити геномной ДНК в указанном РНК-гидом месте.

Инъекция в ядро зиготы — весьма нетривиальная процедура, ведь речь идет о микромасштабах. Яйцеклетка мыши имеет диаметр 100 мкм, а пронуклеус — 20 мкм. Операция происходит под микроскопом с 400-кратным увеличением, однако инъекция — это самая что ни на есть ручная работа. Разумеется, для «укола» применяется не традиционный шприц, а специальная стеклянная игла с полым каналом внутри, куда набирается генный материал. Один ее конец можно держать в руке, а другой — сверхтонкий и острый — практически не виден невооруженным глазом. Конечно, такая хрупкая конструкция из боросиликатного стекла не может храниться долго, поэтому в распоряжении лаборатории есть набор заготовок, которые непосредственно перед работой вытягиваются на специальном станке. Используется особая система контрастной визуализации клетки без окрашивания — вмешательство в пронуклеус само по себе травматично и является фактором риска для выживания клетки. Краска стала бы еще одним таким фактором. К счастью, яйцеклетки достаточно живучи, однако количество зигот, которые дают начало трансгенным животным, составляют лишь несколько процентов от общего числа яйцеклеток, в которые была сделана инъекция ДНК.

Следующий этап — хирургический. Проводится операция по трансплантации микроинъецированных зигот в воронку яйцевода мыши-реципиента, которая станет суррогатной матерью будущим трансгенам. Далее лабораторное животное естественным путем проходит цикл беременности, и на свет появляется потомство. Обычно в помете находится около 20% трансгенных мышат, что также говорит о несовершенстве метода, ибо в нем присутствует большой элемент случайности. При инъекции исследователь не может контролировать, как именно внедренные фрагменты ДНК встроятся в геном будущего организма. Высока вероятность таких комбинаций, которые приведут к гибели животного еще на эмбриональной стадии. Тем не менее метод работает и вполне годен для ряда научных целей.


Развитие трансгенных технологий позволяет производить животные белки, востребованные фармацевтической промышленностью. Эти белки экстрагируются из молока трансгенных коз и коров. Также есть технологии получения специфических белков из куриного яйца.

Ножницы для ДНК

Но есть более эффективный способ на основе целевого редактирования генома по технологии CRISPR/Cas9. «Сегодня молекулярная биология в чем-то подобна эпохе дальних морских экспедиций под парусами, — говорит Вадим Жерновков. — Практически каждый год в этой науке происходят значительные открытия, которые могут изменить нашу жизнь. Например, несколько лет назад микробиологи обнаружили у давно, казалось бы, изученного вида бактерий иммунитет к вирусным инфекциям. В результате дальнейших исследований выяснилось, что ДНК бактерий содержат в себе особые локусы (CRISPR), с которых синтезируются фрагменты РНК, умеющие комплементарно связываться с нуклеиновыми кислотами чужеродных элементов, например с ДНК или РНК вирусов. С такой РНК связывается белок Cas9, представляющий собой фермент-нуклеазу. РНК служит для Cas9 гидом, помечающим определенный участок ДНК, в котором нуклеаза совершает разрез. Примерно три-пять лет назад появились первые научные труды, в которых разрабатывалась технология CRISPR/Cas9 для редактирования генома».


Трансгенные мыши позволяют создавать живые модели тяжелых генетических заболеваний человека. Люди должны быть благодарны этим крохотным существам.

По сравнению со способом введения конструкции для случайного встраивания, новый метод позволяет подобрать элементы системы CRISPR/Cas9 таким образом, чтобы точно нацелить РНК-гиды на нужные участки генома и добиться целенаправленной делеции или вставки нужной последовательности ДНК. В этом методе тоже возможны ошибки (РНК-гид иногда соединяется не с тем участком, на который его нацеливают), однако при использовании CRISPR/Cas9 эффективность создания трансгенов составляет уже около 80%. «Этот метод имеет широкие перспективы, и не только для создания трансгенов, но и в других областях, в частности в генной терапии, — говорит Вадим Жерновков. — Однако технология находится только в начале пути, и представить себе, что в ближайшее время исправлять генный код людей будут с помощью CRISPR/Cas9, довольно сложно. Пока есть вероятность ошибки, есть и опасность, что человек лишится какой-то важной кодирующей части генома».


Молоко-лекарство

Российской компании «Марлин Биотех» удалось создать трансгенную мышь, в которой полностью воспроизведена мутация, приводящая к миодистрофии Дюшенна, и следующим этапом станут испытания технологий генной терапии. Вместе с тем создание моделей генетических заболеваний человека на основе лабораторных животных — не единственное возможное применение трансгенов. Так, в России и западных лабораториях ведутся работы в области биотехнологий, позволяющие получать важные для фарминдустрии лекарственные белки животного происхождения. В качестве продуцентов могут выступать коровы или козы, у которых можно изменять клеточный аппарат производства содержащихся в молоке белков. Из молока можно экстрагировать лекарственный белок, который получен не химическим способом, а с помощью природного механизма, что повысит эффективность лекарства. В настоящее время разработаны технологии получения таких лекарственных белков, как лактоферрин человека, проурокиназа, лизоцим, атрин, антитромбин и другие.

Генетические заболевания - это болезни, которые возникают у человека из-за хромосомных мутаций и дефектов в генах, то есть в наследственном клеточном аппарате. Повреждения генетического аппарата приводят к серьезным и разнообразным проблемам - тугоухости, нарушению зрения, задержке психо-физического развития, бесплодию и многим другим болезням.

Понятие о хромосомах

В каждой клетке организма есть клеточное ядро, основную часть которого составляют хромосомы. Набор 46 хромосом - это кариотип. 22 пары хромосом являются аутосомами, а последняя 23 пара - половыми хромосомами. Вот этими половыми хромосомами мужчина и женщина разнятся друг с другом.

Всем известно, что у женщин состав хромосом - XX , а у мужчин - XY . При возникновении новой жизни мать передает Х хромосому, а отец - или Х или Y .Именно с этими хромосомами, вернее с их патологией, и связывают генетические заболевания.

Ген может мутировать. Если он рецессивный, то мутация может передаваться из поколения в поколение, никак не проявляясь. Если мутация доминантная, то она обязательно проявится, поэтому желательно обезопасить свой род, вовремя узнав о потенциальной проблеме.

Генетические заболевания - проблема современного мира.

Наследственной патологии с каждым годом выявляется все больше и больше. Генетических заболеваний уже сейчас известно более 6000 наименований, они связаны как с количественными, так и с качественными изменениями в генетическом материале. По данным Всемирной организации здравоохранения приблизительно 6% детей страдают наследственными заболеваниями.

Самое неприятное, что генетические заболевания могут проявиться только через несколько лет. Родители радуются здоровому малышу, не подозревая, что дети больны. Так, например, некоторые наследственные болезни могут заявить о себе в том возрасте, когда у самого больного появляются дети. И половина из этих детей может быть обречена, если родитель носит доминантный патологический ген.

А ведь иногда достаточно знать, что организм ребенка не способен усваивать определенный элемент. Если родители будут вовремя об этом предупреждены, то в дальнейшем, просто избегая продуктов, содержащих этот компонент, можно защитить организм от проявлений генетической болезни.

Поэтому очень важно, чтобы при планировании беременности был сделан тест на генетические болезни. Если тест покажет вероятность передачи мутированного гена будущему ребенку, то в клиниках Германии могут провести генную коррекцию при искусственном оплодотворении. Сделать анализы можно и во время беременности.

В Германии Вам могут быть предложены инновационные технологии самых последних диагностических разработок, которые смогут развеять все Ваши сомнения и подозрения. Около 1000 генетических заболеваний могут быть выявлены еще до рождения ребенка.

Генетические заболевания - какие бывают виды?

Мы рассмотрим две группы генетических заболеваний (на самом деле их больше)

1. Болезни с генетической предрасположенностью.

Такие болезни могут проявиться под воздействием внешних факторов среды и очень зависят от индивидуальной генетической предрасположенности. Некоторые болезни могут проявиться у лиц преклонного возраста, а другие могут выявиться неожиданно и рано. Так, например, сильный удар по голове может спровоцировать эпилепсию, прием неусвояемого продукта может вызвать бурную аллергию и т.д.

2. Болезни, которые развиваются при наличии доминантного патологического гена.

Такие генетические заболевания передаются из поколения в поколение. Например, мышечная дистрофия, гемофилия, шестипалость, фенилкетонурия.

Семьи с высоким риском рождения ребенка с генетическим заболеванием.

Каким семьям в первую очередь необходимо посетить генетические консультации и выявить риск возможности наследственных заболеваний у потомства?

1. Кровнородственные браки.

2. Бесплодие невыясненной этиологии.

3. Возраст родителей. Считается фактором риска, если будущей маме больше 35 лет, а отцу - больше 40 (по некоторым данным -больше 45). С возрастом в половых клетках появляется всё больше повреждений, которые увеличивают риск рождения малыша с наследственной патологией.

4. Наследственные семейные болезни, то есть похожие заболевания у двух и более членов семьи. Есть заболевания с ярко выраженными симптомами и сомнений, что это наследственная болезнь у родителей не остается. Но есть признаки (микроаномалии), на которые родители не обращают должного внимания. Например, необычная форма век и ушей, птоз, пятна на коже кофейного цвета, странный запах мочи, пота и т.д.

5. Отягощенный акушерский анамнез - рождение мертвого ребенка, более одного самопроизвольного выкидыша, замершие беременности.

6. Родители являются представителями малочисленной народности или выходцами из одного маленького населенного пункта (в этом случае высокая вероятность кровнородственных браков)

7. Воздействие неблагоприятных бытовых или профессиональных факторов на одного из родителей (дефицит кальция, недостаточное белковое питание, работа в типографии и т.д.)

8. Плохая экологическая обстановка.

9. Употребление лекарств с тератогенными свойствами во время беременности.

10. Болезни, особенно вирусной этиологии (краснуха, ветряная оспа), которые перенесла беременная.

11. Нездоровый образ жизни. Постоянные стрессы, алкоголь, курение, наркотики, плохое питание могут вызвать поражение генов, так как структура хромосом под воздействием неблагоприятных условий может меняться в течение всей жизни.

Генетические заболевания - какие есть методики для определения диагностики?

В Германии диагностика генетических заболеваний высокоэффективна, так как применяются все известные высокотехнологичные методы и абсолютно все возможности современной медицины (анализ ДНК, секвенированиеДНК,генетический паспорт и т.д.) для определения потенциальных наследственных проблем. Остановимся на самых распространенных.

1. Клинико-генеалогический метод.

Этот метод - важное условие качественной диагностики генетического заболевания. Что в него входит? Прежде всего, подробный опрос пациента. Если есть подозрение на наследственное заболевание, то опрос касается не только самих родителей, но и всех родственников, то есть собирается полная и тщательная информация о каждом члене семьи. В последующем составляется родословная с указанием всех признаков и заболеваний. Этот метод заканчивается генетическим анализом, на основании которого ставится верный диагноз и выбирается оптимальная терапия.

2. Цитогенетический метод.

Благодаря этому методу определяются болезни, возникающие из-за проблем хромосом клетки.Цитогенетический метод исследует внутреннюю структуру и расположение хромосом. Это очень простая методика - берется соскоб со слизистой внутренней поверхности щеки, затем соскоб рассматривается под микроскопом. Этот метод проводится у родителей, у членов семьи. Разновидность цитогенетического метода - молекулярно-цитогенетический, который позволяет увидеть мельчайшие изменения в строении хромосом.

3. Биохимический метод.

Данный метод, исследуя биологические жидкости матери (кровь, слюну, пот, мочу и т.д.), может определить наследственные болезни, в основе которых лежат нарушения обмена веществ. Одна из самых известных генетических болезней, связанных с нарушением метаболизма - альбинизм.

4. Молекулярно-генетический метод.

Это самый прогрессивный метод в настоящее время, определяющий моногенные заболевания. Он очень точен и выявляет патологию даже в последовательности нуклеотидов. Благодаря этому методу можно определить генетическую предрасположенность к развитию онкологии (рак желудка, матки, щитовидной железы, простаты, лейкоза и др.) Поэтому он особенно показан лицам, у которых близкие родственники страдали эндокринными, психическими, онкологическими и сосудистыми заболеваниями.

В Германии для диагностики генетических болезней вам будет предложен весь спектр цитогенетических, биохимических, молекулярно-генетических исследований, пренатальная и постнатальная диагностика плюс неонатальный скрининг новорожденного. Здесь можно пройти около 1000 генетических тестов, которые допущены к клиническому применению на территории страны.

Беременность и генетические заболевания

Пренатальная диагностика дает большие возможности для определения генетических болезней.

В пренатальную диагностику входят такие исследования, как

  • биопсия хориона - анализ тканихориальной оболочки плода на 7-9 недели беременности; биопсия может выполняться двумя способами - через шейку матки или путем прокола передней брюшной стенки;
  • амниоцентез - на 16-20 неделе беременности получают околоплодную жидкость благодаря пункции передней брюшной стенки;
  • кордоцентез - это один из самых важных методов диагностики, так как исследуют кровь плода, полученную из пуповины.

Также в диагностике используют такие скрининговые методы, как трипл-тест, фетальная эхокардиография, определение альфа-фетопротеина.

Ультразвуковое изображение плода в 3D - и 4D измерениях позволяет существенно сократить рождение младенцев с пороками развития. Все эти методики обладают низким риском побочных эффектов и не сказываются отрицательно на течение беременности. Если выявлено генетическое заболевание во время беременности, то врач предложит определенную индивидуальную тактику ведения беременной женщины. В раннем периоде беременности в немецких клиниках могут предложить генную коррекцию. Если коррекция генов проведена в эмбриональном периоде вовремя, то можно откорректировать некоторые генетические дефекты.

Неонатальный скрининг ребенка в Германии

Неонатальный скрининг новорожденного выявляет самые распространенные генетические заболевания у младенца. Ранняя диагностика позволяет понять, что ребенок болен еще до появления первых признаков болезни. Таким образом, можно выявить следующие наследственные заболевания - гипотиреоз, фенилкетонурия, болезнь кленового сиропа, адреногенитальный синдром и другие.

Если вовремя выявить эти болезни, то шанс их вылечить достаточно высок. Качественный неонатальный скрининг тоже является одной из причин, из-за которой женщины прилетают в Германии, чтобы именно здесь родить ребенка.

Лечение генетических заболеваний человека в Германии

Еще совсем недавно генетические болезни не лечились, это считалось невозможным, а значит, бесперспективным. Поэтому диагноз генетического заболевания расценивался как приговор, и в лучшем случае можно было рассчитывать только на симптоматическое лечение. Сейчас ситуация изменилась. Прогресс заметен, появились положительные результаты лечения, мало того, наука постоянно открывает новые и эффективные способы лечения наследственных болезней. И хоть многие наследственные болезни вылечить сегодня еще невозможно, но на будущее врачи-генетики смотрят с оптимизмом.

Лечение генетических заболеваний очень сложный процесс. Он основывается на тех же принципах воздействиях, как и любая другая болезнь - этиологических, патогенетических и симптоматических. Коротко остановимся на каждом.

1. Этиологический принцип воздействия.

Этиологический принцип воздействия - самый оптимальный, так как лечение направлено непосредственно на причины болезни. Это достигается с помощью методов генной коррекции, выделении поврежденной части ДНК, его клонировании и внедрении в организм. На сегодняшний момент эта задача очень сложная, но при некоторых заболеваниях уже выполнимая

2. Патогенетический принцип воздействия.

Лечение направлено на механизм развития болезни, то есть оно изменяет физиологические и биохимические процессы в организме, устраняя дефекты, вызванные патологическим геном. По мере развития генетики патогенетический принцип воздействия расширяется, и для разных болезнейс каждым годом будут находиться новые пути и возможности коррекции нарушенных звеньев.

3. Симптоматический принцип воздействия.

Согласно этому принципу лечение генетического заболевания направлено на снятие боли и других неприятных явлений и препятствует дальнейшему прогрессированию болезни. Симптоматическое лечение назначается всегда, оно может сочетаться с другими методами воздействия, а может быть самостоятельным и единственным лечением. Это назначение обезболивающих препаратов, успокаивающих, противосудорожных и других лекарств. Фармакологическая промышленность сейчас очень развита, поэтому спектр лекарственных средств, применяемый для лечения (вернее, для облечения проявлений) генетических болезней очень широк.

Помимо медикаментозного лечения к симптоматическому лечению относят применение физиотерапевтических процедур - массаж, ингаляции, электротерапия, бальнеолечение и т.д.

Иногда применяется хирургический метод лечения для корректирования деформаций, как внешних, так и внутренних.

Врачи-генетики Германии имеют уже большой опыт лечения генетических заболеваний. В зависимости от проявления болезни, от индивидуальных параметров применяются следующие подходы:

  • генетическая диетология;
  • генная терапия,
  • трансплантация стволовых клеток,
  • трансплантация органов и тканей,
  • энзимотерапия,
  • заместительные терапии гормонами и ферментами;
  • гемосорбция, плазмофорез, лимфосорбция - очистка организма специальными препаратами;
  • хирургическое лечение.

Конечно, лечение генетических болезней длительное и не всегда успешное. Но с каждым годом растет количество новых подходов к терапии, поэтому врачи настроены оптимистично.

Генная терапия

Особые надежды врачи и ученые всего мира возлагают на генную терапию, благодаря которой можно ввести качественный генетический материал в клетки больного организма.

Генная коррекция состоит из последующих этапов:

  • получение генетического материала (соматических клеток) от пациента;
  • введение в этот материал лечебного гена, который корректирует генный дефект;
  • клонирование скорректированных клеток;
  • внедрение новых здоровых клеток в организм пациента.

Генная коррекция требует большой осторожности, так как наука еще не располагает полными сведениями о работе генетического аппарата.

Список генетических заболеваний, которые можно выявить

Классификаций генетических заболеваний много, они условны и различаются по принципу построения. Ниже мы приводим список наиболее распространенных генетических и наследственных болезней:

  • болезнь Гюнтера;
  • болезнь Кэнэвэн;
  • болезнь Ниманна-Пика;
  • болезнь Тея-Сакса;
  • болезнь Шарко-Мари;
  • гемофилия;
  • гипертрихоз;
  • дальтонизм - невосприимчивость к цвету, дальтонизм передается только с женской хромосомой, но болезнью страдают исключительно мужчины;
  • заблуждение Капграса;
  • лейкодистрофия Пелицеуса-Мерцбахера;
  • линии Блашко;
  • микропсия;
  • муковисцидоз;
  • нейрофиброматоз;
  • обостренная рефлексия;
  • порфирия;
  • прогерия;
  • расщепление позвоночника;
  • синдром Ангельмана;
  • синдром взрывающейся головы;
  • синдром голубой кожи;
  • синдром Дауна;
  • синдром живого трупа;
  • синдром Жубера;
  • синдром каменного человека
  • синдром Клайнфелтера;
  • синдром Клейна-Левина;
  • синдром Мартина-Белла;
  • синдром Марфана;
  • синдром Прадера-Вилли;
  • синдром Робена;
  • синдром Стендаля;
  • синдром Тернера;
  • слоновья болезнь;
  • фенилкетонурия.
  • цицеро и другие.

В этом разделе мы остановимся подробно на каждом заболевании и расскажем, как можно вылечить некоторые из них. Но лучше предупредить генетические заболевания, чем их лечить, тем более многие болезни современная медицина не знает, как вылечить.

Генные болезни - это группа заболеваний очень неоднородная по своим клиническим проявлениям. Основные внешние проявления генетических заболеваний:

  • маленькая голова (микроцефалия);
  • микроаномалии («третье веко», короткая шея, необычной формы уши и т.д.)
  • задержка физического и умственного развития;
  • изменение половых органов;
  • чрезмерная расслабленность мышц;
  • изменение формы пальцев стопы и кисти;
  • нарушение психологического статуса и др.

Генетические заболевания - как получить консультацию в Германии?

Беседа в генетической консультации и пренатальная диагностика способны предотвратить тяжелые наследственные болезни, передающиеся на генном уровне. Главная цель консультирования у генетика - это выявление степени риска у новорожденного генетической болезни.

Для того чтобы получить качественное консультирование и совет по поводу дальнейших действий, надо серьезно настроиться на общение с врачом. Перед консультацией необходимо ответственно подготовиться к разговору, вспомнить болезни, которыми перенесли родственники, описать все проблемы здоровья и записать основные вопросы, на которые вы бы хотели получить ответы.

Если в семье уже есть ребенок с аномалией, с врожденными пороками развития, захватите его фотографии. Обязательно надо рассказать о самопроизвольных выкидышах, о случаях мертворождения, о том, как проходила (проходит) беременность.

Врач генетической консультации сможет рассчитать риск появления младенца с тяжелой наследственной патологией (даже в будущем). Когда можно говорить о высоком риске развития генетического заболевания?

  • генетический риск до 5% считается низким;
  • не более 10% - риск слегка повышенный;
  • от 10% до 20% - риск средний;
  • выше 20% - риск высокий.

Врачи советуют расценивать риск около и выше 20% как повод к прерыванию беременности или (если таковой еще нет) как противопоказание к зачатию. Но окончательное решение принимает, конечно, супружеская пара.

Консультация может проходить в несколько этапов. При диагностике генетического заболевания у женщины, врач вырабатывает тактику ведения ее до беременности и при необходимости во время беременности. Врач подробно рассказывает о течении заболевания, о продолжительности жизни при данной патологии, обо всех возможностях современной терапии, о ценовой составляющей, о прогнозе заболевания. Иногда генная коррекция во время искусственного оплодотворения или в период эмбрионального развития позволяет избежать проявлений болезни. С каждым годом разрабатываются новые методы генной терапии и профилактики наследственных заболеваний, поэтому шансы вылечить генетическую патологию постоянно увеличиваются.

В Германии активно внедряются и уже успешно применяются методы борьбы с генными мутациями при помощи стволовых клеток, рассматриваются новые технологии для лечения и диагностики генетических заболеваний.

Знаете ли вы, что в нашей стране есть препарат для генной терапии? Этот препарат успешно лечит распространенное возрастное заболевание, он прошел клинические испытания и с 2012 года продается на территории России. И сам препарат - отечественный, причем единственный в своем роде, аналогов в мире нет. Типичная реакция человека, который слышит об этом впервые: «Да ладно, не может такого быть». Не может, но бывает. Рассказать читателям о препарате, получившем название «Неоваскулген», мы попросили кандидата медицинских наук Романа Вадимовича Деева, директора по науке .

Идея и воплощение

Идея применения плазмидных генных конструкций для индукции роста сосудов в терапевтических целях, конечно, принадлежит не Институту стволовых клеток человека. История вопроса насчитывает как минимум два десятка лет - пионерами здесь были доктор Джеффри Иснер с соавторами (США), которые провели пилотное исследование, сначала на одной пациентке, потом на трех, и опубликовали результаты в середине 90-х. В этом отношении мы шли по их следам, но конкретная разработка, положенная в основу препарата, российская. Плазмидную конструкцию, содержащую ген фактора роста сосудов, создали и в 2007 году запатентовали два специалиста: хорошо знакомый читателям «Химии и жизни» доктор биологических наук, профессор С. Л. Киселев (Институт биологии гена РАН, Институт общей генетики им. Н. И. Вавилова) и доктор биологических наук, профессор А. В. Иткес (Российский университет дружбы народов).

Однако не каждая идея, сколь угодно красивая и теоретически верная, воплощается в жизнь. В первую очередь это касается медицины, отрасли по необходимости консервативной, где всегда актуально утверждение «лучшее - враг хорошего». Первый вопрос, который мы задали себе, прежде чем начать работу: существует ли непреодоленная проблема, которую можно решить с помощью этой плазмиды? Где она может быть нужна и нужна ли вообще?

Атеросклероз сосудов - это сужение просвета артерий из- за отложений холестерина и других веществ, которое может приводить к ишемии - нарушению кровоснабжения органов и тканей. У всех на слуху ишемическая болезнь сердца - одна из основных причин смертности в мире: атеросклероз коронарных артерий приводит к поражению сердечной мышцы, возможные следствия - стенокардия или инфаркт. Но начинать наше исследование с ишемической болезни сердца нам не хотелось. Решением этой проблемы активно и достаточно успешно занимаются хирурги, существует множество фармацевтических средств разных групп, которые поддерживают миокард. Конечно, о победе над инфарктом пока не приходится говорить, и всё же это не та область, где новый препарат был бы воспринят с энтузиазмом.

Мы стали думать, какие еще ишемические заболевания имеют существенное социальное значение, и вспомнили термин, знакомый каждому студенту-медику: «перемежающаяся хромота» - симптом ишемии сосудов нижних конечностей. Сужение сосудов не пропускает кровь к мышцам - кожа ног становится сухой, ступни мерзнут, после продолжительной ходьбы начинаются боли в ногах, вынуждающие человека остановиться и отдохнуть. Звучит вроде бы нестрашно, однако эта проблема не менее значима, чем ишемия миокарда. А возможно, и более, потому что ей уделяют куда меньше внимания и разработчики диагностических средств, и фармацевтические компании, и социальные органы. Между тем боли после долгой ходьбы - лишь начало. Ишемия неизбежно будет прогрессировать, безболевая дистанция сократится от километра (что считается уже клинической стадией болезни) до 200 м и менее, затем начнутся боли в покое, а далее - язвенно-некротические изменения тканей и в перспективе ампутация из-за гангрены.

Сегодня врачи говорят о пандемии атеросклероза, и Россию эта пандемия не обошла стороной. Факторы риска для этой болезни хорошо известны: курение и алкоголь, недостаток физической активности, несбалансированное питание, стрессы. Риск выше для гипертоников, людей с избыточным весом, страдающих диабетом, для тех, у кого повышен уровень холестерина и особых липопротеинов в крови. Существует наследственная предрасположенность к атеросклерозу: о ней говорят, если у больного имеются кровные родственники-мужчины, умершие от инфаркта или инсульта до 55 лет, и женщины - до 65 лет. Мужчины более предрасположены к раннему развитию атеросклероза, чем женщины, и для всех риск увеличивается с возрастом.

Хронической ишемией нижних конечностей (ХИНК) во всем мире страдают около двухсот миллионов человек. Существует статистика по этому заболеванию в США, в странах Европы и Юго-Восточной Азии. Данные по России тоже имеются, но весьма приблизительные. Помимо проблем со сбором, обработкой и распространением информации, есть и объективные сложности. Допустим, инфаркт миокарда во всех статистических отчетах пишется отдельной строчкой, подсчитывать случаи просто. Но как учитывать ХИНК? На ранних стадиях пациенты зачастую не обращаются к врачам. Если же учитывать поздние случаи, с некрозом и ампутациями, то не всегда возможно отделить те случаи, где причиной ампутации был, например, диабет или травмы. Вообще говоря, этот раздел статистики достаточно печален. Подсчитано, что только в США в год выполняется около 150 тысяч ампутаций. В нашей стране, по оценкам врачей-экспертов, - от 45 тысяч до 150 тысяч в год, с учетом состояния здравоохранения и культуры заботы о своем здоровье.

По приблизительным данным, ежегодно в России около 300 тысяч человек получают диагноз «хроническая ишемия нижних конечностей». Как правило, это люди в возрасте 55–60 лет и старше, но бывают и ранние случаи. Мы считаем, что всего в стране живут от миллиона до двух миллионов граждан с этим заболеванием. Прогноз для них неблагоприятный. Если говорить о наиболее тяжелых стадиях, третьей и четвертой (боли в покое и некрозы), то в течение года после постановки диагноза приблизительно четверть их умирает из-за прогрессирования атеросклероза, в том числе в других анатомических регионах; четверть переживает ампутацию, у четверти поражение сосудов ног прогрессирует, и только у четверти современная медицина может добиться хоть какой-то стабилизации.

Те же и плазмида

Что может сделать для таких людей сосудистая хирургия? Самый простой вариант - механически исправить сосуды: заменить проблемный участок протезом либо создать путь для обходного кровотока. Но во-первых, приблизительно у четверти пациентов анатомическое строение сосудов таково, что сделать хирургическую реконструкцию невозможно. Во-вторых, атеросклероз не всегда поражает крупные сосуды - это могут быть и артерии ниже щели коленного сустава, в голени. Диаметр сосудов там небольшой, и велика вероятность, что хирургическая операция не даст желаемого результата из-за тромбирования шунтов, разрастания эндотелия и т. д. Специалисты открыто признают, что сосудистая хирургия всех проблем в этой области не решает.

Когда не может помочь хирургия, остается медикаментозное воздействие. Но фармакология тоже не предлагает чудо-лекарства. Стандартная терапия таких пациентов подразумевает назначение препаратов, улучшающих реологические свойства крови, расслабляющих тонус сосудистой стенки. Когда ишемия становится критической, переходит из второй стадии в третью и далее - в четвертую, добавляют препараты группы простагландинов, которые расширяют мелкие сосуды. Кровь туда «проваливается», кровоснабжение тканей улучшается, и худшего удается избежать. Но каждые полгода эту терапию приходится повторять - до тех пор, пока сосуды реагируют на простагландины.

Кроме того, в Европе и в Соединенных Штатах зарегистрирован препарат цилостазол. Хотя механизм его действия не совсем понятен, но то, что он улучшает периферический кровоток, показано достоверно. Цилостазол рекомендован к применению в Европе и в США, у нас же ситуация своеобразная: препарат упомянут в «Национальных рекомендациях по ведению пациентов с заболеваниями периферических артерий», но пока не разрешен к применению на территории РФ. Кроме того, Европейское медицинское агентство в марте 2013 года выпустило пресс-релиз, в котором говорилось о побочных эффектах цилостазола, связанных с нарушением работы сердца. Теперь противопоказанием к применению считается хроническая сердечная недостаточность. А это сильно ограничивает и его применение у пациентов с ишемией нижних конечностей: сердечников среди них много, атеросклероз - явление системное.

Рассмотрев эту ситуацию, мы решили, что действие, которое разработчики предполагали для плазмидной конструкции с геном VEGF, - ангиогенез, создание de novo сосудов микроциркуляторного русла, - может оказаться полезным. Естественно, мы не делали пафосных заявлений о победе над ишемией. Наш препарат не лечит от атеросклероза, но он восстанавливает кровообращение там, где оно нарушено, и позволяет крови добраться до обедненных кислородом и питательными веществами клеток и тканей.

Медицинское сообщество, как я уже упоминал, достаточно консервативно, хирургическое - в особенности. Мы понимали, что за нашу правоту придется побороться. Неоваскулген был зарегистрирован в 2011 году, и с тех пор мы ведем разъяснительную работу - ездим по стране, проводим конференции и симпозиумы, общаемся с докторами, рассказываем им о препарате, что-то корректируем и в наших представлениях с учетом того, что узнаем от них. В принципе, сейчас начинается самое интересное. Позади клинические исследования, которые подтвердили безопасность и эффективность препарата для значительной части пациентов. Результаты говорили сами за себя (подробнее о них чуть позже), они были убедительны для экспертов, а мнение экспертов убедило официальных лиц. Стало понятно, что ангиогенная терапия как самостоятельный элемент комплексного лечения имеет право на существование, и началась тонкая, почти ювелирная работа - подгонка препарата под конкретные клинические ситуации: нужно было понять, кому он показан в первую очередь, когда его следует назначать в сочетании с хирургической реконструкцией, с препаратами других фармакологических групп.

Сегодня в мире разрешено к клиническому применению всего пять генных препаратов: три для лечения злокачественных новообразований, четвертый - глибера, для лечения редкого наследственного заболевания - дефицита липопротеинлипазы, и наш неоваскулген. Необходимо понимать, что генная терапия бывает разной. Лечение наследственных заболеваний предполагает мощную долговременную коррекцию нарушений в геноме. Так действует глибера и другие подобные ей препараты, которые еще не вышли на рынок, но в скором времени, вероятно, появятся. Нам же требуется лишь временная индукция ангиогенеза - наша генетическая конструкция работает в клетках от суток до 10–14 дней, запускает процесс роста сосудов и затем исчезает. Ни о каком «вмешательстве в геном», конечно, говорить не приходится.

Именно поэтому препарат вводят местно, в те участки, где необходимо вырастить новые сосуды. За рубежом пытались вводить похожие конструкции внутривенно и внутриартериально, но особого смысла в этом не было: при контакте с кровью препарат быстро разрушался. Это и хорошо, потому что обеспечивает безопасность: плазмида не может попасть в другие отдаленные участки организма и не запустит процесс ангиогенеза там, где он нежелателен.

Что касается генно-терапевтических препаратов для лечения хронической ишемии нижних конечностей, пока на рынке есть только неоваскулген, но через некоторое время могут появиться и другие. Сошла с дистанции компания «Sanofi-Aventis», спонсировавшая клинические испытания плазмидной конструкции с геном фактора роста фибробластов. Фибробласты участвуют в созревании сосуда - собираются вокруг трубочки эндотелия и формируют прочную стенку, но это уже не инициация процесса, а следующий этап. Начинать с подстегивания фибробластов было рискованной идеей, и она не увенчалась успехом. Однако в мире проводится еще не менее десятка исследований в этой области, часть их перешла со второй на третью фазу клинических испытаний. Достаточно удачно японские ученые завершили исследование своего препарата. Это плазмида, похожая на нашу, но в качестве терапевтического фактора в ней использован ген фактора роста гепатоцитов HGF (гепатоциты - клетки печени, но в данном случае этот белок, несмотря на название, стимулирует рост того же эндотелия сосудов). У себя в Японии они успешно завершили третью фазу, однако не стали регистрировать, производить и продавать препарат, нашли инвестиции, чтобы организовать клинические испытания в США и вместо небольшого рынка внутри страны пойти на глобальный.

Как это работает

Активное вещество неоваскулгена - плазмида, то есть замкнутая в кольцо молекула ДНК. Производят ее биотехнологическим методом: клетки кишечной палочки Escherichia coli , живущие в биореакторе, многократно копируют плазмиду, затем ее выделяют и очищают. Плазмида содержит человеческий ген vegf , который кодирует белок - эндотелиальный фактор роста сосудов (VEGF - vascular endothelial growth factor; эндотелий здесь - выстилка сосудов, их внутренний слой). У этого белка есть несколько изоформ, в данном случае используется VEGF165, состоящий из 165 аминокислот. Показано, что именно такой белок наиболее мощно стимулирует деление сосудистых клеток.

Препарат вводят пациенту в больную ногу несколькими уколами. Плазмида проникает в клетки ишемизированной ткани, которые начинают синтезировать белок по «чертежу» гена. Не вся ДНК окажется внутри клеток, но повода для беспокойства тут нет: время жизни этой плазмиды в организме вне клетки - десятки минут, потом ее разрушат ферменты, так что генетическая конструкция не попадет ни в какие другие органы и ткани, ее действие будет только местным.

Клетки начинают синтезировать и выделять VEGF165. Он проникает в сосудистое русло и связывается с рецепторами эндотелиальных клеток. Это команда: «Начинаем выращивать здесь новый сосуд». Клетки активно делятся, мигрируют в сторону ишемизированной ткани и начинают формировать новую трубочку сосуда, обходной путь для крови. Это не менее сложный процесс, чем строительство новой дороги: необходимо организовать съезд с основной магистрали, расчистить трассу, то есть растворить плотные ткани на пути сосуда. Разумеется, трубочка, состоящая из эндотелиальных клеток, должна еще одеться снаружи мышечным слоем и волокнами соединительной ткани. В итоге кровоток восстановлен, ткани снова полноценно снабжаются кислородом и питательными веществами - ишемия отступает.

Результаты

Наш препарат прошел все этапы клинических испытаний. В российских нормативных документах они не называются «тремя фазами», но смысл от этого не меняется: первый этап - оценка безопасности, второй этап - определение режима дозирования, наиболее частых побочных действий, первые данные об эффективности, и третий - точное определение эффективности и более редкие побочные эффекты и осложнения. Три организации, в которых проводились клинические испытания, - это Российский научный центр хирургии имени Б. В. Петровского, Рязанский государственный медицинский университет и Ярославская областная клиническая больница.

Для первого этапа обычно привлекают здоровых молодых добровольцев. Однако в нашем случае это было бы неэтично, поскольку речь все-таки шла о генной терапии. В этом вопросе у нас было полное согласие с представителями контролирующего органа (на тот момент, в 2009 году, это была Федеральная служба по надзору в сфере здравоохранения, теперь же функция регистрации лекарственных препаратов передана непосредственно в Минздрав): здоровым людям генную конструкцию вводить не стоит, нужно совместить первый этап с началом второго и проводить оценку безопасности уже на пациентах. В таком решении не было ничего необычного: во всем мире сильнодействующие препараты, например те, что используют в психиатрии, на здоровых добровольцах не тестируют.

Препарат испытывали при второй и третьей стадии ХИНК по общепринятой классификации А. В. Покровского-Фонтейна. Стадия 2а - пациент может пройти около километра, а дальше начинаются боли. Уже на этой стадии в метаболизме мышечных волокон происходят необратимые изменения. Стадия 2б - безболевая дистанция 200 метров и менее, а третья стадия, когда говорят уже о критической ишемии нижних конечностей - боли в покое, при сидении и лежании. При этих же стадиях сейчас показано применение неоваскулгена - то есть практически при всех, за исключением первой, бессимптомной, когда пациент даже не знает, что болен, и четвертой, некротической, когда образуются язвы и гангрены. Впрочем, бывали случаи, когда доктора назначали препарат и на четвертой стадии как терапию отчаяния, закрывая глаза на инструкции. Потому что эффект превосходил наши самые оптимистические предположения.

Доктора, принимавшие участие в клинических испытаниях, как правило, начинали их с колоссальным скепсисом. Многоопытному хирургу, перевидавшему десятки, если не сотни тяжелых пациентов, прекрасно представляющему и все возможности терапии, и прогнозы, предлагают сделать больному какие-то инновационные уколы - реакцию нетрудно представить. А потом проходят две недели, раздается звонок, и доктор говорит: «У меня пациент бросил костыли и самостоятельно поднимается на третий этаж». Такая история произошла в Ростове-на-Дону, где проверяли эффективность препарата под руководством доктора медицинских наук, профессора Ростовского государственного медицинского университета Ивана Ивановича Кательницкого. Сейчас мы зарегистрировали препарат и на Украине, где врачи его встретили не с меньшим, а возможно, и с большим недоверием, чем их российские коллеги. Недавно я получил от одного из них электронное письмо с заголовком: «Это бомба!» - настолько он был изумлен результатом.

Сразу отмечу, что чудесные истории, к сожалению, происходят не с каждым больным. Как и для любого лекарственного средства, есть категория пациентов, которые не отвечают на терапию неоваскулгеном. Мы пытаемся разобраться, почему так происходит и что тут можно исправить. Кроме того, далеко не все пациенты страдают только атеросклерозом: у кого-то он протекает на фоне диабета, или у кого-то развивается тромбангиит (болезнь Бюргера), и это, конечно, ухудшает результат. Приблизительно 15% больных реагируют на лечение не так, как бы мы хотели, - очень и очень незначительно. Однако есть четкая положительная тенденция, и даже можно отметить, что чем тяжелее ишемия, тем ярче выражен клинический эффект. Некоторых больных мы наблюдаем уже два-три года. Коллеги из Ярославля (И. Н. Староверов, Ю. В. Червяков) подвели статистику по четырем годам - мы видим, что пациент, который с трудом мог пройти 50 метров, через два года отправляется на дальние прогулки, безболевая дистанция выросла до трех километров. Был примечательный случай и на ранней стадии: пациента, страстного охотника, не устраивали боли в ногах после первого километра, и он сам приобрел препарат. Сейчас этот человек охотится на лося, проходит в быстром темпе многие километры.

В рамках клинического исследования пациенты заполняли опросники, позволяющие оценить изменения в качестве жизни. Там было несколько шкал, которые сводились к двум компонентам: физическому здоровью и психологическому благополучию. Выяснилось, что физический компонент улучшается с очень хорошей достоверностью, это видно на примере той же дистанции безболевой ходьбы. А вот психологические улучшения, хотя и были отмечены, не достигли статистически значимой разницы. Может быть, дело в том, что после долгой ходьбы ноги всё равно начинают болеть, а хочется, чтобы не болели совсем, а может, людям трудно поверить в хорошее после тяжелой болезни и мрачных перспектив, или всему виной российская ментальность, о которой так много говорят. Любопытно было бы сравнить результаты по этому показателю в других странах.

Цена вопроса

Сколько стоит препарат, во что обойдется лечение? Препарат, увы, дорогой. Точные цены в статье приводить нет смысла, проще посмотреть в Интернете, но настраиваться надо на сумму порядка ста тысяч рублей за одну упаковку. Если учесть, что курс простагландинов стоит в среднем около 40 тысяч рублей и повторять его нужно каждые полгода, а эффект от неоваскулгена сохраняется и даже усиливается минимум два-три года, то картина не такая пессимистическая. Но все-таки почему так дорого?

Вот что говорит по этому поводу наш генеральный директор, непосредственный руководитель данного направления А. А. Исаев: «Неоваскулген - первый в классе препарат, что означает большие инвестиции: годы исследований, непростая работа с регуляторами и врачами, огромные усилия по созданию производства для выпуска на рынок. А на выходе небольшие количества доз препарата, пока его применение не станет широкой практикой. Отсюда и высокая цена на оригинальные разработки в сравнении с их копиями и так называемыми дженериками. Цена, уникальность и широкое применение тесно связаны. Поэтому наша задача - не только разработать препарат, но и сделать его доступным для всех. Мы много работаем над этим».

С нашей точки зрения, желательный вариант развития событий - включение неоваскулгена в перечень лекарственных средств, которые могут быть закуплены за счет федерального или регионального бюджета и предоставлены пациентам, нуждающимся в таком лечении. Подобное решение экономически обоснованно: как ни странно, пациент с одной ногой или вообще без ног обходится государству дороже, чем покупка препарата, который позволит избежать ампутации. Некоторую надежду дает и то, что неоваскулген официально является «инновационным препаратом», то есть включен в соответствующие списки как приоритетный и заслуживающий поддержки со стороны государства.

Понятно, что себестоимость неоваскулгена не может быть совсем уж низкой. Выращивание E. coli в биореакторе, манипуляции с ней, выделение и очистка плазмиды, подготовка лекарственной формы, контроль качества - всё это труд квалифицированного персонала, дорогостоящие приборы и реактивы. Но интересно, что себестоимость только производственной части в России примерно в восемь раз выше, чем если бы то же самое делалось, допустим, в Израиле. Причина проста: и оборудование, и расходные материалы - всё это у нас импортное, что и увеличивает затраты. Кроме того, вложения в клинические испытания, в обучение врачей, нужно постепенно окупить. Есть свои интересы и у нашего дистрибьютора, компании «Сотекс», - это одна из компаний, входящих в известную на фармацевтическом рынке группу «Протек». Их работа тоже необходима, это они поставляют препарат в регионы, чтобы он был доступен не одним столичным жителям.

Мы, со своей стороны, предпринимаем все усилия для того, чтобы препарат подтвердил свою эффективность в ходе широкого применения, - ежемесячно проводим выездные мероприятия, встречи, круглые стол, общаемся с врачами, отвечаем на вопросы. Глядя на карту РФ, я уже могу назвать специалистов по сосудистой хирургии в каждом регионе. Нельзя сказать, чтобы это был парад единодушия, - у каждого практикующего врача свой опыт и свое отношение к показаниям и противопоказаниям. Но о препарате знают, его применяют, и это для нас главное. Когда есть результаты и они убедительны для экспертного сообщества в конкретном регионе, разговаривать с чиновниками уже проще. Если всё сложится удачно, в арсенале сосудистых хирургов вскоре появится новый полезный инструмент.

Обратите внимание!

Эта работа представлена на конкурс научно-популярных статей в номинации «Лучший обзор».

Смертельные клешни

Человечество столкнулось с этой загадочной болезнью еще до нашей эры. Ее пытались понять и лечить ученые мужи в самых различных уголках мира: в Древнем Египте - Еберс, в Индии - Сушрута, Греции - Гиппократ. Все они и многие другие медики вели борьбу с опасным и серьезным противником - раком. И хоть эта битва продолжается до сих пор, сложно определить, есть ли шансы на полную и окончательную победу. Ведь чем больше мы изучаем болезнь, тем чаще возникают вопросы - можно ли полностью излечить рак? Как избежать болезни? Можно ли сделать лечение быстрым, доступным и недорогим?

Благодаря Гиппократу и его наблюдательности (именно он увидел сходство опухоли и щупалец рака) в древних врачебных трактатах появился термин карцинома (грец. carcinos) или рак (лат. cancer). В медицинской практике по-разному классифицируют злокачественные новообразования: карциномы (из эпителиальных тканей), саркомы (из соединительной, мышечной тканей), лейкемия (в крови и костном мозге), лимфомы (в лимфатической системе) и другие (развиваются в других типах клеток, например, глиома - рак головного мозга). Но в быту более популярен термин «рак», который подразумевает любую злокачественную опухоль.

Мутации: погибнуть или жить вечно?

Многочисленные генетические исследования выявили, что возникновение раковых клеток - это результат генетических изменений. Ошибки в репликации (копировании) и репарации (исправлении ошибок) ДНК приводят к изменению генов, в том числе и контролирующих деление клетки. Основными факторами, которые способствуют повреждению генома, а в дальнейшем - приобретению мутаций, - являются эндогенные (атака свободных радикалов, образующихся в процессе обмена веществ, химическая нестабильность некоторых оснований ДНК) и экзогенные (ионизирующее и УФ-излучение, химические канцерогены). Когда мутации закрепляются в геноме, они способствуют трансформации нормальных клеток в раковые. Такие мутации в основном случаются в протоонкогенах, которые в норме стимулируют деление клетки. В результате может получиться постоянно «включенный» ген, и митоз (деление) не прекращается, что, фактически, означает злокачественное перерождение. Если же инактивирующие мутации происходят в генах, которые в норме ингибируют пролиферацию (гены-супрессоры опухолей), контроль над делением утрачивается, и клетка становится «бессмертной» (рис. 1).

Рисунок 1. Генетическая модель рака: рак толстой кишки. Первый шаг - потеря или инактивация двух аллелей гена АРS на пятой хромосоме. В случае семейного рака (familiar adenomatous polyposis, FAP) одна мутация гена АРС наследуется. Потеря обоих аллелей ведет к образованию доброкачественных аденом. Последующие мутации генов на 12, 17, 18 хромосомах доброкачественной аденомы могут привести к трансформации в злокачественную опухоль. Источник: .

Очевидно, что развитие определенных видов рака включают в себя изменение большинства или даже всех этих генов и может проходить различными путями. Из этого следует, что каждую опухоль следует рассматривать как биологически уникальный объект. На сегодняшний день существуют специальные генетические информационные базы по раку, содержащих данные о 1,2 млн. мутаций из 8207 образцов тканей, относящихся к 20 видам опухолей: атлас Ракового Генома (Cancer Genome Atlas) и каталог соматических мутаций при раке (Catalogue of Somatic Mutations in Cancer (COSMIC)) .

Результатом сбоя работы генов становится неконтролируемое деление клеток, а на последующих стадиях - метастазирование в различные органы и части тела по кровеносным и лимфатическим сосудам. Это достаточно сложный и активный процесс, который состоит из нескольких этапов. Отдельные раковые клетки отделяются от первичного очага и разносятся с кровью по организму. Затем с помощью специальных рецепторов они прикрепляются к эндотелиальным клеткам и экспрессируют протеиназы, которые расщепляют белки матрикса и образуют поры в базальной мембране. Разрушив внеклеточный матрикс, раковые клетки мигрируют вглубь здоровой ткани. За счет аутокринной стимуляции они делятся, образуя узел (1–2 мм в диаметре). При недостатке питания часть клеток в узле погибает, и такие «дремлющие» микрометастазы могут достаточно долго оставаться в тканях органа в латентном состоянии. В благоприятных условиях узел разрастается, в клетках активируются ген фактора роста эндотелия сосудов (VEGF) и фактора роста фибробластов (FGFb), а также инициируются ангиогенез (формирование кровеносных сосудов) (рис. 2).

Однако клетки вооружены специальными механизмами, защищающими от развития опухолей:

Традиционные методы и их недостатки

Если системы защиты организма не справились, и опухоль все-таки начала развиваться, спасти может только вмешательство медиков. На протяжении длительного периода врачами используются три основные «классические» терапии:

  • хирургическая (полное удаление опухоли). Используется, когда опухоль имеет небольшие размеры и хорошо локализована. Также удаляют часть тканей, которые контактируют со злокачественным новообразованием. Метод не применяется при наличии метастазов;
  • лучевая - облучение опухоли радиоактивными частицами для остановки и предотвращения деления раковых клеток. Здоровые клетки тоже чувствительны к этому излучению и часто погибают;
  • химиотерапия - используются лекарства, тормозящие рост быстро делящихся клеток. Лекарства оказывают негативное воздействие и на нормальные клетки.

Вышеописанные подходы не всегда могут избавить больного от рака. Часто при хирургическом лечении остаются единичные раковые клетки, и опухоль может дать рецидив, а при химиотерапии и лучевой терапии возникают побочные эффекты (снижение иммунитета, анемия, выпадение волос и др.), которые приводят к серьезным последствиям, а часто и к смерти пациента. Тем не менее, с каждым годом улучшаются традиционные и появляются новые методы лечения, которые могут победить рак, такие как биологическая терапия, гормональная терапия, использование стволовых клеток, трансплантация костного мозга, а также различные поддерживающие терапии. Наиболее перспективной считается генная терапия, так как она направлена на первопричину рака - компенсацию неправильной работы определенных генов.

Генная терапия как перспектива

По данным PubMed, интерес к генной терапии (ГТ) раковых заболеваний стремительно растет, и на сегодняшний день ГТ объединяет ряд методик, которые оперируют с раковыми клетками и в организме (in vivo ) и вне его (ех vivo ) (рис. 3).

Рисунок 3. Две основные стратегии генной терапии. Еx vivo - генетический материал с помощью векторов переносится в клетки, выращиваемые в культуре (трансдукция), а затем трансгенные клетки вводят реципиенту; in vivo - введение вектора с нужным геном в определенную ткань или орган. Картинка из .

Генная терапии іn vivo подразумевает перенос генов - введение генетических конструкций в раковые клетки или в ткани, которые окружают опухоль . Генная терапия ех vivo состоит из выделения раковых клеток из пациента, встраивания терапевтического «здорового» гена в раковый геном и введения трансдуцированных клеток обратно в организм пациента. Для таких целей используются специальные векторы, созданные методами генной инженерии. Как правило, это вирусы, которые выявляют и уничтожают раковые клетки, при этом оставаясь безвредными для здоровых тканей организма, или невирусные векторы.

Вирусные векторы

В качестве вирусных векторов используют ретровирусы, аденовирусы, аденоассоциированные вирусы, лентивирусы, вирусы герпеса и другие. Эти вирусы отличаются по эффективности трансдукции, по взаимодействию с клетками (распознавание и заражение) и ДНК. Главным критерием является безопасность и отсутствие риска неконтролируемого распространения вирусной ДНК: если гены вставляются в неправильном месте генома человека, они могут создать вредные мутации и инициировать развитие опухоли. Также важно учитывать уровень экспрессии перенесенных генов, чтобы предотвратить воспалительные или иммунные реакции организма при гиперсинтезе целевых белков (Таблица 1).

Таблица 1. Вирусные векторы .
Вектор Краткое описание
Вирус кори (measles virus) содержит отрицательную последовательность РНК, которая не вызывает защитного ответа в раковых клетках
Вирус простого герпеса (HSV-1) может переносить длинные последовательности трансгенов
Лентивирус производный от ВИЧ, может интегрировать гены в неделящиеся клетки
Ретровирус (RCR) не способный к самостоятельной репликации, обеспечивает эффективное встраивание чужеродной ДНК в геном и постоянство генетических изменений
Обезьяний пенистый вирус (SFV) новый РНК-вектор, который передает трансген в опухоль и стимулирует его экспрессию
Рекомбинантный аденовирус (rAdv) обеспечивает эффективную трансфекцию, но возможна сильная иммунная реакция
Рекомбинантный аденоассоциированный вирус (rAAV) способен к трансфекции многих типов клеток

Невирусные векторы

Для переноса трансгенных ДНК также применяют невирусные векторы. Полимерные переносчики лекарственных средств - конструкции из наночастиц - используются для доставки препаратов с низкой молекулярной массой, например, олигонуклеотидов, пептидов, миРНК. Благодаря небольшим размерам, наночастицы поглощаются клетками и могут проникать в капилляры, что очень удобно для доставки «лечебных» молекул в самые труднодоступные места в организме. Данная техника часто используется для ингибирования ангиогенеза опухоли. Но существует риск накопления частиц в других органах, например, костном мозге, что может привести к непредсказуемым последствиям . Самыми популярными невирусными методами доставки ДНК являются липосомы и электропорация.

Синтетические катионные липосомы в настоящее время признаны перспективным способом доставки функциональных генов. Положительный заряд на поверхности частиц обеспечивает слияние с отрицательно заряженными клеточными мембранами. Катионные липосомы нейтрализуют отрицательный заряд цепи ДНК, делают более компактной ее пространственную структуру и способствуют эффективной конденсации. Плазмидно-липосомный комплекс имеет ряд важных достоинств: могут вмещать генетические конструкции практически неограниченных размеров, отсутствует риск репликации или рекомбинации, практически не вызывает иммунного ответа в организме хозяина. Недостаток этой системы состоит в низкой продолжительности терапевтического эффекта, а при повторном введении могут появляться побочные эффекты .

Электропорация является популярным методом невирусной доставки ДНК, довольно простым и не вызывающим иммунного ответа. С помощью индуцированных электрических импульсов на поверхности клеток образуются поры, и плазмидные ДНК легко проникают во внутриклеточное пространство . Генная терапия іn vivo с использованием электропорации доказала свою эффективность в ряде экспериментов на мышиных опухолях. При этом можно переносить любые гены, например, гены цитокинов (IL-12) и цитотоксические гены (TRAIL), что способствует развитию широкого спектра терапевтических стратегий. Кроме того, этот подход может быть эффективным для лечения и метастатических, и первичных опухолей .

Выбор техники

В зависимости от типа опухоли и ее прогрессии, для пациента подбирается наиболее эффективная методика лечения. На сегодняшний день разработаны новые перспективные техники генной терапии против рака, среди которых онколитическая вирусная ГТ, пролекарственная ГТ (prodrug therapy), иммунотерапия, ГТ с использованием стволовых клеток.

Онколитическая вирусная генная терапия

Для этой методики используются вирусы, которые с помощью специальных генетических манипуляций становятся онколитическими - перестают размножаться в здоровых клетках и воздействуют только на опухолевые. Хорошим примером такой терапии является ONYX-015 - модифицированный аденовирус, который не экспрессирует белок Е1В. При отсутствии этого белка вирус не может реплицироваться в клетках с нормальным геном p53 . Два вектора, сконструированных на базе вируса простого герпеса (HSV-1) - G207 и NV1020 - также несут в себе мутации нескольких генов, чтобы реплицироваться только в раковых клетках . Большим преимуществом техники является то, что при проведении внутривенных инъекций онколитические вирусы разносятся с кровью по всему организму и могут бороться с метастазами. Основные проблемы, которые возникают при работе с вирусами - это возможный риск возникновения иммунного ответа в организме реципиента, а также неконтролируемое встраивание генетических конструкций в геном здоровых клеток, и, как следствие, возникновение раковой опухоли.

Геноопосредованная ферментативная пролекарственная терапия

Базируется на введении в опухолевую ткань «суицидных» генов, в результате работы которых раковые клетки погибают. Данные трансгены кодируют ферменты, активирующие внутриклеточные цитостатики, ФНО-рецепторы и другие важные компоненты для активации апоптоза. Суицидная комбинация генов пролекарства в идеале должна соответствовать следующим требованиям : контролируемая экспрессия гена; правильное превращение выбранного пролекарства в активное противораковое средство; полная активация пролекарства без дополнительных эндогенных ферментов.

Минус терапии состоит в том, что в опухолях присутствуют все защитные механизмы, свойственные здоровым клеткам, и они постепенно адаптируются к повреждающим факторам и пролекарству. Процессу адаптации способствует экспрессия цитокинов (аутокринная регуляция), факторов регуляции клеточного цикла (отбор самых стойких раковых клонов), MDR-гена (отвечает за восприимчивость к некоторым медикаментам).

Иммунотерапия

Благодаря генной терапии, в последнее время начала активно развиваться иммунотерапия - новый подход для лечения рака с помощью противоопухолевых вакцин. Основная стратегия метода - активная иммунизация организма против раковых антигенов (ТАА) с помощью технологии переноса генов [?18].

Главным отличием рекомбинантных вакцин от других препаратов является то, что они помогают иммунной системе пациента распознавать раковые клетки и уничтожать их. На первом этапе раковые клетки получают из организма реципиента (аутологичные клетки) или из специальных клеточных линий (аллогенные клетки), а затем выращивают их в пробирке. Для того чтобы эти клетки могли узнаваться иммунной системой, вводят один или несколько генов, которые производят иммуностимулирующие молекулы (цитокины) или белки с повышенным количеством антигенов. После этих модификаций клетки продолжают культивировать, затем проводят лизис и получают готовую вакцину.

Широкое разнообразие вирусных и невирусных векторов для трансгенов позволяет экспериментировать над различными типами иммунных клеток (например, цитотоксическими Т-клетками и дендритными клетками) для ингибирования иммунного ответа и регрессии раковых клеток. В 1990-х годах было высказано предположение, что опухолевые инфильтрирующие лимфоциты (TIL) являются источником цитотоксических Т-лимфоцитов (CTL) и естественных киллеров (NK) для раковых клеток . Так как TIL можно легко манипулировать ех vivo , они стали первыми генетически модифицированными иммунными клетками, которые были применены для противораковой иммунотерапии . В Т-клетках, изъятых из крови онкобольного, изменяют гены, которые отвечают за экспрессию рецепторов для раковых антигенов. Также можно добавлять гены для большей выживаемости и эффективного проникновения модифицированных Т-клеток в опухоль. С помощью таких манипуляций создаются высокоактивные «убийцы» раковых клеток .

Когда было доказано, что большинство видов рака имеют специфические антигены и способны индуцировать свои защитные механизмы , была выдвинута гипотеза, что блокировка иммунной системы раковых клеток облегчит отторжение опухоли. Поэтому для производства большинства противоопухолевых вакцин в качестве источника антигенов используют опухолевые клетки пациента или специальные аллогенные клетки. Основные проблемы иммунотерапии опухолей - вероятность возникновения аутоиммунных реакций в организме больного, отсутствие противоопухолевого ответа, иммуностимуляция роста опухоли и другие.

Стволовые клетки

Мощным инструментом генной терапии является использование стволовых клеток в качестве векторов для передачи терапевтических агентов - иммуностимулирующих цитокинов, «суицидных» генов, наночастиц и антиангиогенных белков . Стволовые клетки (СК), кроме способности к самообновлению и дифференцировке, имеют огромное преимущество по сравнению с другими транспортными системами (нанополимерами, вирусами): активация пролекарства происходит непосредственно в опухолевых тканях, что позволяет избежать системной токсичности (экспрессия трансгенов способствует разрушению только раковых клеток). Дополнительным позитивным качеством является «привилегированное» состояние аутологичных СК - использованные собственных клеток гарантирует 100%-совместимость и повышает уровень безопасности процедуры . Но все же эффективность терапии зависит от правильной ех vivo передачи модифицированного гена в СК и последующего переноса трансдуцированных клеток в организм пациента. Кроме того, прежде чем применять терапию в широких масштабах, нужно детально изучить все возможные пути трансформации СК в раковые клетки и разработать меры безопасности для предупреждения канцерогенного преобразования СК.

Заключение

Если подвести итоги, можно с уверенностью говорить, что наступает эпоха персонализированной медицины, когда для лечения каждого онкобольного будет подбираться определенная эффективная терапия. Уже разрабатываются индивидуальные программы лечения, которые обеспечивают своевременный и правильный уход и приводят к значительному улучшению состояния пациентов. Эволюционные подходы для персонализированной онкологии, такие как геномный анализ, производство таргетных препаратов, генная терапия рака и молекулярная диагностика с использованием биомаркеров уже приносят свои плоды .

Особенно перспективным методом лечения онкозаболеваний является генная терапия. На данный момент активно проводятся клинические испытания, которые часто подтверждают эффективность ГТ в тех случаях, когда стандартное противораковое лечение - хирургия, лучевая терапия и химиотерапия - не помогает. Развитие инновационных методик ГТ (иммунотерапии, онколитической виротерапии, «суицидной» терапии и др.) сможет решить проблему высокой смертности от рака, и, возможно, в будущем диагноз «рак» не будет звучать приговором.

Рак: узнать, предупредить и устранить болезнь.

Литература

  1. Уильямс С. Клаг, Майкл Р.Каммингм. Мир биологии и медицины. Основы генетики. Москва: Техносфера, 2007. - 726 с;
  2. Биоинформатика: большие БД против «большого Р» ;
  3. Cui H., Cruz-Correa M. et al. (2003).

За свою относительно недолгую историю генная терапия претерпела и « взлеты и падения» : иногда ученые и практические врачи видели в ней чуть ли не панацею, а затем наступал период разочарования и скептицизма…
Идеи о возможности введения в организм генов с терапевтической целью были высказаны еще в начале 60-х годов минувшего столетия, однако реальные шаги были сделаны лишь в конце 80-х и были тесно связаны с международным проектом по расшифровке генома человека.

В 1990 г. была предпринята попытка генной терапии тяжелого, зачастую несовместимого с жизнью, наследственного иммунодефицита, вызванного дефектом в гене, кодирующем синтез фермента аденозиндезаминазы. Авторы исследования сообщили о четко выраженном терапевтическом эффекте. И хотя со временем возник ряд сомнений по поводу стойкости полученного эффекта и его конкретных механизмов, именно эта работа послужила мощнейшим толчком для развития генной терапии и привлекла многомиллиардные инвестиции.

Генная терапия — медицинский подход, основанный на введении в клетки генных конструкций для лечения различных заболеваний. Желаемый эффект достигается либо в результате экспрессии введенного гена, либо за счет подавления функции дефектного гена. Следует подчеркнуть, что целью генной терапии является не « лечение» генов как таковых, а лечение различных заболеваний с их помощью.

Как правило, в качестве « лекарственного препарата» используют фрагмент ДНК, содержащий необходимый ген. Это может быть просто « голая ДНК» , обычно в комплексе с липидами, белками и др. Но гораздо чаще ДНК вводят в составе специальных генетических конструкций (векторов), созданных на основе разнообразных вирусов человека и животных с помощью целого ряда генно-инженерных манипуляций. Например, из вируса удаляют гены, необходимые для его размножения. Это, с одной стороны, делает вирусные частицы практически безопасными, с другой, « освобождает место» для генов, предназначенных для введения в организм.

Принципиальным моментом генной терапии является проникновение генной конструкции в клетку (трансфекция), в подавляющем большинстве случаев — в ее ядро. При этом важно, чтобы генная конструкция достигла именно тех клеток, которые нужно « лечить» . Поэтому успешность генной терапии во многом зависит от выбора оптимального или, по крайней мере, удовлетворительного способа введения генных конструкций в организм.

С вирусными векторами ситуация более или менее предсказуема: они распространяются по организму и проникают в клетки подобно своим вирусам-предкам, обеспечивая достаточно высокий уровень органной и тканевой специфичности. Такие конструкции обычно вводят внутривенно, внутрибрюшинно, подкожно или внутримышечно.

Для « целевой доставки» невирусных векторов был разработан ряд специальных методов. Простейший метод доставки нужного гена в клетки in vivo — прямая инъекция генетического материала в ткань. Использование данного метода ограничено: инъекции можно делать только в кожу, тимус, поперечно-полосатые мышцы, некоторые плотные опухоли.

Другой способ доставки трансгена — баллистическая трансфекция. Она основана на « обстреле» органов и тканей микрочастицами тяжелых металлов (золото, вольфрам), покрытых фрагментами ДНК. Для « обстрела» используют специальную « генную пушку» .

При лечении заболеваний легких возможно введение генетического материала в дыхательные пути в виде аэрозоля.

Трансфекцию клеток можно также проводить ех vivo: клетки выделяют из организма, производят с ними генно-инженерные манипуляции, а затем вводят обратно в организм больного.

Лечим: наследственное …

На начальном этапе развития генной терапии ее основными объектами считались наследственные заболевания, вызванные отсутствием или недостаточной функцией одного гена, то есть моногенные. Предполагалось, что введение больному нормально функционирующего гена приведет к излечению от болезни. Неоднократно предпринимались попытки лечения « королевской болезни» — гемофилии, миодистрофии Дюшена, муковисцидоза.

Сегодня разрабатываются и испытываются методы генной терапии почти 30 моногенных заболеваний человека. Между тем, вопросов остается больше, чем ответов, а реальный терапевтический эффект в большинстве случаев не достигнут. Причинами этого, прежде всего, являются иммунная реакция организма, постепенное « затухание» функций введенного гена, а также невозможность добиться « адресного» встраивания переносимого гена в хромосомную ДНК.

Моногенным заболеваниям посвящены менее 10% исследований генной терапии, остальные же касаются ненаследственных патологий.

…и приобретенное

Приобретенные заболевания не связаны с врожденным дефектом в структуре и функции генов. Их генная терапия основывается на положении, что введенный в организм « терапевтический ген» должен привести к синтезу белка, который либо окажет лечебное действие, либо будет способствовать увеличению индивидуальной чувствительности к действию лекарственных средств.

Генная терапия может быть использована для предотвращения тромбообразования, восстановления сосудистой системы сердечной мышцы после инфаркта миокарда, профилактики и лечения атеросклероза, а также в борьбе с ВИЧ-инфекцией и онкологическими заболеваниями. Например, интенсивно развивается такой метод генной терапии опухолей, как повышение чувствительности опухолевых клеток к химиотерапевтическим препаратам, проводят клинические испытания с участием пациентов с плевральной мезотелиомой, раком яичников, глиобластомой. В 1999 г. был одобрен протокол лечения рака предстательной железы, подобраны безопасные дозы химиопрепаратов и продемонстрирован положительный лечебный эффект.

Безопасность и этика

Проведение генетических манипуляций с организмом человека предъявляет особые требования к безопасности: ведь любое введение в клетки чужеродного генетического материала может иметь отрицательныеотрицательные последствия. Неконтролируемое встраивание « новых» генов в те или иные участки генома больного может привести к нарушению функции « своих» генов, что, в свою очередь, может вызвать нежелательные изменения в организме, в частности образование раковых опухолей.

Помимо этого, негативные генетические изменения могут возникнуть в соматических и половых клетках. В первом случае речь идет о судьбе одного человека, где риск, связанный с генетической коррекцией несравнимо меньший, чем риск смертельного исхода от имеющегося заболевания. При введении же генных конструкций в половые клетки нежелательные изменения в геноме могут быть переданы будущим поколениям. Поэтому совершенно естественным представляется стремление запретить эксперименты по генетической модификации половых клеток не только из медицинских, но и из этических соображений.

Ряд морально-этических проблем связан с разработкой подходов к генному вмешательству в клетки развивающегося эмбриона человека, то есть с внутриматочной генной терапией (терапией in utero). В США возможность использования генной терапии in utero рассматривается только для двух тяжелейших генетических заболеваний: тяжелого комбинированного иммунодефицита, вызванного дефектом в гене фермента аденозиндезаминазы, и гомозиготной бета-талассемии — тяжелого наследственного заболевания, связанного с отсутствием всех четырех глобиновых генов или мутациями в них. Уже разработан и готовится к предварительным испытаниям ряд генных конструкций, доставка которых в организм, как предполагается, приведет к компенсации генетических дефектов и устранению симптомов этих болезней. Однако риск возникновения отрицательных генетических последствий таких манипуляций достаточно велик. Поэтому этичность внутриматочной генной терапии также остается спорной.

В январе этого года в США опять были временно запрещены эксперименты по генной терапии. Причиной стали опасные осложнения, возникшие у двух детей после генной терапии наследственного иммунодефицита. Несколько месяцев назад во Франции у одного из детей, считавшихся излеченными благодаря генной терапии, был обнаружен лейкозоподобный синдром. Эксперты не исключают, что именно использование в ходе терапии векторов на основе ретровирусов может быть причиной развития осложнений у детей. Теперь представители Управления по контролю пищевых продуктов и лекарственных препаратов (FDA) будут рассматривать вопрос о продолжении экспериментов по генной терапии в индивидуальном порядке, причем лишь в том случае, если других способов лечения заболевания не существует.

Не панацея, но — перспектива

Нельзя отрицать, что реальные успехи генной терапии в лечении конкретных больных довольно скромны, а сам подход все еще находится на стадии накопления данных и разработки технологий. Генная терапия не стала и, очевидно, никогда не станет панацеей. Регуляторные системы организма настолько сложны и так мало изучены, что простое введение гена в большинстве случаев не вызывает необходимого лечебного эффекта.

Однако при всем этом перспективность генной терапии трудно переоценить. Есть все основания надеяться на то, что прогресс в сфере молекулярной генетики и генно-инженерных технологий приведет к несомненным успехам в лечении заболеваний человека с помощью генов. И, в конце концов, генная терапия по праву займет свое место в практической медицине.

Судя по всему, генная терапия может получить несколько неожиданное применение. По прогнозам ученых, в 2012 г. состоятся Олимпийские игры, где выступят трансгенные суперспортсмены. « ДНК-допинг» даст несомненные преимущества
в развитии силы, выносливости и скорости. Можно не сомневаться, что в условиях жесткой спортивной конкуренции найдутся атлеты, готовые к генетической модификации, даже учитывая возможный риск, связанный с применением новой технологии.

error: Content is protected !!