Строение клетки человека. Анатомия человека

Атлас: анатомия и физиология человека. Полное практическое пособие Елена Юрьевна Зигалова

Строение клетки человека

Строение клетки человека

Для всех клеток типично наличие цитоплазмы и ядра (см. рис. 1 ). Цитоплазма включает в себя гиалоплазму, органеллы общего назначения, имеющиеся во всех клетках, и органеллы специального назначения, которые есть лишь в определенных клетках и выполняют специальные функции. В клетках встречаются также временные клеточные структуры включения.

Размеры клеток человека варьируют от нескольких микрометров (например, малый лимфоцит) до 200 мкм (яйцеклетка). В организме человека встречаются клетки различной формы: овоидные, шаровидные, веретеновидные, плоские, кубические, призматические, полигональные, пирамидальные, звездчатые, чешуйчатые, отросчатые, амебовидные.

Снаружи каждая клетка покрыта плазматической мембраной (плазмолеммой) толщиной 9–10 нм, ограничивающей клетку от внеклеточной среды. Они выполняет следующие функции: транспортную, защитную, разграничительную, рецепторную восприятия сигналов внешней (для клетки) среды, участие в иммунных процессах, обеспечение поверхностных свойств клетки.

Будучи очень тонкой, плазмолемма не видна в световом микроскопе. В электронном микроскопе, если срез проходит под прямым углом к плоскости мембраны, последняя представляет собой трехслойную структуру, наружная поверхность которой покрыта тонкофибриллярным гликокаликсом толщиной от 75 до 2000 А°, совокупность молекул, связанных с белками плазмолеммы.

Рис. 3. Строение клеточной мембраны, схема (по А. Хэму и Д. Кормаку). 1 – углеводные цепи; 2 – гликолипид; 3 – гликопротеид; 4 – углеводородный «хвост»; 5 – полярная «головка»; 6 – белок; 7 – холестерин; 8 – микроктрубочки

Плазмолемма, как и другие мембранные структуры, состоит из двух слоев амфипатических молекул липидов (билипидный слой, или бислой). Их гидрофильные «головки» направлены к наружной и внутренней сторонам мембраны, а гидрофобные «хвосты» обращены друг к другу. В билипидный слой погружены молекулы белка. Некоторые из них (интегральные, или внутренние трансмембранные белки) проходят через всю толщу мембраны, другие (периферические, или внешние) лежат во внутреннем или наружном монослое мембраны. Некоторые интегральные белки связаны нековалентными связями с белками цитоплазмы (рис. 3 ). Подобно липидам, белковые молекулы также являются амфипатическими их гидрофобные участки окружены аналогичными «хвостами» липидов, а гидрофильные обращены наружу или внутрь клетки или в одну сторону.

ВНИМАНИЕ

Белки осуществляют большую часть мембранных функций: многие мембранные белки являются рецепторами, другие ферментами, третьи переносчиками.

Плазмолемма образует ряд специфических структур. Это межклеточные соединения, микроворсинки, реснички, клеточные инвагинации и отростки.

Микроворсинки – это лишенные органелл пальцевидные выросты клетки, покрытые плазмолеммой, длиной 1–2 мкм и диаметром до 0,1 мкм. Некоторые эпителиальные клетки (например, кишечные) имеют очень большое количество микроворсинок, образуя так называемую щеточную каемку. Наряду с обычными микроворсинками на поверхности некоторых клеток имеются крупные микроворсинки стереоцилии (например, волосковые сенсорные клетки органов слуха и равновесия эпителиоциты протока придатка яичка и др.).

Реснички и жгутики выполняют функцию движения. До 250 ресничек длиной 5–15 мкм диаметром 0,15–0,25 мкм покрывают апикальную поверхность эпителиальных клеток верхних дыхательных путей, маточных труб, семявыводящих канальцев. Ресничка представляет собой вырост клетки, окруженный плазмолеммой. В центре реснички проходит осевая нить, или аксонема, образованная 9 периферическими дуплетами микротрубочек, окружающих одну центральную пару. Периферические дуплеты, состоящие из двух микротрубочек, окружают центральную капсулу. Периферические дуплеты заканчиваются в базальном тельце (кинетосоме), которое образовано из 9 триплетами микротрубочек. На уровне плазмолеммы апикальной части клетки триплеты переходят в дуплеты, здесь же начинается и центральная пара микротрубочек. Жгутики эукариотических клеток напоминают реснички. Реснички совершают координированные колебательные движения.

Клеточный центр , образованный двумя центриолями (диплосома), находится вблизи ядра, расположенными под углом друг к другу (рис. 4 ). Каждая центриоль представляет собой цилиндр, стенка которого состоит из 9 триплетов микротрубочек длиной около 0,5 мкм и диаметром около 0,25 мкм. Триплеты, расположенные по отношению друг к другу под углом около 50°, состоят из трех микротрубочек. Центриоли удваиваются в клеточном цикле. Не исключено, что, подобно митохондриям, центриоли содержат собственную ДНК. Центриоли участвуют в образовании базальных телец ресничек и жгутиков и в образовании митотического веретена.

Рис. 4. Клеточный центр и другие структуры цитоплазмы (по Р. Крстичу, с изм.). 1 – центросфера; 2 – центриоль на поперечном срезе (триплеты микротрубочек, радиальные спицы, центральная структура «колеса телеги»); 3 – центриоль (продольный разрез); 4 – сателлиты; 5 – окаймленные пузырьки; 6 – зернистая эндоплазматическая сеть; 7 – митохондрия; 8 – внутренний сетчатый аппарат (комплекс Гольджи); 9 – микротрубочки

Микротрубочки , имеющиеся в цитоплазме всех эукариотических клеток, образованы белком тубулином. Микротрубочки образуют клеточный скелет (цитоскелет) и участвуют в транспорте веществ внутри клетки. Цитоскелет клетки представляет собой трехмерную сеть, в которой различные органеллы и растворимые белки связаны с микротрубочками. Главную роль в образовании цитоскелета играют микротрубочки, помимо них принимают участие актиновые, миозиновые и промежуточные филаменты.

Данный текст является ознакомительным фрагментом.

Ни Т– ни В-лимфоидные клетки Лимфоидные клетки, не имеющие Т– и В-маркеров, представляют собой оставшуюся после выделения Т– и В-клеток субпопуляцию. В ее состав входят стволовые клетки костного мозга, являющиеся предшественниками В-, Т– или обеих субпопуляций

2. Осмотр больного с заболеванием органов дыхания. Патологические формы грудной клетки. Определение дыхательной экскурсии грудной клетки Положение больного. Положение ортопноэ: в отличие от заболеваний сердечно-сосудистой системы больной чаще сидит с наклоном корпуса

6. СКЕЛЕТ СВОБОДНОЙ ВЕРХНЕЙ КОНЕЧНОСТИ. СТРОЕНИЕ ПЛЕЧЕВОЙ КОСТИ И КОСТЕЙ ПРЕДПЛЕЧЬЯ. СТРОЕНИЕ КОСТЕЙ КИСТИ Плечевая кость (humerus) имеет тело (центральную часть) и два конца. Верхний конец переходит в головку (capet humeri), по краю которой проходит анатомическая шейка (collum anatomikum).

8. СТРОЕНИЕ СКЕЛЕТА СВОБОДНОЙ ЧАСТИ НИЖНЕЙ КОНЕЧНОСТИ. СТРОЕНИЕ БЕДРЕННОЙ КОСТИ, НАДКОЛЕННИКА И КОСТЕЙ ГОЛЕНИ. СТРОЕНИЕ КОСТЕЙ СТОПЫ Бедренная кость (os femoris) имеет тело и два конца. Проксимальный конец переходит в головку (caput ossis femoris), посередине которой расположена

3. СТРОЕНИЕ, КРОВОСНАБЖЕНИЕ И ИННЕРВАЦИЯ ПОЛОВОГО ЧЛЕНА И МОЧЕИСПУСКАТЕЛЬНОГО КАНАЛА. СТРОЕНИЕ, КРОВОСНАБЖЕНИЕ И ИННЕРВАЦИЯ МОШОНКИ Половой член (penis) предназначен для выведения мочи и выбрасывания семени.В половом члене выделяют следующие части: тело (corpus penis), головку

2. СТРОЕНИЕ ПОЛОСТИ РТА. СТРОЕНИЕ ЗУБОВ Полость рта (cavitas oris) при сомкнутых челюстях заполнена языком. Ее наружными стенками является язычная поверхность зубных дуг и десен (верхних и нижних), верхняя стенка представлена небом, нижняя – мышцами верхней части шеи, которые

13. СТРОЕНИЕ ТОЛСТОЙ КИШКИ. СТРОЕНИЕ СЛЕПОЙ КИШКИ Толстая кишка (intestinym crassum) – продолжение тонкой кишки; является конечным отделом пищеварительного тракта.Начинается она от илеоцекального клапана и заканчивается анусом. В ней всасываются остатки воды и формируются

2. СТРОЕНИЕ СТЕНКИ СЕРДЦА. ПРОВОДЯЩАЯ СИСТЕМА СЕРДЦА. СТРОЕНИЕ ПЕРИКАРДА Стенка сердца состоит из тонкого внутреннего слоя – эндокарда (endocardium), среднего развитого слоя – миокарда (myocardium) и наружного слоя – эпикарда (epicardium).Эндокард выстилает всю внутреннюю поверхность

1. Отравляющее действие алкоголя на клетки растений, животных и человека Все живые существа - растения и животные - состоят из клеток. Каждая клетка есть комочек живой слизи (протоплазмы) с ядром и ядрышком в середине. Клетка так мала, что видеть и изучать ее можно только

Клетки В норме желчь не содержит никаких клеток. При воспалительных процессах в желчном пузыре и желчевыводящих путях в желчи определяется большое количество лейкоцитов и клеток эпителия. Диагностическое значение имеют хорошо сохранившиеся эпителиальные клетки, у

NK-клетки В арсенале иммунной защиты имеются еще одни киллеры, способные защитить нас от злокачественной опухоли (рис. 46). Это так называемые естественные клетки-убийцы, сокращенно – NK-клетки (от англ. nature killer – натуральные киллеры). Рис. 46. Натуральные киллеры атакуют

Строение клетки

Человеческий организм, как и любой другой живой организм, состоит из клеток. Они играют одну из основных ролей в нашем организме. С помощью клеток происходит рост, развитие и размножение.

Теперь давайте вспомним определение, о том, что в биологии принято называть клеткой.

Клетка – это такая элементарная единица, которая участвует в строении и функционировании всех живых организмов, за исключением вирусов. Она имеет свой собственный обмен веществ и способна не только самостоятельно существовать, но и развиваться, а также самовоспроизводиться. Вкратце можно сделать вывод, что клетка является для любого организма самым главным и необходимым строительным материалом.

Конечно же, невооруженным глазом вам вряд ли удастся разглядеть клетку. Но с помощью современных технологий у человека появилась прекрасная возможность не только под световым или электронным микроскопом рассмотреть саму клетку, но и изучить ее строение, выделить и культивировать отдельные ее тканы и даже раскодировать генетическую клеточную информацию.

А теперь, с помощью данного рисунка, давайте наглядно рассмотрим строение клетки:


Строение клетки

Но что интересно, оказывается, не все клетки имеют одинаковое строение. Между клетками живого организма и клетками растений существует некоторая разница. Ведь в клетках растений есть пластиды, оболочка и вакуоли с клеточным соком. На изображении вы можете посмотреть клеточное строение животных и растений и увидеть разницу между ними:



Более подробную информацию о строении растительных и животных клеток, вы узнаете, посмотрев видео

Как видите, клетки, хотя и имеют микроскопические размеры, но их строение довольно таки сложное. Поэтому мы с вами сейчас перейдем к более подробному изучению строения клетки.

Плазматическая мембрана клетки

Для придания формы и для того, чтобы отделить клетку от ей подобных, вокруг клетки человека находится мембрана.

Так как мембрана имеет свойство частично пропускать через себя вещества, то за счет этого в клетку поступают нужные вещества, а отходы из нее выводятся.

Условно можно сказать, что клеточная мембрана представляет собой ультрамикроскопическую плёнку, которая состоит из двух мономолекулярных слоев белка и бимолекулярного слоя липидов, который расположен между этими слоями.

Из этого мы можем сделать вывод, что мембрана клетки играет важную роль в ее строении, так как выполняет ряд определенных функций. Она играет защитную, барьерную и связующую функцию между другими клетками и для связи с окружающей средой.

А теперь давайте на рисунке рассмотрим более подробное строение мембраны:



Цитоплазма

Следующей составляющей внутренней среды клетки является цитоплазма. Она представляет собой полужидкое вещество, в котором перемещаются и растворяются другие вещества. Состоит цитоплазма из белков и воды.

Внутри клетки происходит постоянное движение цитоплазмы, которое называют циклозом. Циклоз бывает круговым или сетчатым.

Кроме этого, цитоплазма соединяет разные части клетки. В этой среде располагаются органоиды клетки.

Органоиды представляют собой постоянные клеточные структуры с определенными функциями.

К таким органоидам относятся такие структуры, как цитоплазматический матрикс, эндоплазматическая сеть, рибосомы, митохондрии и т.д.

Сейчас мы попробуем более подробно рассмотреть эти органоиды и узнать, какие функции они выполняют.


Цитоплазма

Цитоплазматический матрикс

Оной из основных частей клетки представляет цитоплазматический матрикс. Благодаря ему в клетке происходят процессы биосинтеза, а его компоненты содержат ферменты, с помощью которых вырабатывается энергия.


Цитоплазматический матрикс

Эндоплазматическая сеть

Внутри, зона цитоплазмы состоит из мелких каналов и различных полостей. Эти каналы, соединяясь друг с другом, образуют эндоплазматическую сеть. Такая сеть неоднородна по своему строению и может быть гранулярной либо гладкой.


Эндоплазматическая сеть

Клеточное ядро

Самой важной частью, которая присутствует практически во всех клетках, является клеточное ядро. Такие клетки, в которых есть ядро, называют эукариотами. В каждом клеточном ядре находится ДНК. Оно является веществом наследственности и в нем зашифрованы все свойства клетки.


Клеточное ядро

Хромосомы

Если под микроскопом рассматривать строение хромосомы, то можно увидеть, что она состоит из двух хроматид. Как правило, после деления ядра, хромосома становится однохроматидной. Но уже к началу следующего деления у хромосомы появляется еще одна хроматида.



Хромосомы

Клеточный центр

При рассмотрении клеточного центра можно увидеть, что он состоит из материнской и дочерней центриолей. Каждая такая центриоль представляет собой объект, имеющий цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество.

С помощью такого клеточного центра происходит деление клеток животных и низших растений.



Клеточный центр

Рибосомы

Рибосомы являются универсальными органеллами, как в клетках животных, так и в клетках растений. Их главной функцией является синтез белка в функциональном центре.


Рибосомы

Митохондрии

Митохондрии также являются микроскопическими органеллами, но в отличие от рибосом имеют двухмембранное строение, в которых внешняя мембрана гладкая, а внутренняя имеет различной формы выросты, которые называют кристы. Митохондрии играют роль дыхательного и энергетического центра



Митохондрии

Аппарат Гольджи

А вот с помощью аппарата Гольджи происходит накопление и транспортировка веществ. Также, благодаря этому аппарату, происходит образование лизосом и синтез липидов и углеводов.

По строению аппарат Гольджи напоминает отдельные тельца, которые имеют серповидную или палочковидную формы.


Аппарат Гольджи

Пластиды

А вот пластиды для растительной клетки играют роль энергетической станции. Им свойственно превращение из одного вида в другой. Пластиды делятся на такие разновидности, как хлоропласты, хромопласты, лейкопласты.


Пластиды

Лизосомы

Пищеварительная вакуоль, способная растворять ферменты носит название лизосомы. Они представляют собой микроскопические одномембранные органеллы, имеющие округлую форму. Их количество напрямую зависит от того, насколько клетка жизнедеятельна и какое у нее физическое состояние.

В том случае, когда происходит разрушение мембраны лизосомы, то в этом случае клетка способна переваривает сама себя..



Лизосомы

Способы питания клетки

А теперь давайте рассмотрим способы питания клеток:



Способ питания клетки

Здесь следовало бы отметить, что белки и полисахариды имеют свойство проникать в клетку, путем фагоцитоза, а вот капли жидкости – методом пиноцитоза.

Способ питания животных клеток, при котором в нее попадают питательные вещества, называют фагоцитозом. А такой универсальный способ питания любых клеток, при котором питательные вещества попадают в клетку уже в растверенном виде, называют пиноцитоз.

Человек, как все живые существа, состоит из клеток, связанных между собой соединительными структурами.
Сами клетки ведут себя как живые существа, так как они выполняют такие же жизненные функции, как и многоклеточные организмы: питаются, чтобы обеспечивать свою жизнедеятельность, используют кислород для получения энергии, отвечают на определенные раздражители и обладают способностью к размножению.

Лизосомы – органеллы, ответственные за переваривание веществ, поступающих в цитоплазму.

Рибосомы – органеллы, синтезирующие белки из молекул аминокислот.

Клеточная или цитоплазматическая оболочка – полупроницаемая структура, окружающая клетку. Обеспечивает связь клетки с внеклеточной средой.

Цитоплазма – вещество, заполняющее всю клетку и содержащее все клеточные тельца, включая ядро.

Микроворсинки – складки и выпуклости цитоплазматической оболочки, обеспечивающие прохождение веществ через нее.

Центросома – участвует в митозе или делении клеток.

Центриоли – центральные части центросомы.

Вакуоли – маленькие пузырьки в цитоплазме, заполненные клеточной жидкостью.

Ядро – один из основополагающих компонентов клетки, так как ядро является носителем наследственных признаков и влияет на размножение и передачу биологической наследственности.

Ядерная оболочка – пористая оболочка, регулирующая проход веществ между ядром и цитоплазмой.

Ядрышки – сферические органеллы ядра, участвующие в образовании рибосом.

Внутриклеточные нити – органеллы, содержащиеся в цитоплазме.

Митохондрии – органеллы, принимающие участие в большом числе химических реакций, таких как клеточное дыхание.

Как мы получаем энергию: катаболизм и анаболизм 21.11.03 Функции питания клетки направлены на то, чтобы предоставить нам пишу и энергию 1 клетка + митоз = 2 клетки 21.11.03 Этот тип математической формулы - простой способ для запоминания важности процесса деления клеток, необходимого для Клеточная или цитоплазматическая мембрана 21.11.03 Цитоплазматическая мембрана (оболочка) - это тонкая структура, которая отделяет содержимое клетки от окружающей среды. Клетки, ткани, органы, системы и аппараты 21.11.03 Человеческий организм – слагаемое элементов, которые слаженно действуют, чтобы эффективно выполнять все жизненные функции. Эксперимент Стенли Л. Миллера о происхождении органических соединений 18.11.03 Земля образовалась около 5 миллиардов лет назад. Когда ее поверхность достаточно которые извергали в атмосферу большое количество пепла и газов (водорода, мера). Высокая температура способствовала образованию огромных облаков, которые От родителей к детям благодаря хромосомам 21.11.03 Ядро клетки претерпевает различные изменения, когда клетка начинает делиться: исчезают оболочка и ядрышки; в это время Митохондрии 21.11.03 Митохондрии - это органеллы округлой или удлиненной формы, распределенные по всей цитоплазме Ядро клетки 21.11.03 Ядро, одно в каждой человеческой клетке, является ее основным компонентом, так как это организм

Клетки, образующие ткани растений и животных, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.

Биологические превращения, происходящие в клетке, неразрывно связаны с теми структурами живой клетки, которые отвечают за выполнение гой или иной функции. Такие структуры получили название органоидов.

Клетки всех типов содержат три основных, неразрывно связанных между собой компонента:

  1. структуры, образующие ее поверхность: наружная мембрана клетки, или клеточная оболочка, или цитоплазматическая мембрана;
  2. цитоплазма с целым комплексом специализированных структур — органоидов (эндоплазматическая сеть, рибосомы, митохондрии и пластиды, комплекс Гольджи и лизосомы, клеточный центр), присутствующих в клетке постоянно, и временных образований, называемых включениями;
  3. ядро - отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко.

Строение клетки

Поверхностный аппарат клетки (цитоплазматическая мембрана) растений и животных имеет некоторые особенности.

У одноклеточных организмов и лейкоцитов наружная мембрана обеспечивает проникновение в клетку ионов, воды, мелких молекул других веществ. Процесс проникновения в клетку твердых частиц называется фагоцитозом, а попадание капель жидких веществ - пиноцитозом.

Наружная плазматическая мембрана регулирует обмен веществ между клеткой и внешней средой.

В клетках эукариот есть органоиды, покрытые двойной мембраной, - митохондрии и пластиды. Они содержат собственные ДНК и синтезирующий белок аппарат, размножаются делением, то есть имеют определенную автономию в клетке. Кроме АТФ, в митохондриях происходит синтез небольшого количества белка. Пластиды свойственны клеткам растений и размножаются путем деления.

Строение клеточной оболочки
Виды клеток Строение и функции наружного и внутреннего слоев клеточной оболочки
наружный слой (хим. состав, функции)

внутренний слой - плазматическая мембрана

химический состав функции
Клетки растений Состоят из клетчатки. Этотслой служит каркасом клетки и выполняет защитную функцию Два слоя белка, между ними - слой липидов Ограничивает внутреннюю среду клетки от внешней и поддерживает эти различия
Клетки животных Наружный слой (гликокаликс) очень тонкий и эластичный. Состоит из полисахаридов и белков. Выполняет защитную функцию. Тоже Специальные ферменты плазматической мембраны регулируют проникновение многих иононов и молекул в клетку и выход их во внешнюю среду

К одномембранным органоидам относятся эндоплазматическая сеть, комплекс Гольджи, лизосомы, различные типы вакуолей.

Современные средства исследования позволили биологам установить, что по строению клетки все живые существа следует делить на организмы «безъядерные» - прокариоты и «ядерные» - эукариоты.

У прокариот-бактерий и сине-зеленых водорослей, а также вирусов имеется всего одна хромосома, представленная молекулой ДНК (реже РНК), расположенной непосредственно в цитоплазме клетки.

Строение органоидов цитоплазмы клетки и их функции
Главные рганоиды Строение Функции
Цитоплазма Внутренняя полужидкая среда мелкозернистой структуры. Содержит ядро и органоиды
  1. Обеспечивает взаимодействие ядра и органоидов
  2. Регулирует скорость биохимических процессов
  3. Выполняет транспортную функцию
ЭПС - эндоплазматическая сеть Система мембран в цитоплазме» образующая каналы и более крупные полости, ЭПС бывает 2-х типов: гранулированная (шероховатая), на которой расположено множество рибосом, и гладкая
  1. Осуществляет реакции, связанные с синтезом белков, углеводов, жиров
  2. Способствует переносу и циркуляции питательных веществ в клетке
  3. Белок синтезируется на гранулированной ЭПС, углеводы и жиры — на гладкой ЭПС
Рибосомы Мелкие тельца диаметром 15-20 мм Осуществляют синтез белковых молекул, их сборку из аминокислот
Митохондрии Имеют сферическую, нитевидную, овальную и другие формы. Внутри митохондрий находятся складки (дл. от 0,2 до 0,7 мкм). Внешний покров митохондрий состоит из 2-х мембран: наружная - гладкая, и внутренняя - образует выросты-кресты, на которых расположены дыхательные ферменты
  1. Обеспечивают клетку энергией. Энергия освобождается при распаде аденозинтрифосфорной кислоты (АТФ)
  2. Синтез АТФ осуществляется ферментами на мембранах митохондрий
Пластиды - свойственны только клеткам раститений, бывают трех типов: Двумембранные органеллы клетки
хлоропласты Имеют зеленый цвет, овальную форму, ограничены от цитоплазмы двумя трехслойными мембранами. Внутри хлоропласта располагаются грани, где сосредоточен весь хлорофилл Используют световую энергию солнца и создают органические вещества из неорганических
хромопласты Желтые, оранжевые, красные или бурые, образуются в результате накопления каротина Придают различным частям растений красную и желтую окраску
лейкопласты Бесцветные пластиды (содержатся в корнях, клубнях, луковицах) В них откладываются запасные питательные вещества
Комплекс Гольджи Может иметь разную форму и состоит из отграниченных мембранами полостей и отходящих от них трубочек с пузырьками на конце
  1. Накапливает и выводит органические вещества, синтезируемые в эндоплазматической сети
  2. Образует лизосомы
Лизосомы Округлые тельца диаметром около 1 мкм. На поверхности имеют мембрану (кожицу), внутри которой находится комплекс ферментов Выполняют пищеварительную функцию - переваривают пищевые частицы и удаляют отмершие органоиды
Органоиды движения клеток
  1. Жгутики и реснички, представляющие из себя выросты клетки и имеющие однотипное строение у животных и растений
  2. Миофибриллы - тонкие нити длиной более 1 см диаметром 1 мкм, расположенные пучками вдоль мышечного волокна
  3. Псевдоподии
  1. Выполняют функцию движения
  2. За счет их происходит сокращение мышц
  3. Передвижение за счет сокращения особого сократительного белка
Клеточные включения Это непостоянные компоненты клетки — углеводы, жиры и белки Запасные питательные вещества, используемые в процессе жизнедеятельности клетки
Клеточный центр Состоит из двух маленьких телец - центриолей и центросферы - уплотненного участка цитоплазмы Играет важную роль при делении клеток

Эукариоты обладают большим богатством органоидов, имеют ядра, содержащие хромосомы в виде нуклеопротеидов (комплекс ДНК с белком гистоном). К эукариотам относятся большинство современных растений и животных как одноклеточных, так и многоклеточных.

Выделяют два уровня клеточной организации:

  • прокариотический - их организмы очень просто устроены - это одноклеточные или колониальные формы, составляющие царство дробянок, синезеленых водорослей и вирусов
  • эукариотический - одноклеточные колониальные и многоклеточные формы, от простейших - корненожки, жгутиковые, инфузории — до высших растений и животных, составляющие царство растений, царство грибов, царство животных

Строение и функции ядра клетки
Главные органоиды Строение Функции
Ядро растительной и животной клетки Округлой или овальной формы
Ядерная оболочка состоит из 2-х мембран с порами
  1. Отграничивает ядро от цитоплазмы
  2. Осуществляется обмен между ядром и цитоплазмой
Ядерный сок (кариоплазма) - полужидкое вещество Среда, в которой находятся ядрышки и хромосомы
Ядрышки сферической или неправильной формы В них синтезируется РНК, которая входит в состав рибосомы
Хромосомы - плотные удлиненные или нитевидные образования, видимые только при делении клетки Содержат ДНК, в которой заключена наследственная информация, передающаяся из поколения в поколение

Все органоиды клетки, несмотря на особенности их строения и функций, находятся во взаимосвязи и «работают» на клетку, как на единую систему, в которой связующим звеном является цитоплазма.

Особые биологические объекты, занимающие промежуточное положение между живой и неживой природой, представляют собой вирусы, открытые в 1892 г. Д. И. Ивановским, они составляют в настоящее время объект особой науки - вирусологии.

Вирусы размножаются только в клетках растений, животных и человека, вызывая различные заболевания. Вирусы имеют очень прослое строение и состоят из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки. Вне клеток хозяина вирусная частица не проявляет никаких жизненных функций: не питается, не дышит, не растет, не размножается.

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток - прокариоты (предъядерные) и эукариоты (ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.

Прокариотическая клетка

Эукариотическая клетка

Строение эукариотической клетки

Поверхностный комплекс животной клетки

Состоит из гликокаликса , плазмалеммы и расположенного под ней кортикального слоя цитоплазмы . Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана , толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира - гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет из себя «заякоренные» в плазмалемме молекулы олигосахаридов , полисахаридов , гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в нее молекулами белков , в частности, поверхностных антигенов и рецепторов . В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета - упорядоченные определённым образом актиновые микрофиламенты . Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращение псевдоподий . При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличие микроворсинок).

Структура цитоплазмы

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды . На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек , служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов , играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы , относят к гранулярному (или шероховатому ) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному ) ЭПР, принимающему участие в синтезе липидов . Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки .

Аппарат Гольджи
Ядро
Цитоскелет
Центриоли
Митохондрии

Сопоставление про- и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970-1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета . Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот - обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеткок организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот - например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних. Так, размеры прокариотических клеток составляют в среднем 0,5-5 мкм , размеры эукариотических - в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток - это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

Анаплазия

Разрушение клеточной структуры (например, при злокачественных опухолях) носит название анаплазии .

История открытия клеток

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа . Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, -) с помощью микроскопа впервые увидел в капле воды «зверьков» - движущиеся живые организмы. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. Однако клеточная теория строения организмов сформировалась лишь к середине XIX века, после того как появились более мощные микроскопы и были разработаны методы фиксации и окраски клеток. Одним из её основоположников был Рудольф Вирхов , однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.

См. также

  • Сравнение строения клеток бактерий, растений и животных

Ссылки

  • Molecular Biology Of The Cell, 4е издание, 2002 г. - учебник по молекулярной биологии на английском языке
  • Цитология и генетика (0564-3783) публикует статьи на русском, украинском и английском языках по выбору автора, переводится на английский язык (0095-4527)
error: Content is protected !!